-
0
2
2
-
1
0
7
- e88083df-301b-4845-9c9a-5323111273ec
- Shaded
- 0
-
100;240;240;240
-
100;207;207;207
- 637915032433308485
- XHG.⠀ⵙ⠀ᗝ⠀ⵙ⠀ꖴ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ᙏ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀◯⠀ⵙ⠀ИN⠀ⵙ⠀Ⓞ⠀ⵙ⠀ꖴ⠀ⵙ⠀✤⠀ⵙ⠀ꖴ⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ИN⠀ⵙ⠀ᗩ⠀ⵙ⠀ᴥ⠀ⵙ⠀✤⠀ⵙ⠀◯⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᗝ⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀◯⠀ⵙ⠀ᙁ⠀ⵙ⠀ᑎ⠀ⵙ⠀ꗳ⠀ⵙ⠀◯⠀ⵙ⠀◯⠀ⵙ⠀ꗳ⠀ⵙ⠀ᑎ⠀ⵙ⠀ᙁ⠀ⵙ⠀◯⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀ᗝ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᗱᗴ⠀ⵙ⠀◯⠀ⵙ⠀✤⠀ⵙ⠀ᴥ⠀ⵙ⠀ᗩ⠀ⵙ⠀ИN⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ꖴ⠀ⵙ⠀✤⠀ⵙ⠀ꖴ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ИN⠀ⵙ⠀◯⠀ⵙ⠀ᔓᔕ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᕤᕦ⠀ⵙ⠀ᙏ⠀ⵙ⠀Ⓞ⠀ⵙ⠀ꖴ⠀ⵙ⠀ᗝ⠀ⵙ⠀.GHX
- 0
-
-166
-787
- 0.120580785
- 0
- 0
- 2
- Pufferfish, Version=3.0.0.0, Culture=neutral, PublicKeyToken=null
- 3.0.0.0
- Michael Pryor
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Pufferfish
- 3.0.0.0
- Heteroptera, Version=0.7.2.4, Culture=neutral, PublicKeyToken=null
- 0.7.2.4
- Amin Bahrami [Studio Helioripple]
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
- Heteroptera
- 0.7.2.4
- 450
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- a274c88d-0131-427a-9dd0-3bda6e2eff29
- 64f5057a-5eca-4ebd-adac-a9588cc43a37
- 211d3ab7-e6e9-4dd3-bbe9-4076a44479de
- 3174a38d-b561-4a42-8f8a-31608ef08ab4
- dbd22ad0-e116-471c-a510-5155790fca7b
- 68343da5-7432-441a-8a19-50a1f21b220e
- 45305164-c779-4caf-a203-99cb10700df1
- 3b518049-a721-4682-9863-fde5cd56ec7a
- 7b44aa52-4415-46b6-9a6f-8acd8b4eb189
- 3cdaef40-695e-4325-a023-127dff8a13a4
- 5e982791-82ff-440d-bacc-09c972bd83f7
- ee304c2e-7991-484f-9da6-ff4fc47e9e92
- 8d8f743b-370c-4c43-90de-d16a3d5ab270
- bf9904f8-fa01-421a-bbee-9be7276335f0
- 0592f089-92c7-4e08-8b1d-72b16d1814ee
- 2d8f7591-dfcc-4bab-82e3-0db34a1e332a
- 1f4f6537-e674-47b2-a3cc-0c14bffb73b6
- 9f5c6da6-1b66-497a-a401-6d7c972dd8f3
- d14b1d35-9269-44ee-821f-67f2cd1897b1
- 35dc89a9-722a-43d7-a22e-b79159522d82
- 0a516f0c-a574-4254-9e94-e7e5df613da5
- 5e62133f-3e96-4273-aa14-46485a1d2993
- 0a9edd9f-b92b-4495-a186-4d2d750d8705
- 65613610-dbaa-4036-a8cf-1716c76246e5
- f9a3ac63-bb35-4cd5-a701-0bc94605a753
- e225702c-37cb-414c-b6ee-0dea08840fbd
- 2760a5c3-b698-426f-ab03-8032d516a479
- da8953b6-d8e3-4aa4-bee0-df0ede441feb
- f439fa6b-f226-46ca-b01c-8ef27a697da4
- 0178cc91-2c55-4f13-8715-c9ae8cde7381
- 32aa66bf-b8f9-40a8-8447-dc53ebfd950d
- 44c51f6f-2d13-489d-a8d0-33396ca312d1
- 3e25c677-18d2-4a81-a487-3590cf9df727
- dd4e68d8-40f1-4109-a9cb-bcf9fe696818
- acfeae50-20a9-479f-aa7f-c6af7ab4d63b
- 85038b7a-945c-4f71-941f-78812db35fab
- 76614d91-3d1a-498e-8900-459619131110
- 3ae51560-a358-4655-aba3-08bdf86d0fc2
- 70bc89ee-6b70-4472-b8e5-64a5c9cb84a7
- 874e9e2e-591d-4afa-96d9-2baecebac97f
- 5ee0c642-0a89-4957-83c5-74bafd3f7d48
- 0943cba2-39fe-4125-9623-f70d3326971c
- 894c2165-9c4a-4fa0-a0bc-198755fb7e0f
- 3c806f62-3e23-4451-8b4c-1d0ee1812fe8
- 75434d61-d5bb-4800-bc6b-c6a0d8505f6c
- 0116a002-fce2-4e4c-9b8f-b77bf91c2f98
- 85c52366-0982-406d-b91c-f42517f13990
- 48b8c9ef-cb3c-4009-9684-cd48d749b5ab
- 044cb778-9490-4df3-9437-dd5b56522471
- 69e5ea57-7d81-4a09-8ef9-ccb25d57d505
- a99be150-24a5-4ed5-b21a-92a285b690b0
- 8c5832d9-8a03-428a-be62-bf491697ddaa
- 30d2560c-f4c6-4925-a86c-db46776c8475
- b62f19ca-87db-46ca-8c31-ea7e17696ffe
- 1c99c25f-7d5e-4c63-966a-976daadcec48
- b2e78911-4591-4927-ad08-76285da0ffdc
- a47ffe02-4103-4c38-89e1-ede0b95c5a37
- d2418b07-7276-422b-95a0-4b06d47778e7
- 68798621-f2f5-4d68-ab21-b493ba17bc76
- e95c3dbd-5e70-4ea6-85cd-43d87435112a
- 13811ab4-b356-4a2f-bf6a-563f34659a7a
- 47d309cc-0087-490d-85c8-cf3d129b0f93
- 3f22465c-a1d8-4425-9fdc-e6135a397fbc
- 771a3c18-faa6-4281-b469-5031ab7617a5
- 3b43cc9f-9bf8-4ad1-96ae-3c1d8d223edd
- a5de6231-a691-45d0-887d-4c677b2cd883
- ec2d9eee-a658-42ed-bf34-e56a1ed0c919
- d473a50c-3902-4af3-ad36-6f85c9f36bc0
- 256d4876-ebd8-4914-aa20-11c64a0e56d7
- 52cee108-6acb-47c9-b99f-f64546acc12c
- d900ebd2-5fc1-475e-a940-194803b564d6
- 6c8e0d06-15c6-49e1-9067-12321dd4ee3b
- cd610f91-fe93-4eaa-b6dc-0b8fadea311f
- 600b5815-4862-4828-a936-e2ea98a22934
- ff2db1c1-6c13-43aa-8303-844eb49d3ae6
- 8c08f54a-7801-4d61-a733-3a8ba0d87024
- 95874953-5edd-4e0b-9115-5fc68fd0f28d
- 5cb126fd-9c09-4d9d-9448-82cbad266c75
- 62732b5d-8ae6-4217-b2a2-eaaf8c992b76
- 4d8c850a-204d-4ade-81d2-820fdd96b58a
- 01d00c3f-0e5b-4a1c-8123-dd4db1c9e437
- fa5ecd94-e7d5-46d8-825e-477b6d112c2b
- e2051d40-1ccc-45fe-82e2-b1b90760ee46
- 39c932f0-cb48-431a-af49-df26495dad11
- 61036b5a-8186-48eb-b8e1-970dd55c24f4
- 37daf650-3934-4620-a463-416b35449969
- f9d2b63d-ffbc-48e6-b8fc-1b2cef2bb36f
- 1770ef93-fafd-46b6-9880-ef4537069dfd
- e51056f8-3107-4b1a-8fd5-ad73176b3deb
- d8ed0680-6313-4ea3-9083-6b6ef5b3df8e
- a746965c-93a8-4c42-ba22-60615b10d09a
- 1b5fbf91-fdf8-4030-a119-19e9899bcf85
- 49903633-9080-429b-8a6d-d1e6ebe41d4e
- 0964cac6-acfd-4cc9-9eaf-953e88fd0fc0
- 6cb2edf8-8cdf-4c12-85d6-a8bd4ae5d89e
- 6a8af3f4-c4cb-42f8-8235-d36afb706fae
- 50a35e3a-c50a-483f-ba6a-4078685fc7f5
- 7d097b82-7572-4bca-82b7-1d6802a40156
- 6668afd9-5abf-4c53-9854-9dacd7e2c2c6
- 99
- d2ba622f-885f-4a7d-9b75-56c1bc638d23
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- d7333872-0e06-4c03-ba89-d6407be7554d
- 9b1afeb1-d09b-4347-bfdf-3684ed6020e9
- 8f05758f-528d-4abe-a396-7016cab37bc7
- 481c1239-c2c2-4b27-9952-e232e2177102
- 136cd97b-9deb-4449-b884-bf54a4c926d4
- 60502e3d-7b53-49fc-8044-ffd2cd121805
- de643b94-4758-4fff-9527-348baf5052a6
- 3e7a556e-c1e7-4458-88a5-92c9d2b5dc72
- bfe8449c-a942-4118-b8c0-f94999971aed
- 6f068628-c4b9-4434-b450-3eb18eece1e1
- b71aae03-de35-454b-80fa-09eb419fe2bf
- 3f8b08e2-012b-4117-8562-193ac6d58cd1
- 03a735fb-f0b8-408e-aa2e-38f3423396cb
- d4d70d80-e818-4fef-ba8e-09da9f91679c
- d4d7b6ef-9942-48a8-a5dc-93fd38f8614c
- 4ba46890-e14d-4ffa-988f-1dd7b7759090
- 5d0d4ef0-d8de-470e-bbae-355a6b237935
- 6f661aea-4de1-4ccd-be9b-060c820f3253
- 9b636a61-698d-4830-96f5-74961596764f
- 0e2d7da3-975f-4198-8e36-5db1d8a5abe6
- 0e85845b-9b1b-4be3-a812-e90c459106d4
- 9f7d1187-713e-4c8f-8c68-69b4d351ce97
- 566bcebd-f5e8-468a-9c11-d4b111aa2f0c
- 14114d11-a3cb-41ea-8397-075cb5e9d027
- 8a41f4c3-fac1-4c2d-a1c7-38bbb12715ac
- 25
- c6d9ed22-f3b6-404a-9a1d-71836c532265
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 9b1afeb1-d09b-4347-bfdf-3684ed6020e9
- 8f05758f-528d-4abe-a396-7016cab37bc7
- 481c1239-c2c2-4b27-9952-e232e2177102
- 136cd97b-9deb-4449-b884-bf54a4c926d4
- 60502e3d-7b53-49fc-8044-ffd2cd121805
- 25187908-b9ee-4eb4-8acb-6dab9ed5e5e2
- 91acf8ab-b95d-4cf9-9042-41f5397d7e87
- de643b94-4758-4fff-9527-348baf5052a6
- 3e7a556e-c1e7-4458-88a5-92c9d2b5dc72
- bfe8449c-a942-4118-b8c0-f94999971aed
- 6f068628-c4b9-4434-b450-3eb18eece1e1
- b71aae03-de35-454b-80fa-09eb419fe2bf
- 3f8b08e2-012b-4117-8562-193ac6d58cd1
- 3aa9dd9c-e16a-46f7-8b96-6321eb6a7afc
- 8a41f4c3-fac1-4c2d-a1c7-38bbb12715ac
- 15
- d7333872-0e06-4c03-ba89-d6407be7554d
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 5b1c30d5-f92b-4262-aaae-0a6ae10c6bf1
- 1
- 0be06014-0ecf-459b-a86e-d5a9462f0857
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- d5ad4ac6-a82d-4a23-9599-a70c0eaea546
- 1
- fd5f3d6b-8312-4598-8717-bd7013158ac8
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 0fce987b-8641-4118-b7cc-114b6846d188
- 1
- d5ad4ac6-a82d-4a23-9599-a70c0eaea546
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 809af6a8-4634-4d16-b1e7-6d725f788939
- 1
- 0fce987b-8641-4118-b7cc-114b6846d188
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 15296d3b-06c5-4a78-9204-c362bebd73b3
- 1
- 304daaaf-330d-4eca-a6e7-7296e3c523a5
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 15296d3b-06c5-4a78-9204-c362bebd73b3
- 1
- c6d60dfe-4cb1-4743-9f16-d670ec8d290d
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 9b792e59-c476-4a7d-a5f9-efa565758290
- 1
- 4d4e3f11-e0fb-440f-b1bc-1562a0a3130f
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- e53b5806-1278-48b0-b40d-8251f7d8e523
- 1
- 809af6a8-4634-4d16-b1e7-6d725f788939
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- c83888d0-b894-40fe-820b-af825c904fc3
- 1
- e53b5806-1278-48b0-b40d-8251f7d8e523
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 69cb92e2-5dc1-4578-a030-e3fde0cf0c69
- 1
- c83888d0-b894-40fe-820b-af825c904fc3
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 64fca20e-296f-4f79-aa7f-c53c5f88866e
- 9b2a37bb-1555-4475-9897-d38d08b21505
- 27ab2024-18fc-4363-8275-015d2368f9de
- 26be2798-ae8b-4fb0-b7a2-e9f1edff6049
- 6525660d-29ee-4269-9203-539923b24a8e
- 708c9f15-3d1c-406b-8e76-cab318b67adc
- 936ab982-35fa-4088-8bfe-32405957deea
- 1fc4e7bf-6bb1-4e51-9bc5-7533ebe68ad0
- b6df8fad-340c-4555-a43a-639976bc59fe
- 47d36a7d-3cd2-4782-9f53-9f4088b19d4b
- a4a55193-86eb-40c0-8f54-9e700ffb5262
- 84f4a890-2b31-4a54-b2a5-49681a5484c7
- c20dd2aa-56ce-4ff5-8e86-52afad8c2c96
- 5ccec4b3-fea6-45d3-8cbe-91c674ae3851
- ff82ce22-4075-4b1a-9609-55239f281a35
- 377c7605-11b6-4673-94de-cc5176b48b51
- c3df9ab9-ce47-48e9-994e-14f1d7735c94
- 431dbfbf-14de-4cae-b7cc-93329a70f66c
- ff436794-13e0-4e1f-80d6-7f5a87203812
- 3eeef9bc-d5a9-4e6a-b71c-b4dfe8f6b841
- 20aa50e6-d0a5-4d7e-97e6-21b1a5d5f91e
- 74e89f85-5cd3-4475-b942-4195b9b26127
- e32b8a72-3026-4389-9167-05dd22abd69e
- b9b95f50-9e5f-4c1f-9c6b-75e6fd956e6e
- 8fbbff63-ce96-4927-842d-2fd30969fea0
- 74712b8a-b204-4e6f-81d7-fdd3959b8d3a
- e0516fed-bf3c-4077-8700-ea6a5d8fd259
- c376d704-0c1b-47cd-9bc3-72920e4bfead
- 9e30a520-265b-486e-a6d0-566777e09451
- 11c2aced-e753-46f2-bc94-82c65cf9d659
- dbbe7cdd-1102-4fb8-9b97-609a8d9fa450
- 8ec0c145-f345-40f1-b548-bdeae4656453
- 8398b5f4-fd6c-4c31-b15b-85d87dd315bc
- 878ef2e7-03c9-4c81-ab95-3f6612107a06
- 759a9424-cadf-4276-8b23-6f50b024aaa8
- 35
- 56d9a1a8-56b7-414f-a794-eab21813130e
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- db956c37-8884-4b12-b22f-f8e62287b5cc
- bad32d9f-a228-4096-a7ad-611612df1ecf
- 5edee65c-191d-441c-951b-b650d396ebf2
- 13678ac4-534d-449b-a806-30e2c5627bc4
- ed880257-cb73-4b3d-bdba-4c629f2654a0
- 2e4f40d1-57e5-4c19-a99f-429ba726780a
- 2f263c7c-b3da-4f0a-83ba-1f5794b02f50
- 6232a007-7131-40f6-a98e-54bf4f5de0e2
- be88ae4a-34e9-40cb-900e-04d4d78a0355
- cd03c22d-ecbe-479f-b24c-a9fc71964bbd
- ee60103a-50e1-4b3b-8a4b-e878472c2e33
- fe0cca38-ef8c-474b-bb0d-65546deb0f8e
- cd3a4016-c65b-423e-80fe-187b9b727aaa
- 510ca252-0b8c-434d-87ff-0bb19e02de48
- fcd5ed70-f2c4-4965-b73f-6ce7f3f76d7d
- 8b79d317-11af-4b0d-a24a-275e14631f8a
- b725dfd1-cfa6-4e7c-9b1a-61cd5476e7ad
- 964cb3ac-1a1f-431e-8b84-0556874d46d4
- 226f21c6-4fc4-4167-b7fd-59d96537bf6d
- a265b490-ccac-453e-82c7-8ff5a0e23517
- 44a14ffd-ef9a-45e3-b6f8-a5425130a8bf
- 6e32a2ca-5cb3-40d1-bb45-4d62304d533d
- c09e5ae2-030b-42b1-a084-044710815d2e
- e8733214-56ad-40ea-83a2-5e5d6fee430d
- 26a2087c-6b34-4cba-a4ca-cfd8860323fa
- 7b796d98-9d29-4777-978b-4e0f43e188d2
- 1b261338-78de-4ea1-819d-e804feffeeca
- c0c89fc9-9439-46ab-9f7e-31f42bf53c28
- 5086f2ab-1b64-44ce-8ebb-d3bf4b9ebde8
- bfb9c742-ccba-40e2-9d19-47e55cf92c4b
- 3a3cdcad-cb6e-42a2-b26f-eabf35d1c224
- 6243360b-4cd0-4b51-bf13-b41a10039126
- 5d416a89-7386-4795-804d-85aad6db5f35
- b998e5cb-ac9b-472c-bca9-b12d2a814ca3
- 1bcfcd5d-8614-4116-bfb8-776af73c4a1a
- 7b988f86-3299-4057-83e2-a2dfad7edd14
- 43169f25-9f97-4cc6-a9fb-70b22569a90b
- d14d45ee-9a5e-435f-8e00-0ea848456dec
- 7996ffe7-23e4-4271-8379-50fdc86d5ee4
- 35de8717-4eea-481e-bcfd-f9b50b3335bb
- 231d76fe-2789-4a1c-ac87-314c5549f831
- 09336dd8-3c4b-476c-b62d-d3b399ef2780
- f14968fc-8c03-4bf0-9731-e104bcf98382
- ab15d115-f73b-4d08-9382-99436259ff41
- c4aa530e-cb9a-4448-b893-7d5534deb0e5
- 18765130-12d0-4e81-bb07-50c6d539a331
- f0b3f7a9-a89a-41f9-8cd9-128e13fc28e9
- 0f3c6a22-bd04-4fde-9840-bae5878a8350
- 86e6e907-dd69-4742-a0dc-d9d47d443ec0
- f3d39ea9-6927-457d-ada0-8a62ba409d0a
- f8227a59-b3bb-490c-a577-e7486021c81f
- 013e4f07-7992-470f-8e86-91ffaa46f551
- ab1114a9-a08d-4c5d-b8cd-f951279bbcf5
- a850910a-8d6e-49e7-b143-923ad41fdb78
- 22991b0e-0e2a-4ba1-a379-96fc369abcee
- e02db1d3-13e3-4587-a331-19c777c3db08
- 2b8982ad-31cf-4594-b562-7f255387572d
- f57f0a05-8d67-4d43-83ba-1fa5cf42da0e
- 47449d6f-59a8-4e29-bbce-0d0b02c29488
- 03b1bab6-b05f-4fbd-9d3d-8724ed5846a0
- 60
- adde6a87-48a5-4b41-b3ac-b4cd01a228f1
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- a265b490-ccac-453e-82c7-8ff5a0e23517
- 1
- db956c37-8884-4b12-b22f-f8e62287b5cc
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 5edee65c-191d-441c-951b-b650d396ebf2
- 13678ac4-534d-449b-a806-30e2c5627bc4
- ed880257-cb73-4b3d-bdba-4c629f2654a0
- 2e4f40d1-57e5-4c19-a99f-429ba726780a
- 2f263c7c-b3da-4f0a-83ba-1f5794b02f50
- 6232a007-7131-40f6-a98e-54bf4f5de0e2
- be88ae4a-34e9-40cb-900e-04d4d78a0355
- cd03c22d-ecbe-479f-b24c-a9fc71964bbd
- fe0cca38-ef8c-474b-bb0d-65546deb0f8e
- ee60103a-50e1-4b3b-8a4b-e878472c2e33
- db956c37-8884-4b12-b22f-f8e62287b5cc
- 11
- bad32d9f-a228-4096-a7ad-611612df1ecf
- Group
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- true
- 5edee65c-191d-441c-951b-b650d396ebf2
- true
- Duplicate Data
- Duplicate Data
-
-967
11013
104
64
-
-908
11045
- 1
- Data to duplicate
- 0fee1575-1b05-4e95-854f-38deb1513e17
- true
- Data
- Data
- false
- e24c881f-304c-4235-90c4-49a1c051ffe0
- 1
-
-965
11015
42
20
-
-942.5
11025
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 1
- Number of duplicates
- f0603782-24ec-4e61-9a14-a9bb8e32d6d4
- true
- Number
- Number
- false
- e02db1d3-13e3-4587-a331-19c777c3db08
- 1
-
-965
11035
42
20
-
-942.5
11045
- 1
- 1
- {0}
- 500
- Retain list order
- cf5c548b-4ee5-41bd-9812-7d13de137bbe
- true
- Order
- Order
- false
- 0
-
-965
11055
42
20
-
-942.5
11065
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- e09a8eb0-1bfc-4cc0-88ea-41d013cd872a
- true
- Data
- Data
- false
- 0
-
-893
11015
28
60
-
-877.5
11045
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- true
- 13678ac4-534d-449b-a806-30e2c5627bc4
- true
- DotNET VB Script (LEGACY)
- Turtle
- 0
- Dim i As Integer
Dim dir As New On3dVector(1, 0, 0)
Dim pos As New On3dVector(0, 0, 0)
Dim axis As New On3dVector(0, 0, 1)
Dim pnts As New List(Of On3dVector)
pnts.Add(pos)
For i = 0 To Forward.Count() - 1
Dim P As New On3dVector
dir.Rotate(Left(i), axis)
P = dir * Forward(i) + pnts(i)
pnts.Add(P)
Next
Points = pnts
-
-973
10085
116
44
-
-912
10107
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- 994adef1-ec29-44d1-8210-b36829a504f0
- true
- Forward
- Forward
- true
- 1
- true
- e09a8eb0-1bfc-4cc0-88ea-41d013cd872a
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
-971
10087
44
20
-
-947.5
10097
- 1
- false
- Script Variable Left
- f68aca5b-03a6-457f-8891-8d8897d5c5fe
- true
- Left
- Left
- true
- 1
- true
- 03b1bab6-b05f-4fbd-9d3d-8724ed5846a0
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
-971
10107
44
20
-
-947.5
10117
- Print, Reflect and Error streams
- 570b8aa3-f1c3-484e-8b48-2d2b2dc5a7a0
- true
- Output
- Output
- false
- 0
-
-897
10087
38
20
-
-876.5
10097
- Output parameter Points
- 387adaa7-7978-4287-b8f0-fb7ef543c454
- true
- Points
- Points
- false
- 0
-
-897
10107
38
20
-
-876.5
10117
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- ed880257-cb73-4b3d-bdba-4c629f2654a0
- true
- Point
- Point
- false
- 387adaa7-7978-4287-b8f0-fb7ef543c454
- 1
-
-938
9889
50
24
-
-913.876
9901.313
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- 2e4f40d1-57e5-4c19-a99f-429ba726780a
- true
- Series
- Series
-
-965
10553
101
64
-
-915
10585
- First number in the series
- 2a4b9236-af46-4ebb-bee9-bac256e25c4c
- true
- Start
- Start
- false
- 0
-
-963
10555
33
20
-
-945
10565
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 2068224f-000f-4842-b679-1038ed72efc1
- true
- Step
- Step
- false
- ddf56dc6-bdbe-4989-a020-ed82978a53db
- 1
-
-963
10575
33
20
-
-945
10585
- 1
- 1
- {0}
- 1
- Number of values in the series
- b43fd2f8-4acc-4fee-aba5-8ef775813a61
- true
- Count
- Count
- false
- e02db1d3-13e3-4587-a331-19c777c3db08
- 1
-
-963
10595
33
20
-
-945
10605
- 1
- Series of numbers
- 9b1cb421-16d8-4a53-b2e0-8d1623cb2148
- true
- Series
- Series
- false
- 0
-
-900
10555
34
60
-
-881.5
10585
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- 2f263c7c-b3da-4f0a-83ba-1f5794b02f50
- true
- Number Slider
-
- false
- 0
-
-990
11191
150
20
-
-989.166
11191.74
- 0
- 1
- 0
- 65536
- 0
- 0
- 4096
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
- Convert an angle specified in degrees to radians
- true
- 6232a007-7131-40f6-a98e-54bf4f5de0e2
- true
- Radians
- Radians
-
-975
10678
120
28
-
-914
10692
- Angle in degrees
- 94b44f49-bf88-4b7c-9e90-82dd5652fc76
- true
- Degrees
- Degrees
- false
- e8733214-56ad-40ea-83a2-5e5d6fee430d
- 1
-
-973
10680
44
24
-
-949.5
10692
- Angle in radians
- ddf56dc6-bdbe-4989-a020-ed82978a53db
- true
- Radians
- Radians
- false
- 0
-
-899
10680
42
24
-
-876.5
10692
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- be88ae4a-34e9-40cb-900e-04d4d78a0355
- true
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 0.00000033527
-
-1039
10982
250
20
-
-1038.889
10982.78
- 797d922f-3a1d-46fe-9155-358b009b5997
- One Over X
- Compute one over x.
- true
- cd03c22d-ecbe-479f-b24c-a9fc71964bbd
- true
- One Over X
- One Over X
-
-965
11095
100
28
-
-916
11109
- Input value
- 31286c5a-c56a-4319-b789-d91bcab4d77b
- true
- Value
- Value
- false
- e02db1d3-13e3-4587-a331-19c777c3db08
- 1
-
-963
11097
32
24
-
-945.5
11109
- Output value
- e24c881f-304c-4235-90c4-49a1c051ffe0
- true
- Result
- Result
- false
- 0
-
-901
11097
34
24
-
-882.5
11109
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- a274c88d-0131-427a-9dd0-3bda6e2eff29
- Number
- Number
- false
- 1dd7f4ab-a114-475c-95ae-55222fa823af
- 1
-
4283
6998
50
24
-
4308.785
7010.021
- 1
- 1
- {0}
- 1024
- aaa665bd-fd6e-4ccb-8d2c-c5b33072125d
- Curvature
- Evaluate the curvature of a curve at a specified parameter.
- true
- 64f5057a-5eca-4ebd-adac-a9588cc43a37
- Curvature
- Curvature
-
4239
6828
137
64
-
4309
6860
- Curve to evaluate
- 3b3e217b-67a2-4987-bc0b-5480d1231817
- Curve
- Curve
- false
- 3174a38d-b561-4a42-8f8a-31608ef08ab4
- 1
-
4241
6830
53
30
-
4269
6845
- Parameter on curve domain to evaluate
- 72aacb95-9932-42b0-98f9-824d4c6656e9
- Parameter
- Parameter
- false
- 46971004-a130-4645-b7c1-54287fdbbeac
- 1
-
4241
6860
53
30
-
4269
6875
- Point on curve at {t}
- e9c1c0a3-5544-4e92-9e09-a6bd7dff59b1
- Point
- Point
- false
- 0
-
4324
6830
50
20
-
4350.5
6840
- Curvature vector at {t}
- b51c5bf6-0a16-4070-a003-702890971c28
- Curvature
- Curvature
- false
- 0
-
4324
6850
50
20
-
4350.5
6860
- Curvature circle at {t}
- 1411ee7a-158c-4ff3-87de-d1e1ca9a657d
- Curvature
- Curvature
- false
- 0
-
4324
6870
50
20
-
4350.5
6880
- 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
- Divide Curve
- Divide a curve into equal length segments
- true
- 211d3ab7-e6e9-4dd3-bbe9-4076a44479de
- Divide Curve
- Divide Curve
-
4245
6911
125
64
-
4295
6943
- Curve to divide
- 3a59b0e7-5804-4f1a-abe8-1612cc2fb746
- Curve
- Curve
- false
- 3174a38d-b561-4a42-8f8a-31608ef08ab4
- 1
-
4247
6913
33
20
-
4265
6923
- Number of segments
- a0ba21d8-309a-472d-a546-60bd4c28509a
- Count
- Count
- false
- a274c88d-0131-427a-9dd0-3bda6e2eff29
- 1
-
4247
6933
33
20
-
4265
6943
- 1
- 1
- {0}
- 10
- Split segments at kinks
- 6a1149f7-6ba9-4473-b567-1dc58e824b31
- Kinks
- Kinks
- false
- 0
-
4247
6953
33
20
-
4265
6963
- 1
- 1
- {0}
- false
- 1
- Division points
- 88e859b5-6de1-472e-89ad-c54242edd85c
- Points
- Points
- false
- 0
-
4310
6913
58
20
-
4340.5
6923
- 1
- Tangent vectors at division points
- ad961923-5380-4be3-93a2-d2bc10db712c
- Tangents
- Tangents
- false
- 0
-
4310
6933
58
20
-
4340.5
6943
- 1
- Parameter values at division points
- 46971004-a130-4645-b7c1-54287fdbbeac
- Parameters
- Parameters
- false
- 0
-
4310
6953
58
20
-
4340.5
6963
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 3174a38d-b561-4a42-8f8a-31608ef08ab4
- 2
- Curve
- Curve
- false
- 8b919b95-eef7-4011-9f51-db631cec0961
- 1
-
4281
7389
53
24
-
4317.697
7401.849
- 23862862-049a-40be-b558-2418aacbd916
- Deconstruct Arc
- Retrieve the base plane, radius and angle domain of an arc.
- true
- dbd22ad0-e116-471c-a510-5155790fca7b
- Deconstruct Arc
- Deconstruct Arc
-
4251
6747
114
64
-
4291
6779
- Arc or Circle to deconstruct
- 1d07eff1-b47d-4814-b941-e64ad1187bc7
- Arc
- Arc
- false
- 1411ee7a-158c-4ff3-87de-d1e1ca9a657d
- 1
-
4253
6749
23
60
-
4266
6779
- Base plane of arc or circle
- e6300693-bbb2-45d5-a8f4-6f70e4a2a26b
- Base Plane
- Base Plane
- false
- 0
-
4306
6749
57
20
-
4336
6759
- Radius of arc or circle
- 5078cf9d-5a65-46c0-801d-34f40bee0f1b
- Radius
- Radius
- false
- 0
-
4306
6769
57
20
-
4336
6779
- Angle domain (in radians) of arc
- 35aed2e6-13c9-42bf-8a37-77b587a3e345
- Angle
- Angle
- false
- 0
-
4306
6789
57
20
-
4336
6799
- 797d922f-3a1d-46fe-9155-358b009b5997
- One Over X
- Compute one over x.
- true
- 68343da5-7432-441a-8a19-50a1f21b220e
- One Over X
- One Over X
-
4258
6251
100
28
-
4307
6265
- Input value
- beaa0d02-9628-4ea2-87b4-3f70b19314d7
- Value
- Value
- false
- 771a3c18-faa6-4281-b469-5031ab7617a5
- 1
-
4260
6253
32
24
-
4277.5
6265
- Output value
- b06621f6-9ae3-437e-aa25-87164cfe5a2a
- Result
- Result
- false
- 0
-
4322
6253
34
24
-
4340.5
6265
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 45305164-c779-4caf-a203-99cb10700df1
- Quick Graph
- Quick Graph
- false
- 0
- 0a516f0c-a574-4254-9e94-e7e5df613da5
- 1
-
4233
6069
150
150
-
4233.486
6069.676
- -1
- 4c4e56eb-2f04-43f9-95a3-cc46a14f495a
- Line
- Create a line between two points.
- true
- 3b518049-a721-4682-9863-fde5cd56ec7a
- Line
- Line
-
4251
6301
114
44
-
4323
6323
- Line start point
- f9d77711-655e-4f78-83f6-5507d1e3a4c9
- Start Point
- Start Point
- false
- e9c1c0a3-5544-4e92-9e09-a6bd7dff59b1
- 1
-
4253
6303
55
20
-
4282
6313
- Line end point
- 3ad08e43-3dda-4f44-b0ae-1242d6063195
- End Point
- End Point
- false
- e6300693-bbb2-45d5-a8f4-6f70e4a2a26b
- 1
-
4253
6323
55
20
-
4282
6333
- Line segment
- c61c2f63-af12-47bf-ac8f-3ed53b4c2ca9
- Line
- Line
- false
- 0
-
4338
6303
25
40
-
4352
6323
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- 7b44aa52-4415-46b6-9a6f-8acd8b4eb189
- Number Slider
-
- false
- 0
-
4233
5234
150
20
-
4233.236
5234.235
- 6
- 1
- 0
- 2
- 0
- 0
- 0.0625
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 3cdaef40-695e-4325-a023-127dff8a13a4
- Line SDL
- Line SDL
-
4247
5115
122
64
-
4327
5147
- Line start point
- 3286d7d3-eab9-4125-817c-42f3bee3f20c
- Start
- Start
- false
- e9c1c0a3-5544-4e92-9e09-a6bd7dff59b1
- 1
-
4249
5117
63
20
-
4290
5127
- Line tangent (direction)
- e8c607a5-494a-485e-ae31-9a08bd478f18
- Direction
- Direction
- false
- c61c2f63-af12-47bf-ac8f-3ed53b4c2ca9
- 1
-
4249
5137
63
20
-
4290
5147
- 1
- 1
- {0}
-
0
0
1
- Line length
- 963d17b4-30bc-44c1-9e9a-e6c01a52c1fd
- -ABS(X)
- Length
- Length
- false
- 8c5832d9-8a03-428a-be62-bf491697ddaa
- 1
-
4249
5157
63
20
-
4290
5167
- 1
- 1
- {0}
- 1
- Line segment
- 64fde29a-f76c-4fc1-b003-229851718aab
- Line
- Line
- false
- 0
-
4342
5117
25
60
-
4356
5147
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 5e982791-82ff-440d-bacc-09c972bd83f7
- Evaluate Length
- Evaluate Length
-
4236
4851
144
64
-
4310
4883
- Curve to evaluate
- 71ee2099-99ad-4c54-871b-fa71c5868e9d
- Curve
- Curve
- false
- 64fde29a-f76c-4fc1-b003-229851718aab
- 1
-
4238
4853
57
20
-
4268
4863
- Length factor for curve evaluation
- a6327641-3497-419f-a005-6e3bc1a1946a
- Length
- Length
- false
- 0
-
4238
4873
57
20
-
4268
4883
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- c07b7a00-371b-4554-9541-b72e32c1ab5e
- Normalized
- Normalized
- false
- 0
-
4238
4893
57
20
-
4268
4903
- 1
- 1
- {0}
- true
- Point at the specified length
- 4b649cee-a63e-4418-b303-e383307f5e39
- Point
- Point
- false
- 0
-
4325
4853
53
20
-
4353
4863
- Tangent vector at the specified length
- dd207488-6941-4306-9e5a-2e8ca02eef28
- Tangent
- Tangent
- false
- 0
-
4325
4873
53
20
-
4353
4883
- Curve parameter at the specified length
- fa6e7b64-7166-4723-9a64-31604937ca06
- Parameter
- Parameter
- false
- 0
-
4325
4893
53
20
-
4353
4903
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- ee304c2e-7991-484f-9da6-ff4fc47e9e92
- Interpolate
- Interpolate
-
4245
4749
125
84
-
4312
4791
- 1
- Interpolation points
- 380ab18e-7626-439f-b5b2-9b3801878901
- Vertices
- Vertices
- false
- 4b649cee-a63e-4418-b303-e383307f5e39
- 1
-
4247
4751
50
20
-
4273.5
4761
- Curve degree
- bd7258d3-c797-48d5-8b1d-5e9a747941d0
- Degree
- Degree
- false
- 0
-
4247
4771
50
20
-
4273.5
4781
- 1
- 1
- {0}
- 3
- Periodic curve
- 4a64f453-b023-45ab-9fc4-5a233b0013b1
- Periodic
- Periodic
- false
- 0
-
4247
4791
50
20
-
4273.5
4801
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 8e13ed2c-66de-4bd1-92c3-b37c8c0e87a5
- KnotStyle
- KnotStyle
- false
- 0
-
4247
4811
50
20
-
4273.5
4821
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 71f0aa5a-eb75-494a-90f3-1bed30c8af4a
- Curve
- Curve
- false
- 0
-
4327
4751
41
26
-
4349
4764.333
- Curve length
- 263d1019-1a33-41fc-a2e4-98a24dc87b4b
- Length
- Length
- false
- 0
-
4327
4777
41
27
-
4349
4791
- Curve domain
- 03b60dca-5fc7-40b1-b3cc-833ce43733c1
- Domain
- Domain
- false
- 0
-
4327
4804
41
27
-
4349
4817.667
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- a274c88d-0131-427a-9dd0-3bda6e2eff29
- 64f5057a-5eca-4ebd-adac-a9588cc43a37
- 211d3ab7-e6e9-4dd3-bbe9-4076a44479de
- 3174a38d-b561-4a42-8f8a-31608ef08ab4
- dbd22ad0-e116-471c-a510-5155790fca7b
- 68343da5-7432-441a-8a19-50a1f21b220e
- 45305164-c779-4caf-a203-99cb10700df1
- 42201d77-7bc4-437d-baaf-c8290f91a477
- 3b518049-a721-4682-9863-fde5cd56ec7a
- dc8b9948-0b61-495f-bb5c-30271010864e
- 7b44aa52-4415-46b6-9a6f-8acd8b4eb189
- 3cdaef40-695e-4325-a023-127dff8a13a4
- 90f74d47-d623-4b80-a1f4-bde635cc690f
- 5e982791-82ff-440d-bacc-09c972bd83f7
- ee304c2e-7991-484f-9da6-ff4fc47e9e92
- f9a3ac63-bb35-4cd5-a701-0bc94605a753
- e225702c-37cb-414c-b6ee-0dea08840fbd
- 0a9edd9f-b92b-4495-a186-4d2d750d8705
- 65613610-dbaa-4036-a8cf-1716c76246e5
- 2760a5c3-b698-426f-ab03-8032d516a479
- da8953b6-d8e3-4aa4-bee0-df0ede441feb
- 75434d61-d5bb-4800-bc6b-c6a0d8505f6c
- 0116a002-fce2-4e4c-9b8f-b77bf91c2f98
- a5de6231-a691-45d0-887d-4c677b2cd883
- ec2d9eee-a658-42ed-bf34-e56a1ed0c919
- d473a50c-3902-4af3-ad36-6f85c9f36bc0
- 256d4876-ebd8-4914-aa20-11c64a0e56d7
- 52cee108-6acb-47c9-b99f-f64546acc12c
- bf9904f8-fa01-421a-bbee-9be7276335f0
- 0592f089-92c7-4e08-8b1d-72b16d1814ee
- 35dc89a9-722a-43d7-a22e-b79159522d82
- cd610f91-fe93-4eaa-b6dc-0b8fadea311f
- 600b5815-4862-4828-a936-e2ea98a22934
- ff2db1c1-6c13-43aa-8303-844eb49d3ae6
- 8c08f54a-7801-4d61-a733-3a8ba0d87024
- 95874953-5edd-4e0b-9115-5fc68fd0f28d
- 5cb126fd-9c09-4d9d-9448-82cbad266c75
- 62732b5d-8ae6-4217-b2a2-eaaf8c992b76
- 4d8c850a-204d-4ade-81d2-820fdd96b58a
- 01d00c3f-0e5b-4a1c-8123-dd4db1c9e437
- fa5ecd94-e7d5-46d8-825e-477b6d112c2b
- 1dd7f4ab-a114-475c-95ae-55222fa823af
- 42
- 8d8f743b-370c-4c43-90de-d16a3d5ab270
- Group
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- bf9904f8-fa01-421a-bbee-9be7276335f0
- Number
- Number
- false
- a274c88d-0131-427a-9dd0-3bda6e2eff29
- 1
-
4283
4400
50
24
-
4308
4412.974
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 0592f089-92c7-4e08-8b1d-72b16d1814ee
- Curve
- Curve
- false
- 71f0aa5a-eb75-494a-90f3-1bed30c8af4a
- 1
-
4283
4443
50
24
-
4308
4455.896
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 2d8f7591-dfcc-4bab-82e3-0db34a1e332a
- Line SDL
- Line SDL
-
4247
3131
122
64
-
4327
3163
- Line start point
- dbcefbd2-614b-4797-832b-f81d701edb22
- Start
- Start
- false
- 4b649cee-a63e-4418-b303-e383307f5e39
- 1
-
4249
3133
63
20
-
4290
3143
- Line tangent (direction)
- a62f7611-d05a-45a4-99b8-5fa2c0c877b8
- Direction
- Direction
- false
- 85c52366-0982-406d-b91c-f42517f13990
- 1
-
4249
3153
63
20
-
4290
3163
- 1
- 1
- {0}
-
0
0
1
- Line length
- 8094c76e-7ac6-446a-9a69-e9a6d5ed0353
- ABS(X)
- Length
- Length
- false
- 68798621-f2f5-4d68-ab21-b493ba17bc76
- 1
-
4249
3173
63
20
-
4290
3183
- 1
- 1
- {0}
- 1
- Line segment
- 5f024167-e348-42e4-83bc-dd9abab2d75e
- Line
- Line
- false
- 0
-
4342
3133
25
60
-
4356
3163
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 1f4f6537-e674-47b2-a3cc-0c14bffb73b6
- Evaluate Length
- Evaluate Length
-
4236
2808
144
64
-
4310
2840
- Curve to evaluate
- a9f5ae23-e2e8-4d50-bd0a-1302109c8202
- Curve
- Curve
- false
- 39c932f0-cb48-431a-af49-df26495dad11
- 1
-
4238
2810
57
20
-
4268
2820
- Length factor for curve evaluation
- a855f905-eb00-4e85-9ac6-5358c993cc3b
- Length
- Length
- false
- 0
-
4238
2830
57
20
-
4268
2840
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 9d96a222-e833-4263-ae23-adc8d8ac4235
- Normalized
- Normalized
- false
- 0
-
4238
2850
57
20
-
4268
2860
- 1
- 1
- {0}
- true
- Point at the specified length
- bb672236-a7b7-45ef-afb8-18f1a2792e58
- Point
- Point
- false
- 0
-
4325
2810
53
20
-
4353
2820
- Tangent vector at the specified length
- ebdcc7f4-d376-494e-8670-0983c734abd2
- Tangent
- Tangent
- false
- 0
-
4325
2830
53
20
-
4353
2840
- Curve parameter at the specified length
- cad9e2f2-8f98-4f70-9ba2-226ce27dd3c0
- Parameter
- Parameter
- false
- 0
-
4325
2850
53
20
-
4353
2860
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 9f5c6da6-1b66-497a-a401-6d7c972dd8f3
- Interpolate
- Interpolate
-
4245
1805
125
84
-
4312
1847
- 1
- Interpolation points
- 88806293-82d6-45f0-80c7-39622388bf14
- Vertices
- Vertices
- false
- 61036b5a-8186-48eb-b8e1-970dd55c24f4
- 1
-
4247
1807
50
20
-
4273.5
1817
- Curve degree
- fb8aa358-182c-4ed8-99c3-40914e0d15b8
- Degree
- Degree
- false
- 0
-
4247
1827
50
20
-
4273.5
1837
- 1
- 1
- {0}
- 3
- Periodic curve
- 45907537-5a67-4cc8-8ad9-5cec2617ba05
- Periodic
- Periodic
- false
- 0
-
4247
1847
50
20
-
4273.5
1857
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 9d25bf79-6925-466f-b4b5-dff8e01cf608
- KnotStyle
- KnotStyle
- false
- 0
-
4247
1867
50
20
-
4273.5
1877
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 1da8162b-ae51-4827-ad1c-b7cd643f0310
- Curve
- Curve
- false
- 0
-
4327
1807
41
26
-
4349
1820.333
- Curve length
- 54e28d59-6e6c-4a56-9108-4641e6543cc6
- Length
- Length
- false
- 0
-
4327
1833
41
27
-
4349
1847
- Curve domain
- c4b541f4-9081-4c7e-8daa-575e1720bef9
- Domain
- Domain
- false
- 0
-
4327
1860
41
27
-
4349
1873.667
- dde71aef-d6ed-40a6-af98-6b0673983c82
- Nurbs Curve
- Construct a nurbs curve from control points.
- true
- d14b1d35-9269-44ee-821f-67f2cd1897b1
- Nurbs Curve
- Nurbs Curve
-
4249
4667
118
64
-
4309
4699
- 1
- Curve control points
- 3ff18bf3-5d68-4b9e-9917-b7bb61af2bf2
- Vertices
- Vertices
- false
- 4b649cee-a63e-4418-b303-e383307f5e39
- 1
-
4251
4669
43
20
-
4274
4679
- Curve degree
- b14f2c14-eb36-4789-967c-700423c1ba52
- Degree
- Degree
- false
- 0
-
4251
4689
43
20
-
4274
4699
- 1
- 1
- {0}
- 3
- Periodic curve
- 6f008703-f6bc-4846-addf-3a1ff452f192
- Periodic
- Periodic
- false
- 0
-
4251
4709
43
20
-
4274
4719
- 1
- 1
- {0}
- false
- Resulting nurbs curve
- c4b8f674-25d7-435f-9a2d-167cba22f51d
- Curve
- Curve
- false
- 0
-
4324
4669
41
20
-
4346
4679
- Curve length
- aa04aa2c-23cd-43d3-907e-2116eea30857
- Length
- Length
- false
- 0
-
4324
4689
41
20
-
4346
4699
- Curve domain
- ae54b1a5-92a7-46ff-80a7-a1e5bd027488
- Domain
- Domain
- false
- 0
-
4324
4709
41
20
-
4346
4719
- dd17d442-3776-40b3-ad5b-5e188b56bd4c
- Relative Differences
- Compute relative differences for a list of data
- true
- 35dc89a9-722a-43d7-a22e-b79159522d82
- Relative Differences
- Relative Differences
-
4244
4254
128
28
-
4297
4268
- 1
- List of data to operate on (numbers or points or vectors allowed)
- dc912cd1-d87a-4e87-bfcd-553952104036
- Values
- Values
- false
- 1f0b848f-eb55-4dd9-a62f-a216daed8c78
- 1
-
4246
4256
36
24
-
4265.5
4268
- 1
- Differences between consecutive items
- 080fa6d7-bbb3-4f71-a556-fd84a9bd5303
- Differenced
- Differenced
- false
- 0
-
4312
4256
58
24
-
4342.5
4268
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 0a516f0c-a574-4254-9e94-e7e5df613da5
- Relay
-
- false
- b06621f6-9ae3-437e-aa25-87164cfe5a2a
- 1
-
4288
6235
40
16
-
4308
6243
- ab14760f-87a6-462e-b481-4a2c26a9a0d7
- Derivatives
- Evaluate the derivatives of a curve at a specified parameter.
- true
- 5e62133f-3e96-4273-aa14-46485a1d2993
- Derivatives
- Derivatives
-
4249
1458
117
144
-
4319
1530
- 2
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 7
- fbac3e32-f100-4292-8692-77240a42fd1a
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- 16ef3e75-e315-4899-b531-d3166b42dac9
- Curve to evaluate
- adce5e85-6367-4fd0-937a-81ee71fc7bae
- Curve
- Curve
- false
- 3174a38d-b561-4a42-8f8a-31608ef08ab4
- 1
-
4251
1460
53
70
-
4279
1495
- Parameter on curve domain to evaluate
- cb7449e1-4990-44d4-b5c2-c25cabb4dd9e
- Parameter
- Parameter
- false
- 46971004-a130-4645-b7c1-54287fdbbeac
- 1
-
4251
1530
53
70
-
4279
1565
- Point on curve at {t}
- ae3a695a-cc15-499e-9427-1231fcbea6e4
- Point
- Point
- false
- 0
-
4334
1460
30
20
-
4350.5
1470
- First curve derivative at t (Velocity)
- 60d7cf46-ac14-418d-825d-d81b9b00022b
- false
- First derivative
- 1
- false
- 0
-
4334
1480
30
20
-
4350.5
1490
- Second curve derivative at t (Acceleration)
- bf13852d-01bb-4747-8df7-3dc60b6e7510
- false
- Second derivative
- 2
- false
- 0
-
4334
1500
30
20
-
4350.5
1510
- Third curve derivative at t (Jolt)
- 313febab-a771-45da-a567-310cd4182e68
- false
- Third derivative
- 3
- false
- 0
-
4334
1520
30
20
-
4350.5
1530
- Fourth curve derivative at t (Jounce)
- b7204c31-0fde-4f40-9482-20f3fbf74e06
- false
- Fourth derivative
- 4
- false
- 0
-
4334
1540
30
20
-
4350.5
1550
- Fifth curve derivative at t
- 48e9cfcc-4536-4f94-9f62-f42b525b36e5
- false
- Fifth derivative
- 5
- false
- 0
-
4334
1560
30
20
-
4350.5
1570
- Sixth curve derivative at t
- 7ca4635d-ac36-43c9-b4e8-aba60332ab9f
- false
- Sixth derivative
- 6
- false
- 0
-
4334
1580
30
20
-
4350.5
1590
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 0a9edd9f-b92b-4495-a186-4d2d750d8705
- Create Material
- Create Material
-
4236
4995
144
104
-
4320
5047
- Colour of the diffuse channel
- a7202bc8-4598-42f8-957a-f6555a07c6aa
- Diffuse
- Diffuse
- false
- 0
-
4238
4997
67
20
-
4273
5007
- 1
- 1
- {0}
-
255;247;247;247
- Colour of the specular highlight
- 5d0527bc-72be-4663-872d-6eb577a8ac79
- Specular
- Specular
- false
- 0
-
4238
5017
67
20
-
4273
5027
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 47f1cb23-a432-4071-8600-aebcd5842f3c
- Emission
- Emission
- false
- 0
-
4238
5037
67
20
-
4273
5047
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 294b4b85-55d2-4e16-ac87-cded169a7fe0
- Transparency
- Transparency
- false
- 0
-
4238
5057
67
20
-
4273
5067
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 94f8e021-e6b2-4d56-a720-491809182fec
- Shine
- Shine
- false
- 0
-
4238
5077
67
20
-
4273
5087
- 1
- 1
- {0}
- 100
- Resulting material
- f879f6ef-08b1-4623-b20f-9af580c53c42
- Material
- Material
- false
- 0
-
4335
4997
43
100
-
4358
5047
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 65613610-dbaa-4036-a8cf-1716c76246e5
- Custom Preview
- Custom Preview
-
4267
4933
82
44
-
4335
4955
- Geometry to preview
- true
- fad5b3a6-49a8-4f82-a9f6-18d5d74b27da
- Geometry
- Geometry
- false
- 64fde29a-f76c-4fc1-b003-229851718aab
- 1
-
4269
4935
51
20
-
4296
4945
- The material override
- e3ce37ad-d33b-4831-bab7-83b4ca952e13
- Material
- Material
- false
- f879f6ef-08b1-4623-b20f-9af580c53c42
- 1
-
4269
4955
51
20
-
4296
4965
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- f9a3ac63-bb35-4cd5-a701-0bc94605a753
- Create Material
- Create Material
-
4236
7258
144
104
-
4320
7310
- Colour of the diffuse channel
- c676bfd6-b42e-4a4f-8422-55fdbfa4fe01
- Diffuse
- Diffuse
- false
- 0
-
4238
7260
67
20
-
4273
7270
- 1
- 1
- {0}
-
255;176;176;176
- Colour of the specular highlight
- afbce2bb-1b53-4415-abf2-4245c033b044
- Specular
- Specular
- false
- 0
-
4238
7280
67
20
-
4273
7290
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- f6841a37-fb17-4321-9ed3-0cb027307ef9
- Emission
- Emission
- false
- 0
-
4238
7300
67
20
-
4273
7310
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- ea379476-7fab-4a1e-8355-ee1d08126eae
- Transparency
- Transparency
- false
- 0
-
4238
7320
67
20
-
4273
7330
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 8062fb9b-9c42-4850-bcdf-f865358e48bd
- Shine
- Shine
- false
- 0
-
4238
7340
67
20
-
4273
7350
- 1
- 1
- {0}
- 100
- Resulting material
- 0215cbc4-028c-4365-90da-fc87e4da209a
- Material
- Material
- false
- 0
-
4335
7260
43
100
-
4358
7310
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- e225702c-37cb-414c-b6ee-0dea08840fbd
- Custom Preview
- Custom Preview
-
4267
7197
82
44
-
4335
7219
- Geometry to preview
- true
- 134b542f-fee7-495d-b747-f9d4cf6d1a83
- Geometry
- Geometry
- false
- 3174a38d-b561-4a42-8f8a-31608ef08ab4
- 1
-
4269
7199
51
20
-
4296
7209
- The material override
- 7b5413ed-65c9-44e2-8b86-ef9ccbf75ef2
- Material
- Material
- false
- 0215cbc4-028c-4365-90da-fc87e4da209a
- 1
-
4269
7219
51
20
-
4296
7229
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 2760a5c3-b698-426f-ab03-8032d516a479
- Create Material
- Create Material
-
4236
4545
144
104
-
4320
4597
- Colour of the diffuse channel
- 3004ed07-b408-4bc0-9f42-eab20a9913b4
- Diffuse
- Diffuse
- false
- 0
-
4238
4547
67
20
-
4273
4557
- 1
- 1
- {0}
-
255;222;222;222
- Colour of the specular highlight
- 326a914e-4cdd-4b71-9281-a5919bcf7baa
- Specular
- Specular
- false
- 0
-
4238
4567
67
20
-
4273
4577
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 8fe53ab0-2b1a-4163-8a29-185170fe17a8
- Emission
- Emission
- false
- 0
-
4238
4587
67
20
-
4273
4597
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 031a6a8e-aefe-4c31-a56b-469422b15bd1
- Transparency
- Transparency
- false
- 0
-
4238
4607
67
20
-
4273
4617
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- a0b5a56f-450e-4954-9df5-97e3bc851a26
- Shine
- Shine
- false
- 0
-
4238
4627
67
20
-
4273
4637
- 1
- 1
- {0}
- 100
- Resulting material
- f6602620-7a60-4871-a019-14148ed2fb01
- Material
- Material
- false
- 0
-
4335
4547
43
100
-
4358
4597
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- da8953b6-d8e3-4aa4-bee0-df0ede441feb
- Custom Preview
- Custom Preview
-
4267
4483
82
44
-
4335
4505
- Geometry to preview
- true
- 339c6a8c-fc22-4cc3-977a-83fbcb85d4af
- Geometry
- Geometry
- false
- 0592f089-92c7-4e08-8b1d-72b16d1814ee
- 1
-
4269
4485
51
20
-
4296
4495
- The material override
- 76efd886-8cd1-4f71-8ee3-a159fa2f19f4
- Material
- Material
- false
- f6602620-7a60-4871-a019-14148ed2fb01
- 1
-
4269
4505
51
20
-
4296
4515
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- f439fa6b-f226-46ca-b01c-8ef27a697da4
- Create Material
- Create Material
-
4236
3006
144
104
-
4320
3058
- Colour of the diffuse channel
- 0416a759-ff94-4b06-851b-c108dbd684cc
- Diffuse
- Diffuse
- false
- 0
-
4238
3008
67
20
-
4273
3018
- 1
- 1
- {0}
-
255;240;240;240
- Colour of the specular highlight
- 4c205008-b0ed-43a1-956e-3cf50cc1a793
- Specular
- Specular
- false
- 0
-
4238
3028
67
20
-
4273
3038
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 6b966806-b30a-4470-bbeb-5b10b43e2ba5
- Emission
- Emission
- false
- 0
-
4238
3048
67
20
-
4273
3058
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 73b07a02-8696-4088-9279-7465b6e0db16
- Transparency
- Transparency
- false
- 0
-
4238
3068
67
20
-
4273
3078
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 1d39b7f2-bc53-4ce2-bc31-c29c7c63e83a
- Shine
- Shine
- false
- 0
-
4238
3088
67
20
-
4273
3098
- 1
- 1
- {0}
- 100
- Resulting material
- f370679e-4137-46e5-90d0-7a08608cb812
- Material
- Material
- false
- 0
-
4335
3008
43
100
-
4358
3058
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 0178cc91-2c55-4f13-8715-c9ae8cde7381
- Custom Preview
- Custom Preview
-
4267
2944
82
44
-
4335
2966
- Geometry to preview
- true
- 0f98a5d2-51bb-4a8a-909e-5a183993c521
- Geometry
- Geometry
- false
- 5f024167-e348-42e4-83bc-dd9abab2d75e
- 1
-
4269
2946
51
20
-
4296
2956
- The material override
- a6df5039-34d5-4f10-9741-52b06df6a14a
- Material
- Material
- false
- f370679e-4137-46e5-90d0-7a08608cb812
- 1
-
4269
2966
51
20
-
4296
2976
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 32aa66bf-b8f9-40a8-8447-dc53ebfd950d
- Create Material
- Create Material
-
4236
1681
144
104
-
4320
1733
- Colour of the diffuse channel
- e8adebd8-6175-4942-bb80-64935d55aa67
- Diffuse
- Diffuse
- false
- 0
-
4238
1683
67
20
-
4273
1693
- 1
- 1
- {0}
-
255;214;214;214
- Colour of the specular highlight
- 94bee261-3f2c-4380-8b54-66fe1127b97f
- Specular
- Specular
- false
- 0
-
4238
1703
67
20
-
4273
1713
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 186a9b34-2cfc-4d95-a08f-7df92b2244fe
- Emission
- Emission
- false
- 0
-
4238
1723
67
20
-
4273
1733
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 70acf2e0-b087-4c5a-a9dc-f6e9a5d8b9ad
- Transparency
- Transparency
- false
- 0
-
4238
1743
67
20
-
4273
1753
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 4d3af56a-115c-4482-9c5f-f6e9b611454d
- Shine
- Shine
- false
- 0
-
4238
1763
67
20
-
4273
1773
- 1
- 1
- {0}
- 100
- Resulting material
- 3962c6a1-a3db-4768-983c-51adadc81907
- Material
- Material
- false
- 0
-
4335
1683
43
100
-
4358
1733
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 44c51f6f-2d13-489d-a8d0-33396ca312d1
- Custom Preview
- Custom Preview
-
4267
1621
82
44
-
4335
1643
- Geometry to preview
- true
- 31c8f3ef-c718-4172-afbf-959475f7f9df
- Geometry
- Geometry
- false
- 1da8162b-ae51-4827-ad1c-b7cd643f0310
- 1
-
4269
1623
51
20
-
4296
1633
- The material override
- de51e392-4b52-4541-81af-eac785c5e2b2
- Material
- Material
- false
- 3962c6a1-a3db-4768-983c-51adadc81907
- 1
-
4269
1643
51
20
-
4296
1653
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 3e25c677-18d2-4a81-a487-3590cf9df727
- Line SDL
- Line SDL
-
4247
195
122
64
-
4327
227
- Line start point
- 942dd0ac-dcb9-48b0-936d-2ee2ea08759a
- Start
- Start
- false
- 61036b5a-8186-48eb-b8e1-970dd55c24f4
- 1
-
4249
197
63
20
-
4290
207
- Line tangent (direction)
- 1c110a20-f0df-4b1f-8f07-97cc9061cc6d
- Direction
- Direction
- false
- 313febab-a771-45da-a567-310cd4182e68
- 1
-
4249
217
63
20
-
4290
227
- 1
- 1
- {0}
-
0
0
1
- Line length
- e4cd914a-2710-4c25-bfb8-2062da80e245
- -X
- Length
- Length
- false
- 68798621-f2f5-4d68-ab21-b493ba17bc76
- 1
-
4249
237
63
20
-
4290
247
- 1
- 1
- {0}
- 1
- Line segment
- 9dd13fb8-1000-4255-abae-a29abaced959
- Line
- Line
- false
- 0
-
4342
197
25
60
-
4356
227
- 71b5b089-500a-4ea6-81c5-2f960441a0e8
- PolyLine
- Create a polyline connecting a number of points.
- true
- dd4e68d8-40f1-4109-a9cb-bcf9fe696818
- PolyLine
- PolyLine
-
4249
2705
118
44
-
4309
2727
- 1
- Polyline vertex points
- e3d0b096-bd0f-4da3-9f01-58f9104484e7
- Vertices
- Vertices
- false
- 61036b5a-8186-48eb-b8e1-970dd55c24f4
- 1
-
4251
2707
43
20
-
4274
2717
- Close polyline
- 9915d3ec-2519-48fc-82fb-c2af8cbc300c
- Closed
- Closed
- false
- 0
-
4251
2727
43
20
-
4274
2737
- 1
- 1
- {0}
- false
- Resulting polyline
- b7ca3e16-396e-4dae-ae87-2357a527d9d3
- Polyline
- Polyline
- false
- 0
-
4324
2707
41
40
-
4346
2727
- afb96615-c59a-45c9-9cac-e27acb1c7ca0
- Explode
- Explode a curve into smaller segments.
- true
- acfeae50-20a9-479f-aa7f-c6af7ab4d63b
- Explode
- Explode
-
4240
2642
136
44
-
4307
2664
- Curve to explode
- 7d7ade89-8572-4344-a579-2ef1a35f81fc
- Curve
- Curve
- false
- b7ca3e16-396e-4dae-ae87-2357a527d9d3
- 1
-
4242
2644
50
20
-
4268.5
2654
- Recursive decomposition until all segments are atomic
- 2423035f-5e94-4fe9-aa63-504f956b7906
- Recursive
- Recursive
- false
- 0
-
4242
2664
50
20
-
4268.5
2674
- 1
- 1
- {0}
- true
- 1
- Exploded segments that make up the base curve
- 27f38398-7433-4312-9f44-e7e1155e5725
- Segments
- Segments
- false
- 0
-
4322
2644
52
20
-
4349.5
2654
- 1
- Vertices of the exploded segments
- 2caa6f7d-a080-4170-88e1-71f328feabf4
- Vertices
- Vertices
- false
- 0
-
4322
2664
52
20
-
4349.5
2674
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 85038b7a-945c-4f71-941f-78812db35fab
- 1
- Curve
- Curve
- false
- 27f38398-7433-4312-9f44-e7e1155e5725
- 1
-
4281
2598
53
24
-
4317.5
2610.144
- 6f93d366-919f-4dda-a35e-ba03dd62799b
- Sort List
- Sort a list of numeric keys.
- true
- 76614d91-3d1a-498e-8900-459619131110
- Sort List
- Sort List
-
4243
2484
130
44
-
4308
2506
- 2
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- List of sortable keys
- 51b6bbaf-0364-4adc-9798-246e82302730
- Keys
- Keys
- false
- 5aa52642-225e-442f-843f-1f051f77e0ac
- 1
-
4245
2486
48
20
-
4270.5
2496
- 1
- Optional list of values to sort synchronously
- a9112f66-0a37-4330-a32c-ef5afed08a17
- Values Values A
- Values A
- true
- 85038b7a-945c-4f71-941f-78812db35fab
- 1
-
4245
2506
48
20
-
4270.5
2516
- 1
- Sorted keys
- 5b746e58-f682-41be-a162-14fdf355725d
- Keys
- Keys
- false
- 0
-
4323
2486
48
20
-
4348.5
2496
- 1
- Synchronous values in Values A
- 381361b4-db26-4b75-8518-89d520b8405a
- Values Values A
- Values A
- false
- 0
-
4323
2506
48
20
-
4348.5
2516
- c75b62fa-0a33-4da7-a5bd-03fd0068fd93
- Length
- Measure the length of a curve.
- true
- 3ae51560-a358-4655-aba3-08bdf86d0fc2
- Length
- Length
-
4256
2548
104
28
-
4306
2562
- Curve to measure
- 7c56ae0f-6703-4b32-be52-6af0ede5c339
- Curve
- Curve
- false
- 85038b7a-945c-4f71-941f-78812db35fab
- 1
-
4258
2550
33
24
-
4276
2562
- Curve length
- 5aa52642-225e-442f-843f-1f051f77e0ac
- Length
- Length
- false
- 0
-
4321
2550
37
24
-
4341
2562
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 70bc89ee-6b70-4472-b8e5-64a5c9cb84a7
- List Item
- List Item
-
4271
2007
74
64
-
4319
2039
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 7bf82eff-016f-4d39-a14d-5f7db1f92f0d
- List
- List
- false
- 5b746e58-f682-41be-a162-14fdf355725d
- 1
-
4273
2009
31
20
-
4290
2019
- Item index
- ca0d5804-11e3-455a-bb0b-a2197b555dcd
- Index
- Index
- false
- 0
-
4273
2029
31
20
-
4290
2039
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- 771ab200-3a73-45b6-843c-ed1984ec3668
- Wrap
- Wrap
- false
- 0
-
4273
2049
31
20
-
4290
2059
- 1
- 1
- {0}
- false
- Item at {i'}
- 8e54098a-6065-4d4a-a69b-cd4b228d604f
- false
- Item
- i
- false
- 0
-
4334
2009
9
60
-
4340
2039
- 6b1bd8b2-47a4-4aa6-a471-3fd91c62a486
- Dot Display
- Draw a collection of coloured dots
- true
- false
- 874e9e2e-591d-4afa-96d9-2baecebac97f
- Dot Display
- Dot Display
-
4266
1908
83
64
-
4335
1940
- Dot location
- true
- f7168ed5-33bc-455e-b0fe-90817048b08b
- Point
- Point
- false
- 61036b5a-8186-48eb-b8e1-970dd55c24f4
- 1
-
4268
1910
52
20
-
4303.5
1920
- Dot colour
- 4ccc0b44-470f-454d-8830-231a71a351f6
- Colour
- Colour
- false
- 0
-
4268
1930
52
20
-
4303.5
1940
- 1
- 1
- {0}
-
255;194;194;194
- Dot size
- f4559c99-dad2-4da9-bcf8-9f54935de914
- X/2
- Size
- Size
- false
- 8e54098a-6065-4d4a-a69b-cd4b228d604f
- 1
-
4268
1950
52
20
-
4303.5
1960
- 1
- 1
- {0}
- 1
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- 5ee0c642-0a89-4957-83c5-74bafd3f7d48
- Create Material
- Create Material
-
4236
71
144
104
-
4320
123
- Colour of the diffuse channel
- cd5bc4d8-893b-4b05-946c-baead3230f7e
- Diffuse
- Diffuse
- false
- 0
-
4238
73
67
20
-
4273
83
- 1
- 1
- {0}
-
255;232;232;232
- Colour of the specular highlight
- d5a0cbb2-eb0a-4e4a-b39f-31339525b863
- Specular
- Specular
- false
- 0
-
4238
93
67
20
-
4273
103
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 5e2687cd-424e-49b4-bef1-d7afec1abb1b
- Emission
- Emission
- false
- 0
-
4238
113
67
20
-
4273
123
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 6318290d-39c5-4c22-bb7d-0c8704d92d8f
- Transparency
- Transparency
- false
- 0
-
4238
133
67
20
-
4273
143
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 242612c9-861c-48eb-822b-b37357c5c7d1
- Shine
- Shine
- false
- 0
-
4238
153
67
20
-
4273
163
- 1
- 1
- {0}
- 100
- Resulting material
- 3eac8c27-eb1a-4691-aae0-5834962df0ee
- Material
- Material
- false
- 0
-
4335
73
43
100
-
4358
123
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 0943cba2-39fe-4125-9623-f70d3326971c
- Custom Preview
- Custom Preview
-
4267
8
82
44
-
4335
30
- Geometry to preview
- true
- aaf13ab8-8091-4aac-949b-0328caac6257
- Geometry
- Geometry
- false
- 9dd13fb8-1000-4255-abae-a29abaced959
- 1
-
4269
10
51
20
-
4296
20
- The material override
- 71dbdb3c-5df4-4d92-a450-4df5a8e77cc4
- Material
- Material
- false
- 3eac8c27-eb1a-4691-aae0-5834962df0ee
- 1
-
4269
30
51
20
-
4296
40
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 894c2165-9c4a-4fa0-a0bc-198755fb7e0f
- Evaluate Length
- Evaluate Length
-
4236
-76
144
64
-
4310
-44
- Curve to evaluate
- c346d149-b7fb-412c-a009-137f4538e11d
- Curve
- Curve
- false
- 9dd13fb8-1000-4255-abae-a29abaced959
- 1
-
4238
-74
57
20
-
4268
-64
- Length factor for curve evaluation
- b8532543-8f37-400b-bc04-c8f7f67a68b1
- Length
- Length
- false
- 0
-
4238
-54
57
20
-
4268
-44
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 1eb81f65-f577-4e40-8ec3-4711034e0683
- Normalized
- Normalized
- false
- 0
-
4238
-34
57
20
-
4268
-24
- 1
- 1
- {0}
- true
- Point at the specified length
- 71f06c1d-d566-45ae-86ef-8987eb309b61
- Point
- Point
- false
- 0
-
4325
-74
53
20
-
4353
-64
- Tangent vector at the specified length
- ce73c10d-6ef1-4034-889e-01da701851c3
- Tangent
- Tangent
- false
- 0
-
4325
-54
53
20
-
4353
-44
- Curve parameter at the specified length
- 30d3880f-a685-46b8-b6f3-de16802c8b0d
- Parameter
- Parameter
- false
- 0
-
4325
-34
53
20
-
4353
-24
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 3c806f62-3e23-4451-8b4c-1d0ee1812fe8
- Interpolate
- Interpolate
-
4245
-180
125
84
-
4312
-138
- 1
- Interpolation points
- acd0ae42-6de9-479d-b234-71dc4c8c339a
- Vertices
- Vertices
- false
- 71f06c1d-d566-45ae-86ef-8987eb309b61
- 1
-
4247
-178
50
20
-
4273.5
-168
- Curve degree
- f01152aa-b4aa-4a8e-be08-375e305f592d
- Degree
- Degree
- false
- 0
-
4247
-158
50
20
-
4273.5
-148
- 1
- 1
- {0}
- 3
- Periodic curve
- 1563a0db-98d6-4d37-aaa5-7621a6e12d17
- Periodic
- Periodic
- false
- 0
-
4247
-138
50
20
-
4273.5
-128
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- f96f7dee-be9a-4b23-93bd-a8b7664eda86
- KnotStyle
- KnotStyle
- false
- 0
-
4247
-118
50
20
-
4273.5
-108
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- f61f2111-5326-4648-ba8c-1d4458c660dd
- Curve
- Curve
- false
- 0
-
4327
-178
41
26
-
4349
-164.6667
- Curve length
- 1c905852-3b56-4242-b499-2e7e7a432d49
- Length
- Length
- false
- 0
-
4327
-152
41
27
-
4349
-138
- Curve domain
- ccc00b0b-d5a3-4fe5-99aa-0b660e38fd54
- Domain
- Domain
- false
- 0
-
4327
-125
41
27
-
4349
-111.3333
- 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
- Divide Curve
- Divide a curve into equal length segments
- true
- 9b1afeb1-d09b-4347-bfdf-3684ed6020e9
- Divide Curve
- Divide Curve
-
3339
5743
125
64
-
3389
5775
- Curve to divide
- 8c9779e4-652d-4829-8f16-6dd31fc15821
- Curve
- Curve
- false
- d0820e9a-52d6-4e80-af35-61b08c2f010e
- 1
-
3341
5745
33
20
-
3359
5755
- Number of segments
- f1e327a6-5efc-4dce-9e92-dd7898cf6072
- Count
- Count
- false
- 566bcebd-f5e8-468a-9c11-d4b111aa2f0c
- 1
-
3341
5765
33
20
-
3359
5775
- 1
- 1
- {0}
- 10
- Split segments at kinks
- e3e208ab-47f8-4da4-8666-5fd2b2147baf
- Kinks
- Kinks
- false
- 0
-
3341
5785
33
20
-
3359
5795
- 1
- 1
- {0}
- false
- 1
- Division points
- a2188ea9-a064-4c1e-9cb2-1eff68e42006
- Points
- Points
- false
- 0
-
3404
5745
58
20
-
3434.5
5755
- 1
- Tangent vectors at division points
- 3adc8599-1af2-41cc-8236-86d9abed6c09
- Tangents
- Tangents
- false
- 0
-
3404
5765
58
20
-
3434.5
5775
- 1
- Parameter values at division points
- a9e3d460-fa20-477f-9b99-4150b54e9bac
- Parameters
- Parameters
- false
- 0
-
3404
5785
58
20
-
3434.5
5795
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 8f05758f-528d-4abe-a396-7016cab37bc7
- Line SDL
- Line SDL
-
3348
5826
106
64
-
3412
5858
- Line start point
- 2568b4db-9a85-4c73-a9b2-333f3b1cec89
- Start
- Start
- false
- 0
-
3350
5828
47
20
-
3375
5838
- 1
- 1
- {0}
-
0
0
0
- Line tangent (direction)
- ec9873b6-74e3-42d4-a0cc-0323d6a4527c
- Direction
- Direction
- false
- 0
-
3350
5848
47
20
-
3375
5858
- 1
- 1
- {0}
-
1
0
0
- Line length
- f8e8ab59-815f-457e-b45d-540005a6e03c
- Length
- Length
- false
- 0
-
3350
5868
47
20
-
3375
5878
- 1
- 1
- {0}
- 1
- Line segment
- d0820e9a-52d6-4e80-af35-61b08c2f010e
- Line
- Line
- false
- 0
-
3427
5828
25
60
-
3441
5858
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 481c1239-c2c2-4b27-9952-e232e2177102
- Line SDL
- Line SDL
-
3348
5575
106
64
-
3412
5607
- Line start point
- 10f7649a-403a-4475-a644-c1effa89f4e5
- Start
- Start
- false
- a2188ea9-a064-4c1e-9cb2-1eff68e42006
- 1
-
3350
5577
47
20
-
3375
5587
- 1
- 1
- {0}
-
0
0
0
- Line tangent (direction)
- d783b12f-3971-478a-a61f-7a88efca0f03
- Direction
- Direction
- false
- 0
-
3350
5597
47
20
-
3375
5607
- 1
- 1
- {0}
-
0
1
0
- Line length
- e5f3cdd3-07ca-4730-875f-7ce54355206e
- Length
- Length
- false
- 6cd0d5e1-a76e-4157-bcb0-cfc84b7fb662
- 1
-
3350
5617
47
20
-
3375
5627
- 1
- 1
- {0}
- 1
- Line segment
- 9b049f30-c8fb-42e2-8753-3a7428f5fa04
- Line
- Line
- false
- 0
-
3427
5577
25
60
-
3441
5607
- 7376fe41-74ec-497e-b367-1ffe5072608b
- Curvature Graph
- Draws Rhino Curvature Graphs.
- true
- 75434d61-d5bb-4800-bc6b-c6a0d8505f6c
- Curvature Graph
- Curvature Graph
-
4272
7076
71
64
-
4329
7108
- Curve for Curvature graph display
- true
- ba1b9963-5e52-444a-8ce0-0d312a00a656
- Curve
- Curve
- false
- 3174a38d-b561-4a42-8f8a-31608ef08ab4
- 1
-
4274
7078
40
20
-
4295.5
7088
- Sampling density of the Graph
- efc842a1-618e-4f18-8e41-c618ee60a1f3
- Density
- Density
- false
- 0
-
4274
7098
40
20
-
4295.5
7108
- 1
- 1
- {0}
- 1
- Scale of graph
- f3648ad9-3ac7-4f51-8b71-1e52739b775f
- Scale
- Scale
- false
- 0116a002-fce2-4e4c-9b8f-b77bf91c2f98
- 1
-
4274
7118
40
20
-
4295.5
7128
- 1
- 1
- {0}
- 105
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 0116a002-fce2-4e4c-9b8f-b77bf91c2f98
- Digit Scroller
-
- false
- 0
- 12
-
- 11
- 90.0
-
4183
7166
250
20
-
4183.743
7166.873
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 85c52366-0982-406d-b91c-f42517f13990
- Relay
- false
- 64fde29a-f76c-4fc1-b003-229851718aab
- 1
-
4288
3213
40
16
-
4308
3221
- 2fcc2743-8339-4cdf-a046-a1f17439191d
- Remap Numbers
- Remap numbers into a new numeric domain
- true
- 48b8c9ef-cb3c-4009-9684-cd48d749b5ab
- Remap Numbers
- Remap Numbers
-
4250
5442
115
64
-
4305
5474
- Value to remap
- b5993e70-779b-4583-bbb5-6362587acad0
- Value
- Value
- false
- a99be150-24a5-4ed5-b21a-92a285b690b0
- 1
-
4252
5444
38
20
-
4272.5
5454
- Source domain
- 276d7e42-20ad-4da8-8fc0-f069a844c500
- Source
- Source
- false
- e05b6516-f34d-4422-b08d-a2c40e898aa1
- 1
-
4252
5464
38
20
-
4272.5
5474
- 1
- 1
- {0}
-
0
1
- Target domain
- 3f7124d4-dcea-40aa-a60d-137b8d5f00e9
- Target
- Target
- false
- 0
-
4252
5484
38
20
-
4272.5
5494
- 1
- 1
- {0}
-
0
1
- Remapped number
- 2f63ad6a-50d9-44f8-b78a-6d8a197ff60b
- Mapped
- Mapped
- false
- 0
-
4320
5444
43
30
-
4343
5459
- Remapped and clipped number
- d27f1f0d-ad67-4a25-922b-b171843d62d1
- Clipped
- Clipped
- false
- 0
-
4320
5474
43
30
-
4343
5489
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- 044cb778-9490-4df3-9437-dd5b56522471
- Bounds
- Bounds
-
4247
5525
122
28
-
4311
5539
- 1
- Numbers to include in Bounds
- e44f4cb9-e713-4977-895d-ad88998e3db9
- Numbers
- Numbers
- false
- a99be150-24a5-4ed5-b21a-92a285b690b0
- 1
-
4249
5527
47
24
-
4274
5539
- Numeric Domain between the lowest and highest numbers in {N}
- e05b6516-f34d-4422-b08d-a2c40e898aa1
- Domain
- Domain
- false
- 0
-
4326
5527
41
24
-
4348
5539
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- f51f5f2d-941f-41ef-b98f-20f88c0f615c
- afc9108c-9db9-441a-9c43-d667d1c32b78
- 58b4763e-c14f-475c-bea3-43146b32e6bd
- 569a059d-e90a-4cb8-86b1-26bffb26bfcb
- 80033146-5b4f-404e-b6dc-65dc753db8a1
- 145eea6c-da47-45fb-84e7-715c62530022
- 22307018-81e5-47cd-acd7-460831a3214c
- 48b8c9ef-cb3c-4009-9684-cd48d749b5ab
- 044cb778-9490-4df3-9437-dd5b56522471
- c3830b7d-0858-410d-89db-9af833da8bf5
- 8c5832d9-8a03-428a-be62-bf491697ddaa
- a99be150-24a5-4ed5-b21a-92a285b690b0
- 7b44aa52-4415-46b6-9a6f-8acd8b4eb189
- 30d2560c-f4c6-4925-a86c-db46776c8475
- 14
- 69e5ea57-7d81-4a09-8ef9-ccb25d57d505
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- a99be150-24a5-4ed5-b21a-92a285b690b0
- Relay
-
- false
- 0a516f0c-a574-4254-9e94-e7e5df613da5
- 1
-
4288
5571
40
16
-
4308
5579
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 8c5832d9-8a03-428a-be62-bf491697ddaa
- Relay
-
- false
- f7d55e75-471d-4ce7-af53-e36391965052
- 1
-
4288
5198
40
16
-
4308
5206
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 30d2560c-f4c6-4925-a86c-db46776c8475
- Multiplication
- Multiplication
-
4267
5270
82
44
-
4298
5292
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 7feef527-fa5c-4d89-aa11-45026d59f487
- A
- A
- true
- 14bd8a6a-5af9-451e-86ed-f6bf0cd39f40
- 1
-
4269
5272
14
20
-
4277.5
5282
- Second item for multiplication
- 5690a543-f357-4f26-ad44-7255a70c6a8e
- B
- B
- true
- 7b44aa52-4415-46b6-9a6f-8acd8b4eb189
- 1
-
4269
5292
14
20
-
4277.5
5302
- Result of multiplication
- f7d55e75-471d-4ce7-af53-e36391965052
- Result
- Result
- false
- 0
-
4313
5272
34
40
-
4331.5
5292
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- b62f19ca-87db-46ca-8c31-ea7e17696ffe
- Number Slider
-
- false
- 0
-
4233
3360
150
20
-
4233
3360.007
- 6
- 1
- 0
- 1
- 0
- 0
- 0.452284
- 2fcc2743-8339-4cdf-a046-a1f17439191d
- Remap Numbers
- Remap numbers into a new numeric domain
- true
- 1c99c25f-7d5e-4c63-966a-976daadcec48
- Remap Numbers
- Remap Numbers
-
4250
3460
115
64
-
4305
3492
- Value to remap
- ea2236d0-ef35-487a-8adb-a97612168788
- Value
- Value
- false
- d2418b07-7276-422b-95a0-4b06d47778e7
- 1
-
4252
3462
38
20
-
4272.5
3472
- Source domain
- 1eae3eec-6538-43f5-9cd6-7333fec36f2e
- Source
- Source
- false
- 5b9c6745-344e-40ce-b703-687ff7634d53
- 1
-
4252
3482
38
20
-
4272.5
3492
- 1
- 1
- {0}
-
0
1
- Target domain
- 3d89d664-685b-4863-9292-8d672d390813
- Target
- Target
- false
- 0
-
4252
3502
38
20
-
4272.5
3512
- 1
- 1
- {0}
-
-1
1
- Remapped number
- eca5d769-7430-4ced-8208-a3645409d38b
- Mapped
- Mapped
- false
- 0
-
4320
3462
43
30
-
4343
3477
- Remapped and clipped number
- d24d2594-3f8b-414d-abcd-9e0136a48398
- Clipped
- Clipped
- false
- 0
-
4320
3492
43
30
-
4343
3507
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- b2e78911-4591-4927-ad08-76285da0ffdc
- Bounds
- Bounds
-
4247
3543
122
28
-
4311
3557
- 1
- Numbers to include in Bounds
- cd807512-c9ea-4f30-b657-cc117e38ffb4
- Numbers
- Numbers
- false
- d2418b07-7276-422b-95a0-4b06d47778e7
- 1
-
4249
3545
47
24
-
4274
3557
- Numeric Domain between the lowest and highest numbers in {N}
- 5b9c6745-344e-40ce-b703-687ff7634d53
- Domain
- Domain
- false
- 0
-
4326
3545
41
24
-
4348
3557
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- f51f5f2d-941f-41ef-b98f-20f88c0f615c
- afc9108c-9db9-441a-9c43-d667d1c32b78
- 58b4763e-c14f-475c-bea3-43146b32e6bd
- 569a059d-e90a-4cb8-86b1-26bffb26bfcb
- 80033146-5b4f-404e-b6dc-65dc753db8a1
- 145eea6c-da47-45fb-84e7-715c62530022
- 22307018-81e5-47cd-acd7-460831a3214c
- 1c99c25f-7d5e-4c63-966a-976daadcec48
- b2e78911-4591-4927-ad08-76285da0ffdc
- c3830b7d-0858-410d-89db-9af833da8bf5
- 68798621-f2f5-4d68-ab21-b493ba17bc76
- d2418b07-7276-422b-95a0-4b06d47778e7
- b62f19ca-87db-46ca-8c31-ea7e17696ffe
- e95c3dbd-5e70-4ea6-85cd-43d87435112a
- 14
- a47ffe02-4103-4c38-89e1-ede0b95c5a37
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- d2418b07-7276-422b-95a0-4b06d47778e7
- Relay
-
- false
- ff2db1c1-6c13-43aa-8303-844eb49d3ae6
- 1
-
4288
3588
40
16
-
4308
3596
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 68798621-f2f5-4d68-ab21-b493ba17bc76
- Relay
-
- false
- 12ea02f8-81c6-46a9-a43c-8a7adbaf384c
- 1
-
4288
3256
40
16
-
4308
3264
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- e95c3dbd-5e70-4ea6-85cd-43d87435112a
- Multiplication
- Multiplication
-
4267
3295
82
44
-
4298
3317
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- ac4a55df-2bb3-4fb0-958d-257c7d151572
- A
- A
- true
- 32f0b35d-e913-4f06-b93a-97544ad5d63d
- 1
-
4269
3297
14
20
-
4277.5
3307
- Second item for multiplication
- 1c3d4bbb-df13-478b-ad73-7162f665914a
- B
- B
- true
- b62f19ca-87db-46ca-8c31-ea7e17696ffe
- 1
-
4269
3317
14
20
-
4277.5
3327
- Result of multiplication
- 12ea02f8-81c6-46a9-a43c-8a7adbaf384c
- Result
- Result
- false
- 0
-
4313
3297
34
40
-
4331.5
3317
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
- Create an interpolated curve through a set of points with tangents.
- true
- ee60103a-50e1-4b3b-8a4b-e878472c2e33
- true
- Interpolate (t)
- Interpolate (t)
-
-987
9782
144
84
-
-901
9824
- 1
- Interpolation points
- 5e0892dc-4a0f-40e2-9b7f-dd8496e6f8c7
- true
- Vertices
- Vertices
- false
- ed880257-cb73-4b3d-bdba-4c629f2654a0
- 1
-
-985
9784
69
20
-
-949
9794
- Tangent at start of curve
- 3baa2089-7b0b-4d73-b557-3897101d5075
- true
- Tangent Start
- Tangent Start
- false
- 0
-
-985
9804
69
20
-
-949
9814
- 1
- 1
- {0}
-
0.0625
0
0
- Tangent at end of curve
- bca82fcd-eda9-4855-aae8-a31dd638ce75
- true
- Tangent End
- Tangent End
- false
- 0
-
-985
9824
69
20
-
-949
9834
- 1
- 1
- {0}
-
0
0
0
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- a91d8d40-4371-494c-92f6-2daa4a0f5a61
- true
- KnotStyle
- KnotStyle
- false
- 0
-
-985
9844
69
20
-
-949
9854
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- d1cad267-2905-49dd-863c-5ec306105c06
- true
- Curve
- Curve
- false
- 0
-
-886
9784
41
26
-
-864
9797.333
- Curve length
- d4e8f984-2d5d-4099-a64b-d7ee84c5d11f
- true
- Length
- Length
- false
- 0
-
-886
9810
41
27
-
-864
9824
- Curve domain
- aae9e7c9-c70b-470e-967d-8965a1c4bdc0
- true
- Domain
- Domain
- false
- 0
-
-886
9837
41
27
-
-864
9850.666
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 5edee65c-191d-441c-951b-b650d396ebf2
- 13678ac4-534d-449b-a806-30e2c5627bc4
- ed880257-cb73-4b3d-bdba-4c629f2654a0
- 2e4f40d1-57e5-4c19-a99f-429ba726780a
- 2f263c7c-b3da-4f0a-83ba-1f5794b02f50
- 6232a007-7131-40f6-a98e-54bf4f5de0e2
- be88ae4a-34e9-40cb-900e-04d4d78a0355
- cd03c22d-ecbe-479f-b24c-a9fc71964bbd
- 8
- fe0cca38-ef8c-474b-bb0d-65546deb0f8e
- Group
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- cd3a4016-c65b-423e-80fe-187b9b727aaa
- true
- Evaluate Length
- Evaluate Length
-
-987
9614
144
64
-
-913
9646
- Curve to evaluate
- ab270c13-482f-4dba-8f8c-667cf2bccfb0
- true
- Curve
- Curve
- false
- d1cad267-2905-49dd-863c-5ec306105c06
- 1
-
-985
9616
57
20
-
-955
9626
- Length factor for curve evaluation
- b77d2cd7-d893-4dc6-ba2d-b654d3634874
- true
- Length
- Length
- false
- 0
-
-985
9636
57
20
-
-955
9646
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 2ce86cd5-5fbd-43f2-9e46-762f0ea8ad48
- true
- Normalized
- Normalized
- false
- 0
-
-985
9656
57
20
-
-955
9666
- 1
- 1
- {0}
- true
- Point at the specified length
- 6de6fb51-beda-4a9c-8bf6-44fc7c3a928c
- true
- Point
- Point
- false
- 0
-
-898
9616
53
20
-
-870
9626
- Tangent vector at the specified length
- ff8aacdd-97f6-438f-817a-9a56a4536825
- true
- Tangent
- Tangent
- false
- 0
-
-898
9636
53
20
-
-870
9646
- Curve parameter at the specified length
- ab545d28-efad-4fdc-9b57-d09124c3720b
- true
- Parameter
- Parameter
- false
- 0
-
-898
9656
53
20
-
-870
9666
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
- Mirror an object.
- true
- 510ca252-0b8c-434d-87ff-0bb19e02de48
- true
- Mirror
- Mirror
-
-984
9552
138
44
-
-916
9574
- Base geometry
- 241d2c7e-0587-403a-8cbf-f467d610bc5d
- true
- Geometry
- Geometry
- true
- d1cad267-2905-49dd-863c-5ec306105c06
- 1
-
-982
9554
51
20
-
-955
9564
- Mirror plane
- b73fb547-2a14-42af-9268-8741c8dfe5b9
- true
- Plane
- Plane
- false
- 809cc5ac-960d-4e08-8dab-40148f659f12
- 1
-
-982
9574
51
20
-
-955
9584
- 1
- 1
- {0}
-
0
0
0
0
1
0
0
0
1
- Mirrored geometry
- 80d8dfba-b9c1-4d87-9fdf-6ebc1450d987
- true
- Geometry
- Geometry
- false
- 0
-
-901
9554
53
20
-
-873
9564
- Transformation data
- 77e150c8-9396-4806-94c3-34aa0a3dc3d5
- true
- Transform
- Transform
- false
- 0
-
-901
9574
53
20
-
-873
9584
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- fcd5ed70-f2c4-4965-b73f-6ce7f3f76d7d
- true
- Line SDL
- Line SDL
-
-968
9698
106
64
-
-904
9730
- Line start point
- 7e2a4f3e-5d27-453e-a9f9-bf4f1f748e31
- true
- Start
- Start
- false
- 6de6fb51-beda-4a9c-8bf6-44fc7c3a928c
- 1
-
-966
9700
47
20
-
-941
9710
- Line tangent (direction)
- 442a7145-a8ad-4fe0-87aa-87496e7e5ece
- true
- Direction
- Direction
- false
- ff8aacdd-97f6-438f-817a-9a56a4536825
- 1
-
-966
9720
47
20
-
-941
9730
- 1
- 1
- {0}
-
0
0
1
- Line length
- 0a0ac73a-af02-46ff-b234-7ef64334bc2f
- true
- Length
- Length
- false
- 0
-
-966
9740
47
20
-
-941
9750
- 1
- 1
- {0}
- 1
- Line segment
- 809cc5ac-960d-4e08-8dab-40148f659f12
- true
- Line
- Line
- false
- 0
-
-889
9700
25
60
-
-875
9730
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- 8b79d317-11af-4b0d-a24a-275e14631f8a
- true
- Join Curves
- Join Curves
-
-974
9490
118
44
-
-911
9512
- 1
- Curves to join
- 6cdce605-31fd-491c-ac36-766bfea93faa
- true
- Curves
- Curves
- false
- d1cad267-2905-49dd-863c-5ec306105c06
- 80d8dfba-b9c1-4d87-9fdf-6ebc1450d987
- 2
-
-972
9492
46
20
-
-947.5
9502
- Preserve direction of input curves
- 0d3969ce-31e3-4f57-9696-c46ee1366602
- true
- Preserve
- Preserve
- false
- 0
-
-972
9512
46
20
-
-947.5
9522
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- cf31e72b-6a90-4794-a19d-2be419d19aed
- true
- Curves
- Curves
- false
- 0
-
-896
9492
38
40
-
-875.5
9512
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- b725dfd1-cfa6-4e7c-9b1a-61cd5476e7ad
- true
- Evaluate Length
- Evaluate Length
-
-987
9406
144
64
-
-913
9438
- Curve to evaluate
- 38f6fc31-45bd-4a70-9b17-4bb06e38031f
- true
- Curve
- Curve
- false
- cf31e72b-6a90-4794-a19d-2be419d19aed
- 1
-
-985
9408
57
20
-
-955
9418
- Length factor for curve evaluation
- 2bb72ac2-f495-44e3-a11a-a308c204bbcb
- true
- Length
- Length
- false
- 0
-
-985
9428
57
20
-
-955
9438
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 29839782-8065-4d8b-b1b7-a13bf9dbdc4e
- true
- Normalized
- Normalized
- false
- 0
-
-985
9448
57
20
-
-955
9458
- 1
- 1
- {0}
- true
- Point at the specified length
- b39750aa-21ef-4a5a-8740-7fdd65d5b48e
- true
- Point
- Point
- false
- 0
-
-898
9408
53
20
-
-870
9418
- Tangent vector at the specified length
- 372674e2-50b7-4bfb-ab1d-bb7e8b75c515
- true
- Tangent
- Tangent
- false
- 0
-
-898
9428
53
20
-
-870
9438
- Curve parameter at the specified length
- f5bb72c6-4e2d-47d4-a871-ce65caed868f
- true
- Parameter
- Parameter
- false
- 0
-
-898
9448
53
20
-
-870
9458
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 964cb3ac-1a1f-431e-8b84-0556874d46d4
- true
- Rotate
- Rotate
-
-984
9323
138
64
-
-916
9355
- Base geometry
- a4f21410-70fe-46e7-98d7-8793224d8bde
- true
- Geometry
- Geometry
- true
- cf31e72b-6a90-4794-a19d-2be419d19aed
- 1
-
-982
9325
51
20
-
-955
9335
- Rotation angle in radians
- c56df01d-4b47-4c8e-81ba-7057ced1d137
- true
- Angle
- Angle
- false
- 0
- false
-
-982
9345
51
20
-
-955
9355
- 1
- 1
- {0}
- 3.1415926535897931
- Rotation plane
- d9195291-084b-4fd6-b715-ff7af59871b1
- true
- Plane
- Plane
- false
- b39750aa-21ef-4a5a-8740-7fdd65d5b48e
- 1
-
-982
9365
51
20
-
-955
9375
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 4b7f81ba-718b-415d-8e5a-3c633d24346e
- true
- Geometry
- Geometry
- false
- 0
-
-901
9325
53
30
-
-873
9340
- Transformation data
- 3a5d1ebf-3ae7-46da-8628-59f4ad4e7905
- true
- Transform
- Transform
- false
- 0
-
-901
9355
53
30
-
-873
9370
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- 226f21c6-4fc4-4167-b7fd-59d96537bf6d
- true
- Join Curves
- Join Curves
-
-974
9260
118
44
-
-911
9282
- 1
- Curves to join
- fabf4137-ead8-4c4a-a166-95a58b4c0bad
- true
- Curves
- Curves
- false
- cf31e72b-6a90-4794-a19d-2be419d19aed
- 4b7f81ba-718b-415d-8e5a-3c633d24346e
- 2
-
-972
9262
46
20
-
-947.5
9272
- Preserve direction of input curves
- 6d100315-3d62-488c-be52-bbab983fd914
- true
- Preserve
- Preserve
- false
- 0
-
-972
9282
46
20
-
-947.5
9292
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- 04d2c425-92a8-4d5b-bf08-b063e28d5edf
- true
- Curves
- Curves
- false
- 0
-
-896
9262
38
40
-
-875.5
9282
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- ee60103a-50e1-4b3b-8a4b-e878472c2e33
- cd3a4016-c65b-423e-80fe-187b9b727aaa
- 510ca252-0b8c-434d-87ff-0bb19e02de48
- fcd5ed70-f2c4-4965-b73f-6ce7f3f76d7d
- 8b79d317-11af-4b0d-a24a-275e14631f8a
- b725dfd1-cfa6-4e7c-9b1a-61cd5476e7ad
- 964cb3ac-1a1f-431e-8b84-0556874d46d4
- 226f21c6-4fc4-4167-b7fd-59d96537bf6d
- 6e32a2ca-5cb3-40d1-bb45-4d62304d533d
- 9
- a265b490-ccac-453e-82c7-8ff5a0e23517
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 44a14ffd-ef9a-45e3-b6f8-a5425130a8bf
- true
- Panel
- false
- 0
- b998e5cb-ac9b-472c-bca9-b12d2a814ca3
- 1
- Double click to edit panel content…
-
-987
10643
145
20
- 0
- 0
- 0
-
-986.8201
10643.69
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 6e32a2ca-5cb3-40d1-bb45-4d62304d533d
- true
- Curve
- Curve
- false
- 04d2c425-92a8-4d5b-bf08-b063e28d5edf
- 1
-
-939
9223
50
24
-
-914
9235.421
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 6e32a2ca-5cb3-40d1-bb45-4d62304d533d
- 1
- c09e5ae2-030b-42b1-a084-044710815d2e
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- e8733214-56ad-40ea-83a2-5e5d6fee430d
- true
- Panel
- false
- 0
- 0
- 0.0000053644183496292
-
-1134
10734
439
104
- 0
- 0
- 0
-
-1133.022
10734.36
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 26a2087c-6b34-4cba-a4ca-cfd8860323fa
- true
- Evaluate Length
- Evaluate Length
-
-987
9134
144
64
-
-913
9166
- Curve to evaluate
- a966cf4a-5ec5-41d3-82f6-4fd16d9818b3
- true
- Curve
- Curve
- false
- 04d2c425-92a8-4d5b-bf08-b063e28d5edf
- 1
-
-985
9136
57
20
-
-955
9146
- Length factor for curve evaluation
- 17838106-ce01-4b50-8dce-2b29ead2dae4
- true
- Length
- Length
- false
- 0
-
-985
9156
57
20
-
-955
9166
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- fb8f5ae1-7d69-43b3-8269-948425a13989
- true
- Normalized
- Normalized
- false
- 0
-
-985
9176
57
20
-
-955
9186
- 1
- 1
- {0}
- true
- Point at the specified length
- d4d5ac12-1a31-4022-8d91-9b0deff373a2
- true
- Point
- Point
- false
- 0
-
-898
9136
53
20
-
-870
9146
- Tangent vector at the specified length
- c87ee5d0-529a-44f0-9205-ac78add5f358
- true
- Tangent
- Tangent
- false
- 0
-
-898
9156
53
20
-
-870
9166
- Curve parameter at the specified length
- 3779e032-21bf-4d31-a613-b3331d3baf0f
- true
- Parameter
- Parameter
- false
- 0
-
-898
9176
53
20
-
-870
9186
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 7b796d98-9d29-4777-978b-4e0f43e188d2
- true
- Expression
- Expression
-
-1012
8912
194
28
-
-912
8926
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 872253d1-d04f-4f48-88b0-5a56b0b2f8b6
- true
- Variable O
- O
- true
- 429b9784-3991-40dd-b4fc-7324008c5239
- 1
-
-1010
8914
14
24
-
-1001.5
8926
- Result of expression
- 44c4e463-8e39-49cf-b1e3-7f0a2ce242a0
- true
- Result
-
- false
- 0
-
-829
8914
9
24
-
-823
8926
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 1b261338-78de-4ea1-819d-e804feffeeca
- true
- Deconstruct
- Deconstruct
-
-981
9046
132
64
-
-934
9078
- Input point
- 92303b98-af3c-4290-b699-a801dc759d98
- true
- Point
- Point
- false
- d4d5ac12-1a31-4022-8d91-9b0deff373a2
- 1
-
-979
9048
30
60
-
-962.5
9078
- Point {x} component
- 429b9784-3991-40dd-b4fc-7324008c5239
- true
- X component
- X component
- false
- 0
-
-919
9048
68
20
-
-883.5
9058
- Point {y} component
- d92a6eb8-3adc-42ab-b1dd-cc6fd5ae1b75
- true
- Y component
- Y component
- false
- 0
-
-919
9068
68
20
-
-883.5
9078
- Point {z} component
- 693d19df-77a5-490c-a58d-735f7e092501
- true
- Z component
- Z component
- false
- 0
-
-919
9088
68
20
-
-883.5
9098
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- c0c89fc9-9439-46ab-9f7e-31f42bf53c28
- true
- Panel
- false
- 0
- 44c4e463-8e39-49cf-b1e3-7f0a2ce242a0
- 1
- Double click to edit panel content…
-
-994
8879
160
20
- 0
- 0
- 0
-
-993.5063
8879.412
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 5086f2ab-1b64-44ce-8ebb-d3bf4b9ebde8
- true
- Expression
- Expression
-
-1012
8826
194
28
-
-912
8840
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 40d84ac4-901b-4025-995e-5a7b2cd3b051
- true
- Variable O
- O
- true
- d92a6eb8-3adc-42ab-b1dd-cc6fd5ae1b75
- 1
-
-1010
8828
14
24
-
-1001.5
8840
- Result of expression
- df1a2729-a520-499a-9fd0-a8b65794d183
- true
- Result
-
- false
- 0
-
-829
8828
9
24
-
-823
8840
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- bfb9c742-ccba-40e2-9d19-47e55cf92c4b
- true
- Panel
- false
- 0
- df1a2729-a520-499a-9fd0-a8b65794d183
- 1
- Double click to edit panel content…
-
-994
8790
160
20
- 0
- 0
- 0
-
-993.5063
8790.989
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 3a3cdcad-cb6e-42a2-b26f-eabf35d1c224
- true
- Division
- Division
-
-956
8724
82
44
-
-925
8746
- Item to divide (dividend)
- 26ba875e-d26b-4715-9873-17f18d0efde2
- true
- A
- A
- false
- c0c89fc9-9439-46ab-9f7e-31f42bf53c28
- 1
-
-954
8726
14
20
-
-945.5
8736
- Item to divide with (divisor)
- ed06cc38-fdf9-4b45-ab41-3d6287ca0a47
- true
- B
- B
- false
- bfb9c742-ccba-40e2-9d19-47e55cf92c4b
- 1
-
-954
8746
14
20
-
-945.5
8756
- The result of the Division
- 616fbb74-cb75-40af-8a97-d383c34f36ba
- true
- Result
- Result
- false
- 0
-
-910
8726
34
40
-
-891.5
8746
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 6243360b-4cd0-4b51-bf13-b41a10039126
- true
- Panel
- false
- 0
- b998e5cb-ac9b-472c-bca9-b12d2a814ca3
- 1
- Double click to edit panel content…
-
-995
8643
160
20
- 0
- 0
- 0
-
-994.2581
8643.474
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 5d416a89-7386-4795-804d-85aad6db5f35
- true
- Expression
- Expression
-
-1012
8677
194
28
-
-912
8691
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- bb19316b-746a-4f27-8652-2823c6953f72
- true
- Variable O
- O
- true
- 616fbb74-cb75-40af-8a97-d383c34f36ba
- 1
-
-1010
8679
14
24
-
-1001.5
8691
- Result of expression
- 8261f4ba-6e49-4a2c-a90d-63b86dddb45b
- true
- Result
-
- false
- 0
-
-829
8679
9
24
-
-823
8691
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- b998e5cb-ac9b-472c-bca9-b12d2a814ca3
- true
- Relay
- false
- 8261f4ba-6e49-4a2c-a90d-63b86dddb45b
- 1
-
-935
8602
40
16
-
-915
8610
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
- Mathematical addition
- true
- 1bcfcd5d-8614-4116-bfb8-776af73c4a1a
- true
- Addition
- Addition
-
-956
8539
82
44
-
-925
8561
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for addition
- a0ed3f37-6fa3-45a8-858d-063127ff8a9b
- true
- A
- A
- true
- bfb9c742-ccba-40e2-9d19-47e55cf92c4b
- 1
-
-954
8541
14
20
-
-945.5
8551
- Second item for addition
- 01fa2527-fed9-4679-8d0b-13154e15b8aa
- true
- B
- B
- true
- c0c89fc9-9439-46ab-9f7e-31f42bf53c28
- 1
-
-954
8561
14
20
-
-945.5
8571
- Result of addition
- 2e5b0884-c422-418c-985d-a3d108281c45
- true
- Result
- Result
- false
- 0
-
-910
8541
34
40
-
-891.5
8561
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 7b988f86-3299-4057-83e2-a2dfad7edd14
- true
- Division
- Division
-
-956
8389
82
44
-
-925
8411
- Item to divide (dividend)
- 7af19144-101f-4fd7-b4ae-b0ec49544cb3
- true
- A
- A
- false
- 7996ffe7-23e4-4271-8379-50fdc86d5ee4
- 1
-
-954
8391
14
20
-
-945.5
8401
- Item to divide with (divisor)
- 2e88e802-2d32-449a-955c-da6d6f7cd324
- true
- B
- B
- false
- 0
-
-954
8411
14
20
-
-945.5
8421
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- The result of the Division
- 544e5366-cc02-4c90-87a2-fee9bebd91ea
- true
- Result
- Result
- false
- 0
-
-910
8391
34
40
-
-891.5
8411
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 43169f25-9f97-4cc6-a9fb-70b22569a90b
- true
- Expression
- Expression
-
-1012
8341
194
28
-
-912
8355
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- fc92cf4d-201d-4cfa-8e79-eb21e2742cc5
- true
- Variable O
- O
- true
- 544e5366-cc02-4c90-87a2-fee9bebd91ea
- 1
-
-1010
8343
14
24
-
-1001.5
8355
- Result of expression
- 1f548497-6dc7-4aab-896a-5843cdcb8ea7
- true
- Result
-
- false
- 0
-
-829
8343
9
24
-
-823
8355
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- d14d45ee-9a5e-435f-8e00-0ea848456dec
- true
- Panel
- false
- 0
- 1f548497-6dc7-4aab-896a-5843cdcb8ea7
- 1
- Double click to edit panel content…
-
-994
8307
160
20
- 0
- 0
- 0
-
-993.5063
8307.331
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 7996ffe7-23e4-4271-8379-50fdc86d5ee4
- true
- Panel
- false
- 0
- 12e30454-d44f-4207-9e27-41c21b4ca838
- 1
- Double click to edit panel content…
-
-994
8459
160
20
- 0
- 0
- 0
-
-993.5063
8459.24
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 35de8717-4eea-481e-bcfd-f9b50b3335bb
- true
- Expression
- Expression
-
-1012
8492
194
28
-
-912
8506
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 71cf5f71-6390-4db3-b49d-a155bdb8635d
- true
- Variable O
- O
- true
- 2e5b0884-c422-418c-985d-a3d108281c45
- 1
-
-1010
8494
14
24
-
-1001.5
8506
- Result of expression
- 12e30454-d44f-4207-9e27-41c21b4ca838
- true
- Result
-
- false
- 0
-
-829
8494
9
24
-
-823
8506
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 231d76fe-2789-4a1c-ac87-314c5549f831
- true
- Scale
- Scale
-
-992
8218
154
64
-
-908
8250
- Base geometry
- 2f89036f-a302-4c26-8c58-a257774f9004
- true
- Geometry
- Geometry
- true
- 6e32a2ca-5cb3-40d1-bb45-4d62304d533d
- 1
-
-990
8220
67
20
-
-947
8230
- Center of scaling
- 1813bed0-02d6-4db0-b77f-366a4a290b1c
- true
- Center
- Center
- false
- 0
-
-990
8240
67
20
-
-947
8250
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 68c9537b-eb7c-480a-b5ee-0770d1eae50a
- 1/X
- true
- Factor
- Factor
- false
- d14d45ee-9a5e-435f-8e00-0ea848456dec
- 1
-
-990
8260
67
20
-
-947
8270
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- ecb3b5d5-ccc4-415b-bbfe-d76dab0e4a86
- true
- Geometry
- Geometry
- false
- 0
-
-893
8220
53
30
-
-865
8235
- Transformation data
- d7ce92c8-46c2-463c-99cf-b2526261e09a
- true
- Transform
- Transform
- false
- 0
-
-893
8250
53
30
-
-865
8265
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 09336dd8-3c4b-476c-b62d-d3b399ef2780
- true
- Curve
- Curve
- false
- ecb3b5d5-ccc4-415b-bbfe-d76dab0e4a86
- 1
-
-938
7755
50
24
-
-913.5334
7767.688
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- f14968fc-8c03-4bf0-9731-e104bcf98382
- true
- Expression
- Expression
-
-1012
8999
194
28
-
-912
9013
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- b2b86f5d-c078-454b-829f-05dc9c8931b7
- true
- Variable O
- O
- true
- 693d19df-77a5-490c-a58d-735f7e092501
- 1
-
-1010
9001
14
24
-
-1001.5
9013
- Result of expression
- 58bc3cd2-b8a5-4b29-9bc0-8c5da1c2d852
- true
- Result
-
- false
- 0
-
-829
9001
9
24
-
-823
9013
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- ab15d115-f73b-4d08-9382-99436259ff41
- true
- Panel
- false
- 0
- 58bc3cd2-b8a5-4b29-9bc0-8c5da1c2d852
- 1
- Double click to edit panel content…
-
-994
8965
160
20
- 0
- 0
- 0
-
-993.6343
8965.187
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- c4aa530e-cb9a-4448-b893-7d5534deb0e5
- true
- Evaluate Length
- Evaluate Length
-
-987
8135
144
64
-
-913
8167
- Curve to evaluate
- 2d7bcaf1-a4ba-425f-968c-c962f2bb6c85
- true
- Curve
- Curve
- false
- ecb3b5d5-ccc4-415b-bbfe-d76dab0e4a86
- 1
-
-985
8137
57
20
-
-955
8147
- Length factor for curve evaluation
- 1a3512d3-14c6-484e-a725-8ee8fb9d44d0
- true
- Length
- Length
- false
- 0
-
-985
8157
57
20
-
-955
8167
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 1efbe105-5434-4501-b1b8-0f2cf92ec77f
- true
- Normalized
- Normalized
- false
- 0
-
-985
8177
57
20
-
-955
8187
- 1
- 1
- {0}
- true
- Point at the specified length
- 53e8fe8a-51ac-4ae0-a3c1-fb0e6e7d6a7e
- true
- Point
- Point
- false
- 0
-
-898
8137
53
20
-
-870
8147
- Tangent vector at the specified length
- 693f19a5-23b5-40d2-8501-3a342be28e63
- true
- Tangent
- Tangent
- false
- 0
-
-898
8157
53
20
-
-870
8167
- Curve parameter at the specified length
- 4d17e914-bbe1-481c-8fe9-a2528e296ff9
- true
- Parameter
- Parameter
- false
- 0
-
-898
8177
53
20
-
-870
8187
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 18765130-12d0-4e81-bb07-50c6d539a331
- true
- Expression
- Expression
-
-1012
7918
194
28
-
-912
7932
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 7a7c3697-e63a-45b2-bd06-037d2f29b817
- true
- Variable O
- O
- true
- fc7c12b9-2081-4dd6-a05e-919a971f9006
- 1
-
-1010
7920
14
24
-
-1001.5
7932
- Result of expression
- e5c82fa4-8603-4911-9120-70602d5d82d0
- true
- Result
-
- false
- 0
-
-829
7920
9
24
-
-823
7932
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- f0b3f7a9-a89a-41f9-8cd9-128e13fc28e9
- true
- Deconstruct
- Deconstruct
-
-981
8052
132
64
-
-934
8084
- Input point
- fd02f4e8-674d-438a-82b2-23a5bbbfc706
- true
- Point
- Point
- false
- 53e8fe8a-51ac-4ae0-a3c1-fb0e6e7d6a7e
- 1
-
-979
8054
30
60
-
-962.5
8084
- Point {x} component
- fc7c12b9-2081-4dd6-a05e-919a971f9006
- true
- X component
- X component
- false
- 0
-
-919
8054
68
20
-
-883.5
8064
- Point {y} component
- 239975f6-acba-4a08-91ad-5e51ab86046c
- true
- Y component
- Y component
- false
- 0
-
-919
8074
68
20
-
-883.5
8084
- Point {z} component
- f0e11f46-3d6e-4e37-b2c1-807face13f86
- true
- Z component
- Z component
- false
- 0
-
-919
8094
68
20
-
-883.5
8104
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 0f3c6a22-bd04-4fde-9840-bae5878a8350
- true
- Panel
- false
- 0
- e5c82fa4-8603-4911-9120-70602d5d82d0
- 1
- Double click to edit panel content…
-
-995
7885
160
20
- 0
- 0
- 0
-
-994.2507
7885.69
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 86e6e907-dd69-4742-a0dc-d9d47d443ec0
- true
- Expression
- Expression
-
-1012
7832
194
28
-
-912
7846
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 54334a24-036b-4ac5-b49b-69c3f3f22e89
- true
- Variable O
- O
- true
- 239975f6-acba-4a08-91ad-5e51ab86046c
- 1
-
-1010
7834
14
24
-
-1001.5
7846
- Result of expression
- 0e99674f-be62-4152-b526-bf587f10b195
- true
- Result
-
- false
- 0
-
-829
7834
9
24
-
-823
7846
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- f3d39ea9-6927-457d-ada0-8a62ba409d0a
- true
- Panel
- false
- 0
- 0e99674f-be62-4152-b526-bf587f10b195
- 1
- Double click to edit panel content…
-
-995
7798
160
20
- 0
- 0
- 0
-
-994.2507
7798.981
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- f8227a59-b3bb-490c-a577-e7486021c81f
- true
- Expression
- Expression
-
-1012
8004
194
28
-
-912
8018
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- c47913c4-1cd6-40fc-9d28-6bb1a5a7a9aa
- true
- Variable O
- O
- true
- f0e11f46-3d6e-4e37-b2c1-807face13f86
- 1
-
-1010
8006
14
24
-
-1001.5
8018
- Result of expression
- 77239e3d-e6f7-4fea-bfcc-6de786eddc7e
- true
- Result
-
- false
- 0
-
-829
8006
9
24
-
-823
8018
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 013e4f07-7992-470f-8e86-91ffaa46f551
- true
- Panel
- false
- 0
- 77239e3d-e6f7-4fea-bfcc-6de786eddc7e
- 1
- Double click to edit panel content…
-
-994
7971
160
20
- 0
- 0
- 0
-
-993.5063
7971.902
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- ab1114a9-a08d-4c5d-b8cd-f951279bbcf5
- true
- Panel
- false
- 0
- 0
- 0 256 0.0013733120705119695
0 4096 0.0000053644183496292
-
-1104
10858
379
104
- 0
- 0
- 0
-
-1103.462
10858.93
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- a850910a-8d6e-49e7-b143-923ad41fdb78
- true
- Panel
- false
- 1
- ad2d44fb-710b-47ac-aa9a-d583f9f0b202
- 1
- Double click to edit panel content…
-
-1092
9930
355
100
- 0
- 0
- 0
-
-1091.883
9930.908
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 22991b0e-0e2a-4ba1-a379-96fc369abcee
- true
- Expression
- Expression
-
-1012
10038
194
28
-
-912
10052
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 8350c149-7b8d-4513-9da7-d9fe62d90ee5
- true
- Variable O
- O
- true
- 387adaa7-7978-4287-b8f0-fb7ef543c454
- 1
-
-1010
10040
14
24
-
-1001.5
10052
- Result of expression
- ad2d44fb-710b-47ac-aa9a-d583f9f0b202
- true
- Result
-
- false
- 0
-
-829
10040
9
24
-
-823
10052
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- e02db1d3-13e3-4587-a331-19c777c3db08
- true
- Number
- Number
- false
- 2f263c7c-b3da-4f0a-83ba-1f5794b02f50
- 1
-
-939
11148
50
24
-
-914.0857
11160.59
- 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
- Divide Curve
- Divide a curve into equal length segments
- true
- 64fca20e-296f-4f79-aa7f-c53c5f88866e
- true
- Divide Curve
- Divide Curve
-
-3550
15617
141
64
-
-3484
15649
- Curve to divide
- 1b6b6509-be85-4df8-8cd8-fc7585d8fed2
- true
- Curve
- Curve
- false
- d503ccca-e824-4afd-9579-51924ddeda66
- 1
-
-3548
15619
49
20
-
-3514
15629
- Number of segments
- a5718a38-f8fc-4e21-bc6c-347bef03792e
- X/2
- true
- Count
- Count
- false
- 47d36a7d-3cd2-4782-9f53-9f4088b19d4b
- 1
-
-3548
15639
49
20
-
-3514
15649
- 1
- 1
- {0}
- 10
- Split segments at kinks
- 9bfed599-46fa-4ecf-b3a1-348888166b9d
- true
- Kinks
- Kinks
- false
- 0
-
-3548
15659
49
20
-
-3514
15669
- 1
- 1
- {0}
- false
- 1
- Division points
- 233fdd06-e7d5-4a0c-a4d7-8f0b3d0d4612
- true
- Points
- Points
- false
- 0
-
-3469
15619
58
20
-
-3438.5
15629
- 1
- Tangent vectors at division points
- fee105b6-3bc7-4a27-9c25-60d8b44db38c
- true
- Tangents
- Tangents
- false
- 0
-
-3469
15639
58
20
-
-3438.5
15649
- 1
- Parameter values at division points
- a0a908c6-1192-411c-a22a-5f77810ee1b7
- true
- Parameters
- Parameters
- false
- 0
-
-3469
15659
58
20
-
-3438.5
15669
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 9b2a37bb-1555-4475-9897-d38d08b21505
- true
- Line SDL
- Line SDL
-
-3540
15699
122
64
-
-3460
15731
- Line start point
- 5e507055-cbe2-432a-bbce-fc424c470038
- true
- Start
- Start
- false
- 0
-
-3538
15701
63
20
-
-3497
15711
- 1
- 1
- {0}
-
0
0
0
- Line tangent (direction)
- 3d0e9370-3dae-4ec7-9308-a63c1461b179
- true
- Direction
- Direction
- false
- 0
-
-3538
15721
63
20
-
-3497
15731
- 1
- 1
- {0}
-
1
0
0
- Line length
- 8dae98a7-0e9b-4185-8c60-8a77623f52e4
- X/2
- true
- Length
- Length
- false
- 0
-
-3538
15741
63
20
-
-3497
15751
- 1
- 1
- {0}
- 1
- Line segment
- d503ccca-e824-4afd-9579-51924ddeda66
- true
- Line
- Line
- false
- 0
-
-3445
15701
25
60
-
-3431
15731
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 27ab2024-18fc-4363-8275-015d2368f9de
- true
- Line SDL
- Line SDL
-
-3532
15535
106
64
-
-3468
15567
- Line start point
- 78014ac8-12a2-4fa9-8a65-e18ceda7f175
- true
- Start
- Start
- false
- 233fdd06-e7d5-4a0c-a4d7-8f0b3d0d4612
- 1
-
-3530
15537
47
20
-
-3505
15547
- 1
- 1
- {0}
-
0
0
0
- Line tangent (direction)
- 6f93dfe1-d4ed-43b8-8d3f-ca0a604718fe
- true
- Direction
- Direction
- false
- 0
-
-3530
15557
47
20
-
-3505
15567
- 1
- 1
- {0}
-
0
1
0
- Line length
- d817c66f-cbcc-4261-8bae-dd8ed1a3db70
- true
- Length
- Length
- false
- 0
-
-3530
15577
47
20
-
-3505
15587
- 1
- 1
- {0}
- 1
- Line segment
- 38f60d72-95b9-474c-a523-e27fbbd26166
- true
- Line
- Line
- false
- 0
-
-3453
15537
25
60
-
-3439
15567
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 26be2798-ae8b-4fb0-b7a2-e9f1edff6049
- true
- Panel
- false
- 1
- 377c7605-11b6-4673-94de-cc5176b48b51
- 1
- Double click to edit panel content…
-
-3403
13899
194
292
- 0
- 0
- 0
-
-3402.743
13899.17
-
255;255;255;255
- true
- true
- true
- false
- false
- C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
- true
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 6525660d-29ee-4269-9203-539923b24a8e
- true
- Deconstruct
- Deconstruct
-
-3553
14315
148
64
-
-3506
14347
- Input point
- 424e3fe1-4f4b-43de-b9bc-242d9800f378
- true
- Point
- Point
- false
- e370e985-4ce7-46a6-9272-61e578a1277f
- 1
-
-3551
14317
30
60
-
-3534.5
14347
- Point {x} component
- 0b7cd3a8-2836-435f-b6ae-6abbe8053e01
- true
- 2
- X component
- X component
- false
- 0
-
-3491
14317
84
20
-
-3455.5
14327
- Point {y} component
- ccd28879-e08a-4aaa-95c3-f7812fa57d94
- true
- 2
- Y component
- Y component
- false
- 0
-
-3491
14337
84
20
-
-3455.5
14347
- Point {z} component
- d73bd698-c2ba-47ab-a022-c8f6738c678c
- true
- Z component
- Z component
- false
- 0
-
-3491
14357
84
20
-
-3455.5
14367
- 079bd9bd-54a0-41d4-98af-db999015f63d
- VB Script
- A VB.NET scriptable component
- true
- 708c9f15-3d1c-406b-8e76-cab318b67adc
- true
- VB Script
- TxtWriter
- true
- 0
- If activate Then
Dim i As Integer
Dim aryText(4) As String
aryText(0) = "Mary WriteLine"
aryText(1) = "Had"
aryText(2) = "Another"
aryText(3) = "Little"
aryText(4) = "One"
' the data is appended to the file. If file doesnt exist, a new file is created
Dim objWriter As New System.IO.StreamWriter(filePath, append)
For i = 0 To data.Count - 1
objWriter.WriteLine(data(i))
Next
objWriter.Close()
End If
If clearFile Then
Dim objWriter As New System.IO.StreamWriter(filePath, False)
objWriter.Close()
End If
-
-3537
13766
115
104
-
-3461
13818
- 5
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 2
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- Script Variable filePath
- 5e6166c1-8f32-4c96-a7ef-94db1e35eca9
- true
- filePath
- filePath
- true
- 0
- true
- 936ab982-35fa-4088-8bfe-32405957deea
- 1
- abf1fd1b-dbe5-4be6-9832-d8dc105e207f
-
-3535
13768
59
20
-
-3496
13778
- 1
- true
- Script Variable data
- 2b82532a-02b6-40b4-acbc-7bf91bc4da68
- true
- 1
- data
- data
- true
- 1
- true
- 26be2798-ae8b-4fb0-b7a2-e9f1edff6049
- 1
- abf1fd1b-dbe5-4be6-9832-d8dc105e207f
-
-3535
13788
59
20
-
-3496
13798
- true
- Script Variable append
- aca517b8-0c59-4e5d-af97-a06b3482f5f5
- true
- append
- append
- true
- 0
- true
- 0
- 3cda2745-22ac-4244-9b04-97a5255fa60f
-
-3535
13808
59
20
-
-3496
13818
- true
- Script Variable activate
- db3c8491-f6fb-47a1-b7b0-99f86cb86ca5
- true
- activate
- activate
- true
- 0
- true
- 1fc4e7bf-6bb1-4e51-9bc5-7533ebe68ad0
- 1
- 3cda2745-22ac-4244-9b04-97a5255fa60f
-
-3535
13828
59
20
-
-3496
13838
- true
- Script Variable clearFile
- 3f95a4f7-45ac-4a38-8791-86d6583fade9
- true
- clearFile
- clearFile
- true
- 0
- true
- 0
- 3cda2745-22ac-4244-9b04-97a5255fa60f
-
-3535
13848
59
20
-
-3496
13858
- Print, Reflect and Error streams
- 0d196d2d-27eb-4232-8ac3-43330fd192b5
- true
- out
- out
- false
- 0
-
-3446
13768
22
50
-
-3433.5
13793
- Output parameter A
- cdf76903-298c-4cd4-bc34-601277df82d6
- true
- A
- A
- false
- 0
-
-3446
13818
22
50
-
-3433.5
13843
- 06953bda-1d37-4d58-9b38-4b3c74e54c8f
- File Path
- Contains a collection of file paths
- false
- All files|*.*
- 936ab982-35fa-4088-8bfe-32405957deea
- true
- File Path
- File Path
- false
- 0
-
-3501
13898
50
24
-
-3476.364
13910.45
- 1
- 1
- {0}
- false
- C:\IICSA.O____48361_EDIWID_1_TNEMERCNI____TNEIDARG_PUKOOL_ROLOC_DIOMGIS_ERUTAWRUC_RAENIL_NOITISNART_EGDE_LUF_EKUN____O____NUKE_FUL_EDGE_TRANSITION_LINEAR_CURWATURE_SIGMOID_COLOR_LOOKUP_GRADIENT____INCREMENT_1_DIWIDE_16384____O.ASCII
- a8b97322-2d53-47cd-905e-b932c3ccd74e
- Button
- Button object with two values
- False
- True
- 1fc4e7bf-6bb1-4e51-9bc5-7533ebe68ad0
- true
- Button
- false
- 0
-
-3512
13725
66
22
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- f7cc57e0-6e1c-4e8f-aa0e-ee3adb1d2f25
- true
- Curve
- Curve
- false
- e15c0da3-15dc-4bcb-8939-2c5ec5698b15
- 1
-
-2054
16006
50
24
-
-2029.867
16018.47
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 391fa384-4978-4146-9509-512cbdc302c5
- true
- Evaluate Length
- Evaluate Length
-
-2114
15910
160
64
-
-2024
15942
- Curve to evaluate
- e2627c34-f2b2-4092-bf76-a9749b13996a
- true
- Curve
- Curve
- false
- f7cc57e0-6e1c-4e8f-aa0e-ee3adb1d2f25
- 1
-
-2112
15912
73
20
-
-2066
15922
- Length factor for curve evaluation
- 728fac84-864b-4c8a-82a7-06415b3356cd
- true
- 1
- Length
- Length
- false
- 0
-
-2112
15932
73
20
-
-2066
15942
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 72cac29d-b8f9-4681-9eaf-eea5c1b08077
- true
- Normalized
- Normalized
- false
- 0
-
-2112
15952
73
20
-
-2066
15962
- 1
- 1
- {0}
- true
- Point at the specified length
- fff8fda2-863f-489e-8499-7ed0fd9118e8
- true
- Point
- Point
- false
- 0
-
-2009
15912
53
20
-
-1981
15922
- Tangent vector at the specified length
- 0fd64b62-df1b-4ff8-8372-a03fc9fd689e
- true
- Tangent
- Tangent
- false
- 0
-
-2009
15932
53
20
-
-1981
15942
- Curve parameter at the specified length
- 8165b44d-a61d-47a1-aceb-28259c1254c4
- true
- Parameter
- Parameter
- false
- 0
-
-2009
15952
53
20
-
-1981
15962
- fad344bc-09b1-4855-a2e6-437ef5715fe3
- YZ Plane
- World YZ plane.
- true
- 05c68ab6-a4a6-4531-b120-cd1f09e2ec7b
- true
- YZ Plane
- YZ Plane
-
-2083
15863
98
28
-
-2033
15877
- Origin of plane
- d834e7d0-a9f3-4861-9f50-7030de4cfa24
- true
- Origin
- Origin
- false
- fff8fda2-863f-489e-8499-7ed0fd9118e8
- 1
-
-2081
15865
33
24
-
-2063
15877
- 1
- 1
- {0}
-
0
0
0
- World YZ plane
- d0ae266b-1682-491c-bee6-76496606fcb1
- true
- Plane
- Plane
- false
- 0
-
-2018
15865
31
24
-
-2001
15877
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
- Mirror an object.
- true
- 57c99f13-3937-47f8-9b4a-59d033ef07aa
- true
- Mirror
- Mirror
-
-2103
15801
138
44
-
-2035
15823
- Base geometry
- e1372fd8-1f6b-46f6-aff4-1497de199bf0
- true
- Geometry
- Geometry
- true
- f7cc57e0-6e1c-4e8f-aa0e-ee3adb1d2f25
- 1
-
-2101
15803
51
20
-
-2074
15813
- Mirror plane
- b67b11e5-f515-4970-ba07-e4efad992b88
- true
- Plane
- Plane
- false
- d0ae266b-1682-491c-bee6-76496606fcb1
- 1
-
-2101
15823
51
20
-
-2074
15833
- 1
- 1
- {0}
-
0
0
0
0
1
0
0
0
1
- Mirrored geometry
- af90f00b-316f-4b79-b6d5-c26969e27a7d
- true
- Geometry
- Geometry
- false
- 0
-
-2020
15803
53
20
-
-1992
15813
- Transformation data
- dfa3bfe2-d964-4ef7-b3d4-3dd2cdc2ba81
- true
- Transform
- Transform
- false
- 0
-
-2020
15823
53
20
-
-1992
15833
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- 8e038213-7c24-4b93-8b8f-587867a7e2ae
- true
- Join Curves
- Join Curves
-
-2093
15739
118
44
-
-2030
15761
- 1
- Curves to join
- 3f04730d-e061-4ce5-870b-f5dd685fc3b5
- true
- Curves
- Curves
- false
- f7cc57e0-6e1c-4e8f-aa0e-ee3adb1d2f25
- af90f00b-316f-4b79-b6d5-c26969e27a7d
- 2
-
-2091
15741
46
20
-
-2066.5
15751
- Preserve direction of input curves
- 830e99be-e7eb-42d0-8674-e8ada6194bbb
- true
- Preserve
- Preserve
- false
- 0
-
-2091
15761
46
20
-
-2066.5
15771
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- 0062ed90-a595-40fe-804c-2efd80987eb9
- true
- Curves
- Curves
- false
- 0
-
-2015
15741
38
40
-
-1994.5
15761
- e87db220-a0a0-4d67-a405-f97fd14b2d7a
- Linear Array
- Create a linear array of geometry.
- true
- 87b5a07c-0959-48af-b3ea-1850aab4001c
- true
- Linear Array
- Linear Array
-
-2103
15657
138
64
-
-2035
15689
- Base geometry
- 6c39ac1f-6d7e-4afa-9784-7505cec6b5aa
- true
- Geometry
- Geometry
- true
- 0062ed90-a595-40fe-804c-2efd80987eb9
- 1
-
-2101
15659
51
20
-
-2074
15669
- Linear array direction and interval
- 86849e41-c369-4e2e-8e88-3e49d728480a
- true
- Direction
- Direction
- false
- 0
-
-2101
15679
51
20
-
-2074
15689
- 1
- 1
- {0}
-
2
0
0
- Number of elements in array.
- a696f77a-9e2a-454c-81dc-0594079dda9a
- true
- Count
- Count
- false
- 0
-
-2101
15699
51
20
-
-2074
15709
- 1
- 1
- {0}
- 2
- 1
- Arrayed geometry
- d1c74620-5515-4d7d-8719-106dac105140
- true
- Geometry
- Geometry
- false
- 0
-
-2020
15659
53
30
-
-1992
15674
- 1
- Transformation data
- 52055a79-39cb-4026-8925-151ee0a65b01
- true
- Transform
- Transform
- false
- 0
-
-2020
15689
53
30
-
-1992
15704
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- 49c9c7fd-8ff8-4fd2-812a-32a26c6caa11
- true
- Join Curves
- Join Curves
-
-2093
15595
118
44
-
-2030
15617
- 1
- Curves to join
- aeed4693-6839-40fe-81f1-dba3eb2d45c3
- true
- Curves
- Curves
- false
- d1c74620-5515-4d7d-8719-106dac105140
- 1
-
-2091
15597
46
20
-
-2066.5
15607
- Preserve direction of input curves
- 863f4c8d-3241-49ad-b908-ee3f8d14f244
- true
- Preserve
- Preserve
- false
- 0
-
-2091
15617
46
20
-
-2066.5
15627
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- 8242d54a-3ffe-4e4a-8c0f-855f7d7f23a0
- true
- Curves
- Curves
- false
- 0
-
-2015
15597
38
40
-
-1994.5
15617
- ccfd6ba8-ecb1-44df-a47e-08126a653c51
- Curve Domain
- Measure and set the curve domain
- true
- 2e2550a6-0f32-4b90-92f0-a88401c43eb5
- true
- Curve Domain
- Curve Domain
-
-2092
15350
116
44
-
-2034
15372
- Curve to measure/modify
- 6f0b21df-7243-4a6f-880d-4bf9ec4d5295
- true
- Curve
- Curve
- false
- a4a42a27-5fc4-490b-8303-ab18a562494f
- 1
-
-2090
15352
41
20
-
-2068
15362
- Optional domain, if omitted the curve will not be modified.
- 495e6c26-65b4-4514-9d7a-d835d5c8891c
- true
- Domain
- Domain
- true
- 0
-
-2090
15372
41
20
-
-2068
15382
- Curve with new domain.
- ed3ec7e8-0919-40b1-ba85-4d0a5c4a6884
- true
- Curve
- Curve
- false
- 0
-
-2019
15352
41
20
-
-1997
15362
- Domain of original curve.
- 27c34c8f-207d-457e-b731-e3b60290a9db
- true
- Domain
- Domain
- false
- 0
-
-2019
15372
41
20
-
-1997
15382
- 429cbba9-55ee-4e84-98ea-876c44db879a
- Sub Curve
- Construct a curve from the sub-domain of a base curve.
- true
- 7b213b96-e17b-456d-ad30-40abe337bbab
- true
- Sub Curve
- Sub Curve
-
-2096
15164
124
44
-
-2022
15186
- Base curve
- 906f829e-51de-4f4a-9ff3-4a267aeec2d3
- true
- Base curve
- Base curve
- false
- ed3ec7e8-0919-40b1-ba85-4d0a5c4a6884
- 1
-
-2094
15166
57
20
-
-2064
15176
- Sub-domain to extract
- 8671c79d-4307-409c-ac8e-0d2a445dd560
- true
- Domain
- Domain
- false
- 8eb97c76-eb9f-48c8-9612-d1b43ebbd702
- 1
-
-2094
15186
57
20
-
-2064
15196
- Resulting sub curve
- e28d5d2e-89dd-4827-85f5-e2e51f7fb521
- true
- Curve
- Curve
- false
- 0
-
-2007
15166
33
40
-
-1989
15186
- 825ea536-aebb-41e9-af32-8baeb2ecb590
- Deconstruct Domain
- Deconstruct a numeric domain into its component parts.
- true
- 32cf64eb-77e3-47c3-b29f-62154dec420f
- true
- Deconstruct Domain
- Deconstruct Domain
-
-2086
15288
104
44
-
-2028
15310
- Base domain
- 51fb18cd-b90b-40e9-9ad0-e930de0d3f5e
- true
- Domain
- Domain
- false
- 27c34c8f-207d-457e-b731-e3b60290a9db
- 1
-
-2084
15290
41
40
-
-2062
15310
- Start of domain
- 3751a54b-d1e2-4c42-8628-0a159963cec7
- true
- Start
- Start
- false
- 0
-
-2013
15290
29
20
-
-1997
15300
- End of domain
- 570c62b9-9108-47c6-9eaa-216ba72a2455
- true
- End
- End
- false
- 0
-
-2013
15310
29
20
-
-1997
15320
- d1a28e95-cf96-4936-bf34-8bf142d731bf
- Construct Domain
- Create a numeric domain from two numeric extremes.
- true
- 5b7c8774-56f8-42e4-bf79-9877cd6b989a
- true
- Construct Domain
- Construct Domain
-
-2112
15226
156
44
-
-2014
15248
- Start value of numeric domain
- 22fa7f17-f5da-40b4-8863-2c88b10ec655
- X/8
- true
- Domain start
- Domain start
- false
- 570c62b9-9108-47c6-9eaa-216ba72a2455
- 1
-
-2110
15228
81
20
-
-2060
15238
- 1
- 1
- {0}
- 0
- End value of numeric domain
- b6f88ef2-8810-41e8-ae51-ffc2cdf72cb2
- X*5/8
- true
- Domain end
- Domain end
- false
- 570c62b9-9108-47c6-9eaa-216ba72a2455
- 1
-
-2110
15248
81
20
-
-2060
15258
- 1
- 1
- {0}
- 1
- Numeric domain between {A} and {B}
- 8eb97c76-eb9f-48c8-9612-d1b43ebbd702
- true
- Domain
- Domain
- false
- 0
-
-1999
15228
41
40
-
-1977
15248
- e9eb1dcf-92f6-4d4d-84ae-96222d60f56b
- Move
- Translate (move) an object along a vector.
- true
- 2ec48aa0-7402-4ddd-b500-bcfd1a1aa573
- true
- Move
- Move
-
-2103
15102
138
44
-
-2035
15124
- Base geometry
- f8152c64-e40d-4b71-bb87-55154d01b43e
- true
- Geometry
- Geometry
- true
- e28d5d2e-89dd-4827-85f5-e2e51f7fb521
- 1
-
-2101
15104
51
20
-
-2074
15114
- Translation vector
- af49a999-8441-471b-9c57-83312322e672
- true
- Motion
- Motion
- false
- 0
-
-2101
15124
51
20
-
-2074
15134
- 1
- 1
- {0}
-
-0.5
-0.5
0
- Translated geometry
- bc56f6fb-d650-47f3-8d71-7e9e9e3c0fcd
- true
- Geometry
- Geometry
- false
- 0
-
-2020
15104
53
20
-
-1992
15114
- Transformation data
- 5f161da1-07b5-46b9-b8bd-ad83b10a137e
- true
- Transform
- Transform
- false
- 0
-
-2020
15124
53
20
-
-1992
15134
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- eefdf17f-2113-431d-95b3-ae53cd004df8
- true
- Scale
- Scale
-
-2103
15020
138
64
-
-2035
15052
- Base geometry
- 73e0633a-d04f-4133-ae51-48174c988f9e
- true
- Geometry
- Geometry
- true
- bc56f6fb-d650-47f3-8d71-7e9e9e3c0fcd
- 1
-
-2101
15022
51
20
-
-2074
15032
- Center of scaling
- 3d4f3445-c33e-4002-9028-64d983a31393
- true
- Center
- Center
- false
- 0
-
-2101
15042
51
20
-
-2074
15052
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 458e71c8-1595-4d92-ae8a-3224e12907ad
- true
- Factor
- Factor
- false
- 0
-
-2101
15062
51
20
-
-2074
15072
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- a63d6f9b-92ab-4a73-8a8c-f1af180d3bbc
- true
- Geometry
- Geometry
- false
- 0
-
-2020
15022
53
30
-
-1992
15037
- Transformation data
- bc976f17-f482-49e6-8c51-77a28370063a
- true
- Transform
- Transform
- false
- 0
-
-2020
15052
53
30
-
-1992
15067
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 619e43ea-a120-4fab-9439-afa674d35b7e
- true
- Deconstruct
- Deconstruct
-
-2118
14856
168
64
-
-2071
14888
- Input point
- 692b111f-81c9-413e-af24-fc033d7b22d6
- true
- Point
- Point
- false
- 7572c58f-0269-435e-9399-fdf575ea00ba
- 1
-
-2116
14858
30
60
-
-2099.5
14888
- Point {x} component
- d46a2e9b-cf34-47c3-9abd-1bfccd68cb57
- true
- 2
- X component
- X component
- false
- true
- 0
-
-2056
14858
104
20
-
-2020.5
14868
- Point {y} component
- 9cdd5043-0ca1-4a2a-9517-9ba56e5a9d2d
- true
- 2
- Y component
- Y component
- false
- true
- 0
-
-2056
14878
104
20
-
-2020.5
14888
- Point {z} component
- 68cee5b5-1a0c-414a-b42f-283a736eae0f
- true
- Z component
- Z component
- false
- 0
-
-2056
14898
104
20
-
-2020.5
14908
- 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
- Divide Curve
- Divide a curve into equal length segments
- true
- 6e4f0f3c-ab3d-4848-ae83-8423b238e701
- true
- Divide Curve
- Divide Curve
-
-2097
14938
125
64
-
-2047
14970
- Curve to divide
- 4326514c-02cd-4318-bd8f-7c6612541ce4
- true
- Curve
- Curve
- false
- a63d6f9b-92ab-4a73-8a8c-f1af180d3bbc
- 1
-
-2095
14940
33
20
-
-2077
14950
- Number of segments
- e9df65e3-97f0-47bf-97c6-e75623abd4bc
- true
- Count
- Count
- false
- 9cc45261-b02e-4259-9e30-07f8e180b8a3
- 1
-
-2095
14960
33
20
-
-2077
14970
- 1
- 1
- {0}
- 10
- Split segments at kinks
- 4607a3e8-e812-4cd6-bb96-1800ca21fff9
- true
- Kinks
- Kinks
- false
- 0
-
-2095
14980
33
20
-
-2077
14990
- 1
- 1
- {0}
- false
- 1
- Division points
- 7572c58f-0269-435e-9399-fdf575ea00ba
- true
- Points
- Points
- false
- 0
-
-2032
14940
58
20
-
-2001.5
14950
- 1
- Tangent vectors at division points
- 40fb623b-2279-43dc-acba-322373661414
- true
- Tangents
- Tangents
- false
- 0
-
-2032
14960
58
20
-
-2001.5
14970
- 1
- Parameter values at division points
- 56615695-3f7f-46b4-a0b7-69d010edea23
- true
- Parameters
- Parameters
- false
- 0
-
-2032
14980
58
20
-
-2001.5
14990
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- c188a258-5114-47ba-a541-5d1a01b556cc
- true
- Panel
- false
- 0
- c0ec556d-72a4-4920-addc-a25ff2e1e4be
- 1
- Double click to edit panel content…
-
-1939
14336
181
292
- 0
- 0
- 0
-
-1938.868
14336.27
-
255;255;255;255
- true
- true
- true
- false
- false
- C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 7c43d191-00a5-4c0d-b322-e5061edff1ea
- true
- Panel
- false
- 0
- a0441a5a-2668-4e8c-b7fc-12917502af54
- 1
- Double click to edit panel content…
-
-2302
14336
181
292
- 0
- 0
- 0
-
-2301.67
14336.27
-
255;255;255;255
- true
- true
- true
- false
- false
- C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
- true
- 2013e425-8713-42e2-a661-b57e78840337
- Concatenate
- Concatenate some fragments of text
- true
- 1bd31810-4c01-4950-b1a0-29cc3d316a9b
- true
- Concatenate
- Concatenate
-
-2081
14243
93
64
-
-2055
14275
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- First text fragment
- e3887edc-d139-4aeb-be02-b05144212562
- true
- Fragment A
- true
- 7c43d191-00a5-4c0d-b322-e5061edff1ea
- 1
-
-2079
14245
9
20
-
-2073
14255
- Second text fragment
- f5683864-7c84-4d00-a36a-8541771e0f35
- true
- Fragment B
- true
- f94b8dec-f42d-4a01-b6ff-da3f549f8b30
- 1
-
-2079
14265
9
20
-
-2073
14275
- Third text fragment
- 553d771c-20da-4de2-b911-f77033af3a50
- true
- Fragment A
- true
- c188a258-5114-47ba-a541-5d1a01b556cc
- 1
-
-2079
14285
9
20
-
-2073
14295
- Resulting text consisting of all the fragments
- e47489ce-947c-436c-877c-c81e4a5e7b13
- true
- 1
- Result
- Result
- false
- 0
-
-2040
14245
50
60
-
-2021.5
14275
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- b22abe4a-d6ea-4ecd-9217-7ee811022f89
- true
- Panel
- false
- 0
- e47489ce-947c-436c-877c-c81e4a5e7b13
- 1
- Double click to edit panel content…
-
-2206
13943
350
292
- 0
- 0
- 0
-
-2205.68
13943.62
-
255;255;255;255
- true
- true
- true
- false
- false
- C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
- true
- 1817fd29-20ae-4503-b542-f0fb651e67d7
- List Length
- Measure the length of a list.
- true
- 5a4eac60-4579-4169-adb8-3bff092e8404
- true
- List Length
- List Length
-
-2081
14765
93
28
-
-2042
14779
- 1
- Base list
- 329d4e52-e590-4168-9b90-df419aae0516
- true
- List
- List
- false
- 7572c58f-0269-435e-9399-fdf575ea00ba
- 1
-
-2079
14767
22
24
-
-2066.5
14779
- Number of items in L
- 99d769f2-5d60-4f73-8631-ccffc8011575
- true
- Length
- Length
- false
- 0
-
-2027
14767
37
24
-
-2007
14779
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- true
- 935a4e27-0ed1-4c7f-bf85-72097409dfad
- true
- Duplicate Data
- Duplicate Data
-
-2104
14682
140
64
-
-2045
14714
- 1
- Data to duplicate
- 68fbaf93-b1cc-445b-b92a-aab258d1644a
- true
- Data
- Data
- false
- 0
-
-2102
14684
42
20
-
-2079.5
14694
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- ;
- Number of duplicates
- f65f88ac-c79b-4d2a-b9b7-1a1674aca4d9
- true
- Number
- Number
- false
- 99d769f2-5d60-4f73-8631-ccffc8011575
- 1
-
-2102
14704
42
20
-
-2079.5
14714
- 1
- 1
- {0}
- 2
- Retain list order
- d2a93bf6-60fb-4842-8daa-dda4ab94980d
- true
- Order
- Order
- false
- 0
-
-2102
14724
42
20
-
-2079.5
14734
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- 150762f9-c5aa-4a4d-b6d7-6f411b9beb0c
- true
- 2
- Data
- Data
- false
- true
- 0
-
-2030
14684
64
60
-
-2014.5
14714
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",X)
- true
- 78676aa6-d630-4afc-9928-fb1b343389e0
- true
- Expression
- Expression
-
-2144
14811
219
28
-
-2044
14825
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- d7e2d80b-6ab2-458b-a564-1bacb2b40d82
- true
- Variable X
- X
- true
- d46a2e9b-cf34-47c3-9abd-1bfccd68cb57
- 1
-
-2142
14813
14
24
-
-2133.5
14825
- Result of expression
- a0441a5a-2668-4e8c-b7fc-12917502af54
- true
- Result
- Result
- false
- 0
-
-1961
14813
34
24
-
-1942.5
14825
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",Y)
- true
- 105c7a8a-c93d-47b9-af1f-5d0a78ade9ac
- true
- Expression
- Expression
-
-2143
14636
218
28
-
-2044
14650
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- eabf4994-4c69-4fb2-9c2f-32dc63698d53
- true
- Variable Y
- Y
- true
- 9cdd5043-0ca1-4a2a-9517-9ba56e5a9d2d
- 1
-
-2141
14638
13
24
-
-2133
14650
- Result of expression
- c0ec556d-72a4-4920-addc-a25ff2e1e4be
- true
- Result
- Result
- false
- 0
-
-1961
14638
34
24
-
-1942.5
14650
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- f94b8dec-f42d-4a01-b6ff-da3f549f8b30
- true
- Panel
- false
- 0
- 150762f9-c5aa-4a4d-b6d7-6f411b9beb0c
- 1
- Double click to edit panel content…
-
-2121
14337
181
292
- 0
- 0
- 0
-
-2120.764
14337.23
-
255;255;255;255
- true
- true
- true
- false
- false
- C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
- true
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- f7cc57e0-6e1c-4e8f-aa0e-ee3adb1d2f25
- 391fa384-4978-4146-9509-512cbdc302c5
- 05c68ab6-a4a6-4531-b120-cd1f09e2ec7b
- 57c99f13-3937-47f8-9b4a-59d033ef07aa
- 8e038213-7c24-4b93-8b8f-587867a7e2ae
- 87b5a07c-0959-48af-b3ea-1850aab4001c
- 49c9c7fd-8ff8-4fd2-812a-32a26c6caa11
- 2e2550a6-0f32-4b90-92f0-a88401c43eb5
- 7b213b96-e17b-456d-ad30-40abe337bbab
- 32cf64eb-77e3-47c3-b29f-62154dec420f
- 5b7c8774-56f8-42e4-bf79-9877cd6b989a
- 2ec48aa0-7402-4ddd-b500-bcfd1a1aa573
- eefdf17f-2113-431d-95b3-ae53cd004df8
- 619e43ea-a120-4fab-9439-afa674d35b7e
- 6e4f0f3c-ab3d-4848-ae83-8423b238e701
- c188a258-5114-47ba-a541-5d1a01b556cc
- 7c43d191-00a5-4c0d-b322-e5061edff1ea
- 1bd31810-4c01-4950-b1a0-29cc3d316a9b
- b22abe4a-d6ea-4ecd-9217-7ee811022f89
- 5a4eac60-4579-4169-adb8-3bff092e8404
- 935a4e27-0ed1-4c7f-bf85-72097409dfad
- 78676aa6-d630-4afc-9928-fb1b343389e0
- 105c7a8a-c93d-47b9-af1f-5d0a78ade9ac
- f94b8dec-f42d-4a01-b6ff-da3f549f8b30
- a0ba8fac-f83b-475c-87c1-b7d4071e7084
- 1e6793b9-7876-44c3-81db-1f581a66cc6f
- 3d6e8a3d-110b-4477-9808-a3778be44782
- 9cc45261-b02e-4259-9e30-07f8e180b8a3
- 109e374b-4a2e-479b-9c78-4a16f0374be6
- 95f96cf7-23b6-4aba-a210-769d38bbb41c
- d112c991-f144-4804-bdab-b416453265b1
- 31
- 78fe944a-9bbd-4518-a13c-f4d11f1f61cd
- Group
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- eb12b45e-e57a-4979-9ae6-195bec0817cc
- true
- Curve
- Curve
- false
- e15c0da3-15dc-4bcb-8939-2c5ec5698b15
- 1
-
-2768
15112
50
24
-
-2743.969
15124.89
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 5f716f01-b809-441a-87bc-b0e3f99103e3
- true
- Deconstruct
- Deconstruct
-
-2821
14938
148
64
-
-2774
14970
- Input point
- 89d0a090-e62e-4893-bb65-2ca861c9b120
- true
- Point
- Point
- false
- e928512a-abc1-483c-bb4a-342192a50806
- 1
-
-2819
14940
30
60
-
-2802.5
14970
- Point {x} component
- 4440b01d-0727-488c-b655-f93cd16a720e
- true
- 2
- X component
- X component
- false
- 0
-
-2759
14940
84
20
-
-2723.5
14950
- Point {y} component
- 6b0a7edd-e6c0-47a0-8363-8ecf033a1975
- true
- 2
- Y component
- Y component
- false
- 0
-
-2759
14960
84
20
-
-2723.5
14970
- Point {z} component
- 867b8623-1bac-49a9-8148-1bb73db2132a
- true
- Z component
- Z component
- false
- 0
-
-2759
14980
84
20
-
-2723.5
14990
- 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
- Divide Curve
- Divide a curve into equal length segments
- true
- f6912693-e9d0-43ec-adb1-42336dd047c2
- true
- Divide Curve
- Divide Curve
-
-2810
15021
125
64
-
-2760
15053
- Curve to divide
- 85e31ae8-ed79-457f-8aa1-e97d69f0e2b0
- true
- Curve
- Curve
- false
- eb12b45e-e57a-4979-9ae6-195bec0817cc
- 1
-
-2808
15023
33
20
-
-2790
15033
- Number of segments
- 281188f5-08fc-45b5-9296-0e61d6ceaf1b
- true
- Count
- Count
- false
- 1c624bab-037b-49da-8d79-e902bf35524d
- 1
-
-2808
15043
33
20
-
-2790
15053
- 1
- 1
- {0}
- 10
- Split segments at kinks
- 57785e03-c562-49f4-a08a-deae7e2bbc6d
- true
- Kinks
- Kinks
- false
- 0
-
-2808
15063
33
20
-
-2790
15073
- 1
- 1
- {0}
- false
- 1
- Division points
- e928512a-abc1-483c-bb4a-342192a50806
- true
- Points
- Points
- false
- 0
-
-2745
15023
58
20
-
-2714.5
15033
- 1
- Tangent vectors at division points
- 1f3b5ed3-f417-41b2-921e-be18a6eb525a
- true
- Tangents
- Tangents
- false
- 0
-
-2745
15043
58
20
-
-2714.5
15053
- 1
- Parameter values at division points
- 26cf8e6c-4987-4589-9b48-2a625d096ea5
- true
- Parameters
- Parameters
- false
- 0
-
-2745
15063
58
20
-
-2714.5
15073
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- b3a72a53-7382-458b-becc-3846cbbe9bd8
- true
- Panel
- false
- 1
- 3f7c5dba-b728-47a8-ad2a-b092b6ddcd39
- 1
- Double click to edit panel content…
-
-2658
14324
172
292
- 0
- 0
- 0
-
-2657.968
14324.52
-
255;255;255;255
- true
- true
- true
- false
- false
- C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- bf2b8521-eb6b-4a8f-8a5e-6a19574a1cdf
- true
- Panel
- false
- 1
- c316a043-8820-4d2c-97ec-4950f3274d54
- 1
- Double click to edit panel content…
-
-3003
14324
172
292
- 0
- 0
- 0
-
-3002.456
14324.88
-
255;255;255;255
- true
- true
- true
- false
- false
- C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
- true
- 2013e425-8713-42e2-a661-b57e78840337
- Concatenate
- Concatenate some fragments of text
- true
- 9872d5d2-39a4-4ec9-adc7-34328fee7da2
- true
- Concatenate
- Concatenate
-
-2794
14231
93
64
-
-2768
14263
- 3
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 1
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- First text fragment
- ef656576-c493-481f-ae0c-c6891cba1a56
- true
- Fragment A
- true
- bf2b8521-eb6b-4a8f-8a5e-6a19574a1cdf
- 1
-
-2792
14233
9
20
-
-2786
14243
- Second text fragment
- 86018d3f-98ba-416b-b295-c0bffa1d76de
- true
- Fragment B
- true
- 90365ad6-e298-473a-86cb-d4633ee6db2f
- 1
-
-2792
14253
9
20
-
-2786
14263
- Third text fragment
- a8d20419-37a2-40c8-a92a-d5af32a1a3ef
- true
- Fragment A
- true
- b3a72a53-7382-458b-becc-3846cbbe9bd8
- 1
-
-2792
14273
9
20
-
-2786
14283
- Resulting text consisting of all the fragments
- 4d12f9f7-cab6-4b98-9042-bb2352899f85
- true
- 1
- Result
- Result
- false
- 0
-
-2753
14233
50
60
-
-2734.5
14263
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- e9a82133-4720-4769-90c5-47f7ce7ac89c
- true
- Panel
- false
- 0.53023098409175873
- 4d12f9f7-cab6-4b98-9042-bb2352899f85
- 1
- Double click to edit panel content…
-
-2920
13932
350
292
- 0
- 0
- 0
-
-2919.738
13932.82
-
255;255;255;255
- true
- true
- true
- false
- false
- C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
- true
- 1817fd29-20ae-4503-b542-f0fb651e67d7
- List Length
- Measure the length of a list.
- true
- 2282d336-365c-4bdb-b9c9-f6153d2023fd
- true
- List Length
- List Length
-
-2794
14799
93
28
-
-2755
14813
- 1
- Base list
- 2011b464-fc7a-4d43-b880-9a7d071e906f
- true
- List
- List
- false
- e928512a-abc1-483c-bb4a-342192a50806
- 1
-
-2792
14801
22
24
-
-2779.5
14813
- Number of items in L
- b5b9a4a5-3ee0-42a1-a18a-fdaa72576c56
- true
- Length
- Length
- false
- 0
-
-2740
14801
37
24
-
-2720
14813
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- true
- 96613f16-8c7e-4e3e-9244-f130eb890b95
- true
- Duplicate Data
- Duplicate Data
-
-2817
14716
140
64
-
-2758
14748
- 1
- Data to duplicate
- 7d490ed8-969e-4a1e-98c8-52e5f066545f
- true
- Data
- Data
- false
- 0
-
-2815
14718
42
20
-
-2792.5
14728
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_String
- false
- ;
- Number of duplicates
- d9c03fee-a0fb-4d7a-84c1-6f5ef7eff5dc
- true
- Number
- Number
- false
- b5b9a4a5-3ee0-42a1-a18a-fdaa72576c56
- 1
-
-2815
14738
42
20
-
-2792.5
14748
- 1
- 1
- {0}
- 2
- Retain list order
- e4d4fa99-bb30-4b43-81ed-fefc20bda121
- true
- Order
- Order
- false
- 0
-
-2815
14758
42
20
-
-2792.5
14768
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- 4c47a8cd-b9b0-461a-a5dd-9a48a45b66a3
- true
- 2
- Data
- Data
- false
- true
- 0
-
-2743
14718
64
60
-
-2727.5
14748
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",X)
- true
- 87a4439e-5ed1-4725-98bb-f7d115ff7478
- true
- Expression
- Expression
-
-2865
14892
235
28
-
-2765
14906
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- ede71a7a-bac6-4b77-8756-ed81f96fc065
- true
- Variable X
- X
- true
- 4440b01d-0727-488c-b655-f93cd16a720e
- 1
-
-2863
14894
14
24
-
-2854.5
14906
- Result of expression
- c316a043-8820-4d2c-97ec-4950f3274d54
- true
- Result
- Result
- false
- true
- 0
-
-2682
14894
50
24
-
-2663.5
14906
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",Y)
- true
- b30c2f20-07f0-4998-a514-8066fc6a1a12
- true
- Expression
- Expression
-
-2864
14669
234
28
-
-2765
14683
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 9accc4fb-e73f-4433-a286-c59ae478fb26
- true
- Variable Y
- Y
- true
- 6b0a7edd-e6c0-47a0-8363-8ecf033a1975
- 1
-
-2862
14671
13
24
-
-2854
14683
- Result of expression
- 3f7c5dba-b728-47a8-ad2a-b092b6ddcd39
- true
- Result
- Result
- false
- true
- 0
-
-2682
14671
50
24
-
-2663.5
14683
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 90365ad6-e298-473a-86cb-d4633ee6db2f
- true
- Panel
- false
- 0
- 4c47a8cd-b9b0-461a-a5dd-9a48a45b66a3
- 1
- Double click to edit panel content…
-
-2830
14324
172
292
- 0
- 0
- 0
-
-2829.937
14324.67
-
255;255;255;255
- true
- true
- true
- false
- false
- C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
- true
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- eb12b45e-e57a-4979-9ae6-195bec0817cc
- d8eea3ec-5157-4ac0-92dd-492058fad237
- 59c8374e-36a2-40df-af0f-1946fb9c4c2e
- 6a58cb78-3aa0-4c67-9585-8364f6f684f5
- 2aafa1cf-f50a-4433-9467-6e2ba9b0a462
- 2ac06252-6a62-48fb-9825-5298bdbe9536
- 30aa3e57-dd88-4f54-ad69-4b2473594537
- 3662d19c-7316-4361-b4a3-db2bbd218382
- b60eeacc-25e7-4f56-826d-40476555687d
- 71a4b562-3bee-43d5-9fb6-1c99bc3cd4cb
- ee5295ed-8446-4093-9cff-155530db048a
- 10338e33-43fc-4848-9f86-5e4608e349ae
- 5c73a0f5-f091-4315-897f-65bd97a0d6aa
- 5f716f01-b809-441a-87bc-b0e3f99103e3
- f6912693-e9d0-43ec-adb1-42336dd047c2
- b3a72a53-7382-458b-becc-3846cbbe9bd8
- bf2b8521-eb6b-4a8f-8a5e-6a19574a1cdf
- 9872d5d2-39a4-4ec9-adc7-34328fee7da2
- e9a82133-4720-4769-90c5-47f7ce7ac89c
- 2282d336-365c-4bdb-b9c9-f6153d2023fd
- 96613f16-8c7e-4e3e-9244-f130eb890b95
- 87a4439e-5ed1-4725-98bb-f7d115ff7478
- b30c2f20-07f0-4998-a514-8066fc6a1a12
- 90365ad6-e298-473a-86cb-d4633ee6db2f
- dbba226e-a179-44e2-9128-0825b4dea6d8
- 6ccf331f-85f1-4064-857f-79b781e718d5
- ad7bb29b-12e4-46ba-bd41-fb424d75c5d9
- 1c624bab-037b-49da-8d79-e902bf35524d
- 0d7b8cff-2594-4e45-ab9e-2f5f1341fd9b
- f6313031-c550-4d1d-8f43-99d56b12c44c
- 30
- e409bbb2-316f-409c-95e6-3f4b7c2dc8b6
- Group
- 079bd9bd-54a0-41d4-98af-db999015f63d
- VB Script
- A VB.NET scriptable component
- true
- dbba226e-a179-44e2-9128-0825b4dea6d8
- true
- VB Script
- TxtWriter
- true
- 0
- If activate Then
Dim i As Integer
Dim aryText(4) As String
aryText(0) = "Mary WriteLine"
aryText(1) = "Had"
aryText(2) = "Another"
aryText(3) = "Little"
aryText(4) = "One"
' the data is appended to the file. If file doesnt exist, a new file is created
Dim objWriter As New System.IO.StreamWriter(filePath, append)
For i = 0 To data.Count - 1
objWriter.WriteLine(data(i))
Next
objWriter.Close()
End If
If clearFile Then
Dim objWriter As New System.IO.StreamWriter(filePath, False)
objWriter.Close()
End If
-
-2805
13756
115
104
-
-2729
13808
- 5
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 2
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- Script Variable filePath
- a23fff20-bfb8-4cc6-9e17-fcd7a01790a8
- true
- filePath
- filePath
- true
- 0
- true
- 6ccf331f-85f1-4064-857f-79b781e718d5
- 1
- abf1fd1b-dbe5-4be6-9832-d8dc105e207f
-
-2803
13758
59
20
-
-2764
13768
- 1
- true
- Script Variable data
- 72d8161f-b538-4ae5-9384-58bbcb9cf13d
- true
- 1
- data
- data
- true
- 1
- true
- e9a82133-4720-4769-90c5-47f7ce7ac89c
- 1
- abf1fd1b-dbe5-4be6-9832-d8dc105e207f
-
-2803
13778
59
20
-
-2764
13788
- true
- Script Variable append
- 0c4995db-4b39-40f5-8333-6c42d3a67924
- true
- append
- append
- true
- 0
- true
- 0
- 3cda2745-22ac-4244-9b04-97a5255fa60f
-
-2803
13798
59
20
-
-2764
13808
- true
- Script Variable activate
- 71dd2150-8eb6-430d-8654-4fcf43527fdf
- true
- activate
- activate
- true
- 0
- true
- ad7bb29b-12e4-46ba-bd41-fb424d75c5d9
- 1
- 3cda2745-22ac-4244-9b04-97a5255fa60f
-
-2803
13818
59
20
-
-2764
13828
- true
- Script Variable clearFile
- cd661c15-4878-4982-b105-55468f1c7b12
- true
- clearFile
- clearFile
- true
- 0
- true
- 0
- 3cda2745-22ac-4244-9b04-97a5255fa60f
-
-2803
13838
59
20
-
-2764
13848
- Print, Reflect and Error streams
- 55b76fbc-c929-4370-963b-82599d65189f
- true
- out
- out
- false
- 0
-
-2714
13758
22
50
-
-2701.5
13783
- Output parameter A
- dc1f9c8e-fa52-4000-8ad6-e630813683e2
- true
- A
- A
- false
- 0
-
-2714
13808
22
50
-
-2701.5
13833
- 06953bda-1d37-4d58-9b38-4b3c74e54c8f
- File Path
- Contains a collection of file paths
- false
- All files|*.*
- 6ccf331f-85f1-4064-857f-79b781e718d5
- true
- File Path
- File Path
- false
- 0
-
-2769
13889
50
24
-
-2744.277
13901.65
- 1
- 1
- {0}
- false
- C:\VSC.O____STNEMGES_48361____DIOMGIS_ERUTAWRUC_RAENIL_NOITISNART_EGDE_LUF____O____FUL_EDGE_TRANSITION_LINEAR_CURWATURE_SIGMOID____16384_SEGMENTS____O.CSV
- a8b97322-2d53-47cd-905e-b932c3ccd74e
- Button
- Button object with two values
- False
- True
- ad7bb29b-12e4-46ba-bd41-fb424d75c5d9
- true
- Button
- false
- 0
-
-2780
13734
66
22
- 079bd9bd-54a0-41d4-98af-db999015f63d
- VB Script
- A VB.NET scriptable component
- true
- a0ba8fac-f83b-475c-87c1-b7d4071e7084
- true
- VB Script
- TxtWriter
- true
- 0
- If activate Then
Dim i As Integer
Dim aryText(4) As String
aryText(0) = "Mary WriteLine"
aryText(1) = "Had"
aryText(2) = "Another"
aryText(3) = "Little"
aryText(4) = "One"
' the data is appended to the file. If file doesnt exist, a new file is created
Dim objWriter As New System.IO.StreamWriter(filePath, append)
For i = 0 To data.Count - 1
objWriter.WriteLine(data(i))
Next
objWriter.Close()
End If
If clearFile Then
Dim objWriter As New System.IO.StreamWriter(filePath, False)
objWriter.Close()
End If
-
-2092
13768
115
104
-
-2016
13820
- 5
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 2
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- Script Variable filePath
- c90dafc0-991b-4b24-b372-26f3457b24f4
- true
- filePath
- filePath
- true
- 0
- true
- 1e6793b9-7876-44c3-81db-1f581a66cc6f
- 1
- abf1fd1b-dbe5-4be6-9832-d8dc105e207f
-
-2090
13770
59
20
-
-2051
13780
- 1
- true
- Script Variable data
- 9a8a9cfe-d534-4b28-bd9c-3166283e3d8e
- true
- 1
- data
- data
- true
- 1
- true
- b22abe4a-d6ea-4ecd-9217-7ee811022f89
- 1
- abf1fd1b-dbe5-4be6-9832-d8dc105e207f
-
-2090
13790
59
20
-
-2051
13800
- true
- Script Variable append
- 49879d42-8c70-443c-96f2-8e94c165a300
- true
- append
- append
- true
- 0
- true
- 0
- 3cda2745-22ac-4244-9b04-97a5255fa60f
-
-2090
13810
59
20
-
-2051
13820
- true
- Script Variable activate
- 67010aa9-6eee-435c-81ac-14a2beb83430
- true
- activate
- activate
- true
- 0
- true
- 3d6e8a3d-110b-4477-9808-a3778be44782
- 1
- 3cda2745-22ac-4244-9b04-97a5255fa60f
-
-2090
13830
59
20
-
-2051
13840
- true
- Script Variable clearFile
- af9a7a01-6d0a-4d7a-bc79-9a0507585127
- true
- clearFile
- clearFile
- true
- 0
- true
- 0
- 3cda2745-22ac-4244-9b04-97a5255fa60f
-
-2090
13850
59
20
-
-2051
13860
- Print, Reflect and Error streams
- 9c6f31cd-da7a-4aef-b4d7-b8908e1751b9
- true
- out
- out
- false
- 0
-
-2001
13770
22
50
-
-1988.5
13795
- Output parameter A
- 961bc7c5-a1af-472e-9695-84c8c25be36c
- true
- A
- A
- false
- 0
-
-2001
13820
22
50
-
-1988.5
13845
- 06953bda-1d37-4d58-9b38-4b3c74e54c8f
- File Path
- Contains a collection of file paths
- false
- All files|*.*
- 1e6793b9-7876-44c3-81db-1f581a66cc6f
- true
- File Path
- File Path
- false
- 0
-
-2055
13901
50
24
-
-2030.094
13913.4
- 1
- 1
- {0}
- false
- C:\VSC.O____EPAHS_LANGIS____STNEMGES_48361____DIOMGIS_ERUTAWRUC_RAENIL_NOITISNART_EGDE_LUF____O____FUL_EDGE_TRANSITION_LINEAR_CURWATURE_SIGMOID____16384_SEGMENTS____SIGNAL_SHAPE____O.CSV
- a8b97322-2d53-47cd-905e-b932c3ccd74e
- Button
- Button object with two values
- False
- True
- 3d6e8a3d-110b-4477-9808-a3778be44782
- true
- Button
- false
- 0
-
-2067
13728
66
22
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- b6df8fad-340c-4555-a43a-639976bc59fe
- true
- Panel
- false
- 1
- c3df9ab9-ce47-48e9-994e-14f1d7735c94
- 1
- Double click to edit panel content…
-
-3745
13898
194
292
- 0
- 0
- 0
-
-3744.249
13898.45
-
255;255;255;255
- true
- true
- true
- false
- false
- C:\TXT.⠀⠀ⵙꖴꖴᑐᑕᔓᔕᗩⵙߦᑎⵙ✻ⓄⓄᙁⵙᴥⓄᙁⓄᑐᑕⵙᗱᗴ✻ᑎИNⵙᴥⓄꗳⵙᔓᔕ✤ИNꖴⓄߦⵙᗱᗴᗯᴥᑎᑐᑕⵙᗝᗱᗴߦᗩᙏⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᗝᗱᗴᗯꖴᴥᗱᗴᗝⵙ옷✤∷ⵙᗝꖴⓄᙏᕤᕦꖴᔓᔕⵙᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕⵙᴥᗩᗱᗴИNꖴᙁⵙ⠀⠀◯⠀⠀ⵙ⠀⠀◯⠀⠀ⵙᙁꖴИNᗱᗴᗩᴥⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᔓᔕꖴᕤᕦᙏⓄꖴᗝⵙ∷✤옷ⵙᗝᗱᗴᴥꖴᗯᗱᗴᗝⵙᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴⵙᙏᗩߦᗱᗴᗝⵙᑐᑕᑎᴥᗯᗱᗴⵙߦⓄꖴИN✤ᔓᔕⵙꗳⓄᴥⵙИNᑎ✻ᗱᗴⵙᑐᑕⓄᙁⓄᴥⵙᙁⓄⓄ✻ⵙᑎߦⵙᗩᔓᔕᑐᑕꖴꖴⵙ⠀⠀.TXT
- true
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 47d36a7d-3cd2-4782-9f53-9f4088b19d4b
- X*4
- true
- Number
- Number
- false
- e02db1d3-13e3-4587-a331-19c777c3db08
- 1
-
-3503
15833
53
24
-
-3467.059
15845.76
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 1c624bab-037b-49da-8d79-e902bf35524d
- X*4
- true
- Number
- Number
- false
- e02db1d3-13e3-4587-a331-19c777c3db08
- 1
-
-2770
15154
53
24
-
-2734.969
15166.37
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 9cc45261-b02e-4259-9e30-07f8e180b8a3
- X*4
- true
- Number
- Number
- false
- e02db1d3-13e3-4587-a331-19c777c3db08
- 1
-
-2056
16049
53
24
-
-2020.867
16061.08
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- a4a55193-86eb-40c0-8f54-9e700ffb5262
- true
- Curve
- Curve
- false
- e15c0da3-15dc-4bcb-8939-2c5ec5698b15
- 1
-
-3501
15791
50
24
-
-3476.888
15803.55
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 84f4a890-2b31-4a54-b2a5-49681a5484c7
- true
- Expression
- Expression
-
-3747
14269
194
28
-
-3647
14283
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 94f9eda3-bd56-4fd8-861a-2825f6c8b43f
- true
- Variable O
- O
- true
- 0b7cd3a8-2836-435f-b6ae-6abbe8053e01
- 1
-
-3745
14271
14
24
-
-3736.5
14283
- Result of expression
- 005faa35-deb5-475f-bb9e-bf2deeb54731
- true
- Result
-
- false
- 0
-
-3564
14271
9
24
-
-3558
14283
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- c20dd2aa-56ce-4ff5-8e86-52afad8c2c96
- true
- Expression
- Expression
-
-3405
14269
194
28
-
-3305
14283
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 10578647-61a2-434e-9cb2-13331d6797ac
- true
- Variable O
- O
- true
- ccd28879-e08a-4aaa-95c3-f7812fa57d94
- 1
-
-3403
14271
14
24
-
-3394.5
14283
- Result of expression
- 7fa81195-a3d3-4cb0-a588-f06d82c50a40
- true
- Result
-
- false
- 0
-
-3222
14271
9
24
-
-3216
14283
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:0.00000000000000}",O)
- true
- 5ccec4b3-fea6-45d3-8cbe-91c674ae3851
- true
- Expression
- Expression
-
-3809
14241
318
28
-
-3647
14255
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 150fabf1-ca09-423e-b50c-caeaf17f351a
- true
- Variable O
- O
- true
- 0b7cd3a8-2836-435f-b6ae-6abbe8053e01
- 1
-
-3807
14243
14
24
-
-3798.5
14255
- Result of expression
- 9d725916-6db6-4992-991f-cb735f009979
- true
- Result
-
- false
- 0
-
-3502
14243
9
24
-
-3496
14255
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:0.00000000000000}",O)
- true
- ff82ce22-4075-4b1a-9609-55239f281a35
- true
- Expression
- Expression
-
-3467
14241
318
28
-
-3305
14255
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- d746fd29-ce1c-41d1-81f2-fdf9c5f169de
- true
- Variable O
- O
- true
- ccd28879-e08a-4aaa-95c3-f7812fa57d94
- 1
-
-3465
14243
14
24
-
-3456.5
14255
- Result of expression
- bdc74c8b-0903-4034-9228-c3b65ca33ade
- true
- Result
-
- false
- 0
-
-3160
14243
9
24
-
-3154
14255
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Data
- Contains a collection of generic data
- true
- 377c7605-11b6-4673-94de-cc5176b48b51
- true
- Data
- Data
- false
- 7fa81195-a3d3-4cb0-a588-f06d82c50a40
- 1
-
-3330
14209
50
24
-
-3305.888
14221.4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Data
- Contains a collection of generic data
- true
- c3df9ab9-ce47-48e9-994e-14f1d7735c94
- true
- Data
- Data
- false
- 005faa35-deb5-475f-bb9e-bf2deeb54731
- 1
-
-3672
14209
50
24
-
-3647.888
14221.88
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 431dbfbf-14de-4cae-b7cc-93329a70f66c
- true
- Scale
- Scale
-
-3548
15356
138
64
-
-3480
15388
- Base geometry
- 535babb8-98b7-4909-b3b3-e6e549c1c92a
- true
- Geometry
- Geometry
- true
- a4a55193-86eb-40c0-8f54-9e700ffb5262
- 1
-
-3546
15358
51
20
-
-3519
15368
- Center of scaling
- 9ad4454f-9f59-40e3-be99-632d1a1461a3
- true
- Center
- Center
- false
- 0
-
-3546
15378
51
20
-
-3519
15388
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 444ebc82-f6a0-4084-8984-dd4c66d945bf
- true
- Factor
- Factor
- false
- 20aa50e6-d0a5-4d7e-97e6-21b1a5d5f91e
- 1
-
-3546
15398
51
20
-
-3519
15408
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- 2979390f-d371-4b3d-81eb-02a4ec91d8aa
- true
- Geometry
- Geometry
- false
- 0
-
-3465
15358
53
30
-
-3437
15373
- Transformation data
- 3c95fe8e-b4a3-4ade-9777-00ba055b0e82
- true
- Transform
- Transform
- false
- 0
-
-3465
15388
53
30
-
-3437
15403
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- ff436794-13e0-4e1f-80d6-7f5a87203812
- true
- Scale
- Scale
-
-3548
15273
138
64
-
-3480
15305
- Base geometry
- e2e063e4-7a57-4670-b883-9610ae650a01
- true
- Geometry
- Geometry
- true
- 38f60d72-95b9-474c-a523-e27fbbd26166
- 1
-
-3546
15275
51
20
-
-3519
15285
- Center of scaling
- 7d0b0dfa-0f1c-4ed6-8e42-8083399ec7d1
- true
- Center
- Center
- false
- 0
-
-3546
15295
51
20
-
-3519
15305
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 03c65af6-f9df-4a0c-8c8d-2be13ae05be2
- true
- Factor
- Factor
- false
- 20aa50e6-d0a5-4d7e-97e6-21b1a5d5f91e
- 1
-
-3546
15315
51
20
-
-3519
15325
- 1
- 1
- {0}
- 1000
- Scaled geometry
- 05d9ac10-8297-4558-bcc4-512a79bb9aef
- true
- Geometry
- Geometry
- false
- 0
-
-3465
15275
53
30
-
-3437
15290
- Transformation data
- 4299bd6c-069d-4df0-b014-c60c42cf8307
- true
- Transform
- Transform
- false
- 0
-
-3465
15305
53
30
-
-3437
15320
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 3eeef9bc-d5a9-4e6a-b71c-b4dfe8f6b841
- true
- Scale
- Scale
-
-3556
15127
154
64
-
-3472
15159
- Base geometry
- 2c95390f-c055-43de-a302-eea659970034
- true
- Geometry
- Geometry
- true
- 8f680386-5218-475e-a977-751a09d1b381
- 1
-
-3554
15129
67
20
-
-3511
15139
- Center of scaling
- 3a890d52-159e-41a4-813d-beb71d5c9b4a
- true
- Center
- Center
- false
- 0
-
-3554
15149
67
20
-
-3511
15159
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 0a0662f4-f3b0-42c3-babc-bae1f1d8d4d4
- 1/X
- true
- Factor
- Factor
- false
- 20aa50e6-d0a5-4d7e-97e6-21b1a5d5f91e
- 1
-
-3554
15169
67
20
-
-3511
15179
- 1
- 1
- {0}
- 1000
- Scaled geometry
- bc8d2834-7710-4101-8531-0bee4494488a
- true
- Geometry
- Geometry
- false
- 0
-
-3457
15129
53
30
-
-3429
15144
- Transformation data
- 346351ac-a4dd-4b84-b239-5abf88a81ea2
- true
- Transform
- Transform
- false
- 0
-
-3457
15159
53
30
-
-3429
15174
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 20aa50e6-d0a5-4d7e-97e6-21b1a5d5f91e
- true
- Relay
- false
- 878ef2e7-03c9-4c81-ab95-3f6612107a06
- 1
-
-3499
15420
40
16
-
-3479
15428
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 74e89f85-5cd3-4475-b942-4195b9b26127
- true
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 11
- 65536.0
-
-3602
15507
250
20
-
-3601.664
15507.05
- 84627490-0fb2-4498-8138-ad134ee4cb36
- Curve | Curve
- Solve intersection events for two curves.
- true
- e32b8a72-3026-4389-9167-05dd22abd69e
- true
- Curve | Curve
- Curve | Curve
-
-3552
15209
146
64
-
-3491
15241
- First curve
- d663952a-5d9a-4e44-9b51-a361869661a8
- true
- Curve A
- Curve A
- false
- 2979390f-d371-4b3d-81eb-02a4ec91d8aa
- 1
-
-3550
15211
44
30
-
-3526.5
15226
- Second curve
- 4a95121f-390e-453e-9934-7dc6daa08f5c
- true
- Curve B
- Curve B
- false
- 05d9ac10-8297-4558-bcc4-512a79bb9aef
- 1
-
-3550
15241
44
30
-
-3526.5
15256
- 1
- Intersection events
- 8f680386-5218-475e-a977-751a09d1b381
- true
- 1
- Points
- Points
- false
- 0
-
-3476
15211
68
20
-
-3448.5
15221
- 1
- Parameters on first curve
- 7312b7f3-a9b2-4cf7-9fcb-b816dbf4b790
- true
- Params A
- Params A
- false
- 0
-
-3476
15231
68
20
-
-3448.5
15241
- 1
- Parameters on second curve
- 54580081-ce6c-42c4-94fd-fd0ef709e245
- true
- Params B
- Params B
- false
- 0
-
-3476
15251
68
20
-
-3448.5
15261
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- b9b95f50-9e5f-4c1f-9c6b-75e6fd956e6e
- true
- Deconstruct
- Deconstruct
-
-3563
14959
168
64
-
-3516
14991
- Input point
- 9691647a-31ba-4d02-8adf-58cd81f7b5cc
- true
- Point
- Point
- false
- bc8d2834-7710-4101-8531-0bee4494488a
- 1
-
-3561
14961
30
60
-
-3544.5
14991
- Point {x} component
- b486aa7d-f6a1-4814-b3cf-438ef0cca74b
- ABS(X)
- true
- 2
- X component
- X component
- false
- 0
-
-3501
14961
104
20
-
-3465.5
14971
- Point {y} component
- 7048b7e4-2b82-4636-addb-a3fc267cbf8e
- ABS(X)
- true
- 2
- Y component
- Y component
- false
- 0
-
-3501
14981
104
20
-
-3465.5
14991
- Point {z} component
- c48c8651-0127-48e2-8179-5e6f8376cd04
- ABS(X)
- true
- 2
- Z component
- Z component
- false
- 0
-
-3501
15001
104
20
-
-3465.5
15011
- 1817fd29-20ae-4503-b542-f0fb651e67d7
- List Length
- Measure the length of a list.
- true
- 8fbbff63-ce96-4927-842d-2fd30969fea0
- true
- List Length
- List Length
-
-3526
15080
93
28
-
-3487
15094
- 1
- Base list
- 6490099b-4346-4da0-87fe-2ce6e2bb25ca
- true
- List
- List
- false
- bc8d2834-7710-4101-8531-0bee4494488a
- 1
-
-3524
15082
22
24
-
-3511.5
15094
- Number of items in L
- 21f3c613-50f4-4a4f-87c2-37cfe1944c59
- true
- Length
- Length
- false
- 0
-
-3472
15082
37
24
-
-3452
15094
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 74712b8a-b204-4e6f-81d7-fdd3959b8d3a
- true
- Panel
- false
- 1
- 21f3c613-50f4-4a4f-87c2-37cfe1944c59
- 1
- Double click to edit panel content…
-
-3502
15050
50
20
- 0
- 0
- 0
-
-3501.752
15050.7
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9445ca40-cc73-4861-a455-146308676855
- Range
- Create a range of numbers.
- true
- e0516fed-bf3c-4077-8700-ea6a5d8fd259
- true
- Range
- Range
-
-3542
14751
126
44
-
-3468
14773
- Domain of numeric range
- b48f44ac-2a16-467a-928e-3aac4e3b52ed
- true
- Domain
- Domain
- false
- 0303c363-c34f-496f-bac0-3710a5f8be4b
- 1
-
-3540
14753
57
20
-
-3502
14763
- 1
- 1
- {0}
-
0
1
- Number of steps
- f707cf1c-d935-4b7a-855b-75a23f57f628
- X-2
- true
- Steps
- Steps
- false
- 74712b8a-b204-4e6f-81d7-fdd3959b8d3a
- 1
-
-3540
14773
57
20
-
-3502
14783
- 1
- 1
- {0}
- 10
- 1
- Range of numbers
- f21a2bc8-f755-4872-bdce-aa048e0bdaa6
- true
- Range
- Range
- false
- 0
-
-3453
14753
35
40
-
-3434
14773
- d1a28e95-cf96-4936-bf34-8bf142d731bf
- Construct Domain
- Create a numeric domain from two numeric extremes.
- true
- c376d704-0c1b-47cd-9bc3-72920e4bfead
- true
- Construct Domain
- Construct Domain
-
-3557
14813
156
44
-
-3459
14835
- Start value of numeric domain
- 3a3b46e2-d11f-4046-bb4b-163f2e97c77d
- true
- Domain start
- Domain start
- false
- 0
-
-3555
14815
81
20
-
-3505
14825
- 1
- 1
- {0}
- 0
- End value of numeric domain
- dd78b44c-eb2d-4532-8861-76b8ae124f11
- X-2
- true
- Domain end
- Domain end
- false
- 74712b8a-b204-4e6f-81d7-fdd3959b8d3a
- 1
-
-3555
14835
81
20
-
-3505
14845
- 1
- 1
- {0}
- 1
- Numeric domain between {A} and {B}
- 0303c363-c34f-496f-bac0-3710a5f8be4b
- true
- Domain
- Domain
- false
- 0
-
-3444
14815
41
40
-
-3422
14835
- 59daf374-bc21-4a5e-8282-5504fb7ae9ae
- List Item
- 0
- Retrieve a specific item from a list.
- true
- 9e30a520-265b-486e-a6d0-566777e09451
- true
- List Item
- List Item
-
-3532
14667
106
64
-
-3468
14699
- 3
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- cb95db89-6165-43b6-9c41-5702bc5bf137
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- Base list
- 545715ba-a983-47e9-99b0-90738844316b
- true
- 1
- List
- List
- false
- 4113c65f-aeda-403a-bd7b-e956ee7d8850
- 1
-
-3530
14669
47
20
-
-3497
14679
- Item index
- a01827ce-2506-4ae1-a7c4-8d1d98fbde8f
- true
- Index
- Index
- false
- f21a2bc8-f755-4872-bdce-aa048e0bdaa6
- 1
-
-3530
14689
47
20
-
-3497
14699
- 1
- 1
- {0}
- 0
- Wrap index to list bounds
- 9a23e5fd-c798-4468-9248-0ed9d8c620e0
- true
- Wrap
- Wrap
- false
- 0
-
-3530
14709
47
20
-
-3497
14719
- 1
- 1
- {0}
- false
- Item at {i'}
- 491b4f9f-15b4-4a31-b218-8efc762778e3
- true
- 1
- false
- Item
- i
- false
- 0
-
-3453
14669
25
60
-
-3447
14699
- 3581f42a-9592-4549-bd6b-1c0fc39d067b
- Construct Point
- Construct a point from {xyz} coordinates.
- true
- 11c2aced-e753-46f2-bc94-82c65cf9d659
- true
- Construct Point
- Construct Point
-
-3552
14584
145
64
-
-3470
14616
- {x} coordinate
- 773d5f0f-95c0-42aa-8bfd-fb61807d5c99
- true
- X coordinate
- X coordinate
- false
- 0
-
-3550
14586
65
20
-
-3516
14596
- 1
- 1
- {0}
- 0.5
- {y} coordinate
- 7b2fbd6d-d0a0-4121-9253-5c6ac9e9f763
- true
- Y coordinate
- Y coordinate
- false
- 0
-
-3550
14606
65
20
-
-3516
14616
- 1
- 1
- {0}
- 0.5
- {z} coordinate
- 6cabc128-7571-4ab6-8707-6b677c5773d2
- true
- Z coordinate
- Z coordinate
- false
- 0
-
-3550
14626
65
20
-
-3516
14636
- 1
- 1
- {0}
- 0
- Point coordinate
- 5c03ce7b-657d-446c-93c8-a977f6b2ff83
- true
- 1
- Point
- Point
- false
- 0
-
-3455
14586
46
60
-
-3438.5
14616
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- dbbe7cdd-1102-4fb8-9b97-609a8d9fa450
- true
- Rotate
- Rotate
-
-3566
14501
174
64
-
-3498
14533
- Base geometry
- e4f07825-ecca-4d9c-83e0-7ac2829d9654
- true
- Geometry
- Geometry
- true
- 491b4f9f-15b4-4a31-b218-8efc762778e3
- 1
-
-3564
14503
51
20
-
-3537
14513
- Rotation angle in radians
- 89bbb4e4-d7ab-4f46-9dd3-e676f0f789d8
- true
- Angle
- Angle
- false
- 0
- false
-
-3564
14523
51
20
-
-3537
14533
- 1
- 1
- {0}
- 3.1415926535897931
- Rotation plane
- c98d6df7-a5d5-4a90-86c5-0c4bfa86f7f0
- true
- Plane
- Plane
- false
- 5c03ce7b-657d-446c-93c8-a977f6b2ff83
- 1
-
-3564
14543
51
20
-
-3537
14553
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 0d4bbc48-88bc-4b87-beae-ef8b19c22fad
- true
- 1
- Geometry
- Geometry
- false
- true
- 0
-
-3483
14503
89
30
-
-3455
14518
- Transformation data
- fd0c334d-96af-47d5-b15a-fbe52889d2ad
- true
- Transform
- Transform
- false
- 0
-
-3483
14533
89
30
-
-3455
14548
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- d9ec1ef5-676f-48f2-92d9-91fe8fd24407
- 1f4605c1-9dbc-43c9-9132-f66d279638cf
- 9d3bb84a-af3e-4616-8f79-46bdd551a731
- 7f1d4dec-c817-4bcb-8251-77aff2d99383
- 4
- 31971a09-e2f8-415e-b91f-27183d2502ab
- Group
- 3581f42a-9592-4549-bd6b-1c0fc39d067b
- Construct Point
- Construct a point from {xyz} coordinates.
- true
- 8ec0c145-f345-40f1-b548-bdeae4656453
- true
- Construct Point
- Construct Point
-
-3544
14877
129
64
-
-3462
14909
- {x} coordinate
- ef971293-49dd-46bc-a9c2-f111f8b3c18d
- true
- X coordinate
- X coordinate
- false
- b486aa7d-f6a1-4814-b3cf-438ef0cca74b
- 1
-
-3542
14879
65
20
-
-3508
14889
- 1
- 1
- {0}
- 0
- {y} coordinate
- 365fb45d-7784-45bf-accf-51778b039137
- true
- Y coordinate
- Y coordinate
- false
- 7048b7e4-2b82-4636-addb-a3fc267cbf8e
- 1
-
-3542
14899
65
20
-
-3508
14909
- 1
- 1
- {0}
- 0
- {z} coordinate
- cbcb329a-d34b-4956-a4ae-c46e163bc3bc
- true
- Z coordinate
- Z coordinate
- false
- c48c8651-0127-48e2-8179-5e6f8376cd04
- 1
-
-3542
14919
65
20
-
-3508
14929
- 1
- 1
- {0}
- 0
- Point coordinate
- 4113c65f-aeda-403a-bd7b-e956ee7d8850
- true
- Point
- Point
- false
- 0
-
-3447
14879
30
60
-
-3430.5
14909
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- fb10ff99-648c-4894-877f-9f74f536f80b
- 42c748e2-6b54-4ec4-8f80-278f307ae0c2
- bd126e88-c131-4b1c-89af-0295006e1a7e
- ffe7ddf2-2629-4b1b-9093-40905fccbf9c
- 4
- dff2d18f-b44d-4334-8ed3-7a80aaa034b2
- Group
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- true
- 8398b5f4-fd6c-4c31-b15b-85d87dd315bc
- true
- Merge
- Merge
-
-3523
14398
87
84
-
-3487
14440
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- a97d8f7a-cae8-4d4b-8dbf-44cec9080f23
- true
- false
- Data 1
- D1
- true
- 491b4f9f-15b4-4a31-b218-8efc762778e3
- 1
-
-3521
14400
19
20
-
-3510
14410
- 2
- Data stream 2
- e4056e67-c874-44dc-9e8a-585885bf4a19
- true
- false
- Data 2
- D2
- true
- 5c03ce7b-657d-446c-93c8-a977f6b2ff83
- 1
-
-3521
14420
19
20
-
-3510
14430
- 2
- Data stream 3
- 67f0aac8-1206-4ea8-93f9-27b6f45c2741
- true
- false
- Data 3
- D3
- true
- 0d4bbc48-88bc-4b87-beae-ef8b19c22fad
- 1
-
-3521
14440
19
20
-
-3510
14450
- 2
- Data stream 4
- 5e3bfd68-e2f3-499b-ab68-9c445051efe3
- true
- false
- Data 4
- D4
- true
- 0
-
-3521
14460
19
20
-
-3510
14470
- 2
- Result of merge
- e370e985-4ce7-46a6-9272-61e578a1277f
- true
- Result
- Result
- false
- 0
-
-3472
14400
34
80
-
-3453.5
14440
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 878ef2e7-03c9-4c81-ab95-3f6612107a06
- true
- Number
- Number
- false
- 74e89f85-5cd3-4475-b942-4195b9b26127
- 1
-
-3501
15463
50
24
-
-3476.559
15475.19
- 1
- 1
- {0}
- 65536
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 8ec0c145-f345-40f1-b548-bdeae4656453
- 1
- 759a9424-cadf-4276-8b23-6f50b024aaa8
- Group
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- e15c0da3-15dc-4bcb-8939-2c5ec5698b15
- Relay
- false
- 09336dd8-3c4b-476c-b62d-d3b399ef2780
- 1
-
-2409
17117
40
16
-
-2389
17125
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",ROUND(X, 15))
- true
- 0d7b8cff-2594-4e45-ab9e-2f5f1341fd9b
- true
- Expression
- Expression
-
-2910
14845
326
28
-
-2765
14859
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- f80f3bcd-a545-45b0-bb2c-9b22a3d97200
- true
- Variable X
- X
- true
- 4440b01d-0727-488c-b655-f93cd16a720e
- 1
-
-2908
14847
14
24
-
-2899.5
14859
- Result of expression
- 1af3d812-d361-4591-832f-34ad39b46812
- true
- Result
- Result
- false
- true
- 0
-
-2636
14847
50
24
-
-2617.5
14859
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",ROUND(Y, 15))
- true
- f6313031-c550-4d1d-8f43-99d56b12c44c
- true
- Expression
- Expression
-
-2910
14624
325
28
-
-2766
14638
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 7ce655c3-f528-4834-9984-15478742baa2
- true
- Variable Y
- Y
- true
- 6b0a7edd-e6c0-47a0-8363-8ecf033a1975
- 1
-
-2908
14626
13
24
-
-2900
14638
- Result of expression
- ac13e7bf-b02b-40c3-97b3-55d6fb7c2433
- true
- Result
- Result
- false
- true
- 0
-
-2637
14626
50
24
-
-2618.5
14638
- 22990b1f-9be6-477c-ad89-f775cd347105
- Flip Curve
- Flip a curve using an optional guide curve.
- true
- 109e374b-4a2e-479b-9c78-4a16f0374be6
- true
- Flip Curve
- Flip Curve
-
-2084
15532
100
44
-
-2034
15554
- Curve to flip
- 7941a2a5-8fb8-4bec-ba86-6ddf24efa4ff
- true
- Curve
- Curve
- false
- 8242d54a-3ffe-4e4a-8c0f-855f7d7f23a0
- 1
-
-2082
15534
33
20
-
-2064
15544
- Optional guide curve
- c7a0a6b9-4199-4d42-b407-00be7c1ec496
- true
- Guide
- Guide
- true
- 0
-
-2082
15554
33
20
-
-2064
15564
- Flipped curve
- 453387b1-bbdb-436b-a38f-26663ecda336
- true
- Curve
- Curve
- false
- 0
-
-2019
15534
33
20
-
-2001
15544
- Flip action
- 2a41d5da-d734-4b6c-a309-ee64c2cafce3
- true
- Flag
- Flag
- false
- 0
-
-2019
15554
33
20
-
-2001
15564
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
- Filters a collection of input streams
- true
- 95f96cf7-23b6-4aba-a210-769d38bbb41c
- true
- Stream Filter
- Stream Filter
-
-2068
15412
89
64
-
-2023
15444
- 3
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Index of Gate stream
- dcd11d44-a57d-43fb-a60d-81403468801f
- true
- Gate
- Gate
- false
- d112c991-f144-4804-bdab-b416453265b1
- 1
-
-2066
15414
28
20
-
-2050.5
15424
- 1
- 1
- {0}
- 0
- 2
- Input stream at index 0
- bfd95814-63f0-481e-bd33-57f6162181ec
- true
- false
- Stream 0
- 0
- true
- 8242d54a-3ffe-4e4a-8c0f-855f7d7f23a0
- 1
-
-2066
15434
28
20
-
-2050.5
15444
- 2
- Input stream at index 1
- 585c0802-ec70-464a-a377-31d5b8c7a0a0
- true
- false
- Stream 1
- 1
- true
- 453387b1-bbdb-436b-a38f-26663ecda336
- 1
-
-2066
15454
28
20
-
-2050.5
15464
- 2
- Filtered stream
- a4a42a27-5fc4-490b-8303-ab18a562494f
- true
- false
- Stream
- S(0)
- false
- 0
-
-2008
15414
27
60
-
-1993
15444
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- d112c991-f144-4804-bdab-b416453265b1
- true
- Number Slider
-
- false
- 0
-
-2101
15505
150
20
-
-2100.713
15505.26
- 0
- 1
- 0
- 1
- 0
- 0
- 0
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 8678bd6b-c571-4190-8bed-27a19fbb5a4b
- true
- Curve
- Curve
- false
- 0
-
8820
10437
50
24
-
8845.5
10449.14
- 1
- 1
- {0;0;0;0}
- -1
-
pNlxXI3n4/j/I0kIaSGJNUJIO1polq6DRks4aCTJYSEkZy20hLOEEA5akuRIKmk0CyE5s0YjxEKscRBCOGuNEL726fU+9+/3eT++f33PHz27X9e57+s+97nPfe4eyZrIZLJ37x//+u/Dyuz9j0njQ+eELxi+YP78BeEujhNnRnwzZ0H4kEGu/T9xdev/ibvH+1/k8v4ujsMXhkUujJg5JHzmwsiI6WEujsqFM8LmfDVq5rf+C+bNDB8yYICbm0f/mZ8O+mrQgAEDPpE3+3cWu//ZuOvImQvmz4yM+NZVuSDs2+ELIxbNNH8/2HxR42Qtp0d8FTpn0cxPQua3WKCeGR6+MGLGN+Yh0yOn//skS0tLs3/307qXTOb23i0NraxaNH3/S9t/f1wxt5SZvVpuJvvt/S//Pl6/M5PZ8voM5dfGjHz4e7uT92TWK5p0M+b80ye+4f34Jp5rbS773w+j+K/U2E/+79Lsv56jVDSqwlBUK/7dwTcys//awU7tDgSPa1Xe7uTbxh30tf+24787+CvPtW7KE//d0abW/w87+1/r/u+Hlm3pMBvzMB8LsBD1eAqL8TSW4FksxQtYhpfwMv6O5XgFr+I1rMDreAP/wEr8E2/iLTQ0qkHZbZZRdodllN1lGWVVLKPsHssou88yyh6wjLJqllH2kGWUPWIZZY9ZRlkNyyh7wjLKnrKMsmcs43/OIQVqUP+fc+svxlGDepTVMo4a1KPsb8ZRg3qU1TGOGtSj7B/GUYN6lD1nHDWoR9kLxlGDepTVM44a1KPsJeOoQT3KXjGOGtSj7DXjqEE9yhoYRw3qUfaGcdSgHmVvGUcN6lH2jnHUoP7df64div/56YgKVKEGdahHA8qasD4qUIUa1KEeDSgzY31UoAo1qEM9GlDWlPVRgSrUoA71aECZOeujAlWoQR3q0YCyZqyPClShBnWoRwPKLFgfFahCDepQjwaUNWd9VKAKNahDPRpQZsn6qEAValCHejSgrAXrowJVqEEd6tGAspasjwpUoQZ1qEcDylqxPipQhRrUoR4NKLNifVSgCjWoQz0aUNaa9VGBKtSgDvVoQFkb1kcFqlCDOtSjAWVtWR8VqEIN6lCPBpRZN2qNjihHBSpRhWrUoBZ1mId6LEMDGlHWjvnREeWoQCWqUI0a1KIO81CPZWhAI8psmB8dUY4KVKIK1ahBLeowD/VYhgY0ouwD5kdHlKMClahCNWpQizrMQz2WoQGNKLNlfnREOSpQiSpUowa1qMM81GMZGtCIsvbMj44oRwUqUYVq1KAWdZiHeixDAxpR1oH50RHlqEAlqlCNGtSiDvNQj2VoQCPKOjI/OqIcFahEFapRg1rUYR7qsQwNaESZHfOjI8pRgUpUoRo1qEUd5qEey9CARpR1Yn50RDkqUIkqVKMGtajDPNRjGRrQiDJ75kdHlKMClahCNWpQizrMQz2WoQGNKOvM/OiIclSgElWoRg1qUYd5qMcyNKARZQ7Mj44oRwUqUYVq1KAWdZiHeixDAxpR1oX50RHlqEAlqlCNGtSiDvNQj2VoQCPKujI/OqIcFahEFapRg1rUYR7qsQwNaETZh8yPjihHBSpRhWrUoBZ1mId6LEMDGlHm2KglWqMdOqIzytEDFeiDSgxAFYaiGqNQg/GoxWTUYTbmYQHqsQTLsAINWI1GrEfZR41aojXaoSM6oxw9UIE+qMQAVGEoqjEKNRiPWkxGHWZjHhagHkuwDCvQgNVoxHqUdWvUEq3RDh3RGeXogQr0QSUGoApDUY1RqMF41GIy6jAb87AA9ViCZViBBqxGI9ajrHujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZU6NWqI12qEjOqMcPVCBPqjEAFRhKKoxCjUYj1pMRh1mYx4WoB5LsAwr0IDVaMR6lPVo1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo6xno5ZojXboiM4oRw9UoA8qMQBVGIpqjEINxqMWk1GH2ZiHBajHEizDCjRgNRqxHmW9GrVEa7RDR3RGOXqgAn1QiQGowlBUYxRqMB61mIw6zMY8LEA9lmAZVqABq9GI9ShzbtQSrdEOHdEZ5eiBCvRBJQagCkNRjVGowXjUYjLqMBvzsAD1WIJlWIEGrEYj1qOsd6OWaI126IjOKEcPVKAPKjEAVRiKaoxCDcajFpNRh9mYhwWoxxIswwo0YDUasR5lfRq1RGu0Q0d0Rjl6oAJ9UIkBqMJQVGMUajAetZiMOszGPCxAPZZgGVagAavRiPUo69uoJVqjHTqiM8rRAxXog0oMQBWGohqjUIPxqMVk1GE25mEB6rEEy7ACDViNRqxHmUujlmiNduiIzihHD1SgDyoxAFUYimqMQg3GoxaTUYfZmIcFqMcSLMMKNGA1GrEeZf0atURrtENHdEY5eqACfVCJAajCUFRjFGowHrWYjDrMxjwsQD2WYBlWoAGr0Yj1KHNt1BKt0Q4d0Rnl6IEK9EElBqAKQ1GNUajBeNRiMuowG/OwAPVYgmVYgQasRiPWo+zjRi3RGu3QEZ1Rjh6oQB9UYgCqMBTVGIUajEctJqMOszEPC1CPJViGFWjAajRiPcrkjZqjJVqhNdqiHTqgIzqhM7qgHN3RAz1Rgd7og36oRH8MwCBUYQiGYhiqMRKjMAY1GIfxmIBaTMRkTEUdZmA25mIe5mMBFqIei7EES7EMy7ECK9GAVViNNWjEOqzHBpT1b9QcLdEKrdEW7dABHdEJndEF5eiOHuiJCvRGH/RDJfpjAAahCkMwFMNQjZEYhTGowTiMxwTUYiImYyrqMAOzMRfzMB8LsBD1WIwlWIplWI4VWIkGrMJqrEEj1mE9NqDMrVFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyTxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0oc2/UHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbECj5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZQMbNUdLtEJrtEU7dEBHdEJndEE5uqMHeqICvdEH/VCJ/hiAQajCEAzFMFRjJEZhDGowDuMxAbWYiMmYijrMwGzMxTzMxwIsRD0WYwmWYhmWYwVWogGrsBpr0Ih1WI8NKBvUqDlaohVaoy3aoQM6ohM6owvK0R090BMV6I0+6IdK9McADEIVhmAohqEaIzEKY1CDcRiPCajFREzGVNRhBmZjLuZhPhZgIeqxGEuwFMuwHCuwEg1YhdVYg0asw3psQJlHo+ZoiVZojbZohw7oiE7ojC4oR3f0QE9UoDf6oB8q0R8DMAhVGIKhGIZqjMQojEENxmE8JqAWEzEZU1GHGZiNuZiH+ViAhajHYizBUizDcqzASjRgFVZjDRqxDuuxAWWfNmqOlmiF1miLduiAjuiEzuiCcnRHD/REBXqjD/qhEv0xAINQhSEYimGoxkiMwhjUYBzGYwJqMRGTMRV1mIHZmIt5mI8FWIh6LMYSLMUyLMcKrEQDVmE11qAR67AeG1A2uFFztEQrtEZbtEMHdEQndEYXlKM7eqAnKtAbfdAPleiPARiEKgzBUAxDNUZiFMagBuMwHhNQi4mYjKmowwzMxlzMw3wswELUYzGWYCmWYTlWYCUasAqrsQaNWIf12ICyzxo1R0u0Qmu0RTt0QEd0Qmd0QTm6owd6ogK90Qf9UIn+GIBBqMIQDMUwVGMkRmEMajAO4zEBtZiIyZiKOszAbMzFPMzHAixEPRZjCZZiGZZjBVaiAauwGmvQiHVYjw0o82zUHC3RCq3RFu3QAR3RCZ3RBeXojh7oiQr0Rh/0QyX6YwAGoQpDMBTDUI2RGIUxqME4jMcE1GIiJmMq6jADszEX8zAfC7AQ9ViMJViKZViOFViJBqzCaqxBI9ZhPTagbEij5miJVmiNtmiHDuiITuiMLihHd/RAT1SgN/qgHyrRHwMwCFUYgqEYhmqMxCiMQQ3GYTwmoBYTMRlTUYcZmI25mIf5WICFqMdiLMFSLMNyrMBKNGAVVmMNGrEO67EBZV6NmqMlWqE12qIdOqAjOqEzuqAc3dEDPVGB3uiDfqhEfwzAIFRhCIZiGKoxEqMwBjUYh/GYgFpMxGRMRR1mYDbmYh7mYwEWoh6LsQRLsQzLsQIr0YBVWI01aMQ6rMcGlIlGzdESrdAabdEOHdARndAZXVCO7uiBnqhAb/RBP1SiPwZgEKowBEMxDNUYiVEYgxqMw3hMQC0mYjKmog4zMBtzMQ/zsQALUY/FWIKlWIblWIGVaMAqrMYaNGId1mMDyhSNmqE5WqAltkQrbIPWaIO22AHt0B4dsCs6Yjd0wp7ojH3QBV1Rjm7ojgPRAwejJ3qhAoehN45AH/RFPxyDShyP/jgRAzAQgzAYVTgDQ3AWhuJcDMNwVGMERuIijMJojMFlqMFYjMNVGI9rMQE3oBY3YyImYTKmYCqmoQ7TMQMzMRtzMBf3Yx4exHw8jAV4DAuxCPV4CovxNJbgWSzFC1iGl7Ecr2IF3sBKvIkGvINVeB+r8RHW4FM0Yi3W4XOsx1fYgG9RNrRRMzRHC7TElmiFbdAabdAWO6Ad2qMDdkVH7IZO2BOdsQ+6oCvK0Q3dcSB64GD0RC9U4DD0xhHog77oh2NQiePRHydiAAZiEAajCmdgCM7CUJyLYRiOaozASFyEURiNMbgMNRiLcbgK43EtJuAG1OJmTMQkTMYUTMU01GE6ZmAmZmMO5uJ+zMODmI+HsQCPYSEWoR5PYTGexhI8i6V4AcvwMpbjVazAG1iJN9GAd7AK72M1PsIafIpGrMU6fI71+Aob8C2+/+L7H8zQHC3QEluiFbZBa7RBW+yAdmiPDtgVHbEbOmFPdMY+6IKuKEc3dMeB6IGD0RO9UIHD0BtHoA/6oh+OQSWOR3+ciAEYiEEYjCqcgSE4C0NxLoZhOKoxAiNxEUZhNMbgMtRgLMbhKozHtZiAG1CLmzERkzAZUzAV01CH6ZiBmZiNOZiL+zEPD2I+HsYCPIaFWIR6PIXFeBpL8CyW4gUsw8tYjlexAm9gJd5EA97BKryP1fgIa/ApGrEW6/A51uMrbMC3KBveqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgW3//B+z+YoTlaoCW2RCtsg9Zog7bYAe3QHh2wKzpiN3TCnuiMfdAFXVGObuiOA9EDB6MneqECh6E3jkAf9EU/HINKHI/+OBEDMBCDMBhVOANDcBaG4lwMw3BUYwRG4iKMwmiMwWWowViMw1UYj2sxATegFjdjIiZhMqZgKqahDtMxAzMxG3MwF/djHh7EfDyMBXgMC7EI9XgKi/E0luBZLMULWIaXsRyvYgXewEq8iQa8g1V4H6vxEdbgUzRiLdbhc6zHV9iAb1H2eaNmaI4WaIkt0QrboDXaoC12QDu0Rwfsio7YDZ2wJzpjH3RBV5SjG7rjQPTAweiJXqjAYeiNI9AHfdEPx6ASx6M/TsQADMQgDEYVzsAQnIWhOBfDMBzVGIGRuAijMBpjcBlqMBbjcBXG41pMwA2oxc2YiEmYjCmYimmow3TMwEzMxhzMxf2YhwcxHw9jAR7DQixCPZ7CYjyNJXgWS/ECluFlLMerWIE3sBJvogHvYBXex2p8hDX4FI1Yi3X4HOvxFTbgW5SNaNQMzdECLbElWmEbtEYbtMUOaIf26IBd0RG7oRP2RGfsgy7oinJ0Q3cciB44GD3RCxU4DL1xBPqgL/rhGFTiePTHiRiAgRiEwajCGRiCszAU52IYhqMaIzASF2EURmMMLkMNxmIcrsJ4XIsJuAG1uBkTMQmTMQVTMQ11mI4ZmInZmIO5uB/z8CDm42EswGNYiEWox1NYjKexBM9iKV7AMryM5XgVK/AGVuJNNOAdrML7WI2PsAafohFrsQ6fYz2+wgZ8i7KRjZqhOVqgJbZEK2yD1miDttgB7dAeHbArOmI3dMKe6Ix90AVdUY5u6I4D0QMHoyd6oQKHoTeOQB/0RT8cg0ocj/44EQMwEIMwGFU4A0NwFobiXAzDcFRjBEbiIozCaIzBZajBWIzDVRiPazEBN6AWN2MiJmEypmAqpqEO0zEDMzEbczAX92MeHsR8PIwFeAwLsQj1eAqL8TSW4FksxQtYhpexHK9iBd7ASryJBryDVXgfq/ER1uBTNGIt1uFzrMdX2IBvUebTqBmaowVaYku0wjZojTZoix3QDu3RAbuiI3ZDJ+yJztgHXdAV5eiG7jgQPXAweqIXKnAYeuMI9EFf9MMxqMTx6I8TMQADMQiDUYUzMARnYSjOxTAMRzVGYCQuwiiMxhhchhqMxThchfG4FhNwA2pxMyZiEiZjCqZiGuowHTMwE7MxB3NxP+bhQczHw1iAx7AQi1CPp7AYT2MJnsVSvIBleBnL8SpW4A2sxJtowDtYhfexGh9hDT5FI9ZiHT7HenyFDfgWZV80aobmaIGW2BKtsA1aow3aYge0Q3t0wK7oiN3QCXuiM/ZBF3RFObqhOw5EDxyMnuiFChyG3jgCfdAX/XAMKnE8+uNEDMBADMJgVOEMDMFZGIpzMQzDUY0RGImLMAqjMQaXoQZjMQ5XYTyuxQTcgFrcjImYhMmYgqmYhjpMxwzMxGzMwVzcj3l4EPPxMBbgMSzEItTjKSzG01iCZ7EUL2AZXsZyvIoVeAMr8SYa8A5W4X2sxkdYg0/RiLVYh8+xHl9hA75FmW+jZmiOFmiJLdEK26A12qAtdkA7tEcH7IqO2A2dsCc6Yx90QVeUoxu640D0wMHoiV6owGHojSPQB33RD8egEsejP07EAAzEIAxGFc7AEJyFoTgXwzAc1RiBkbgIozAaY3AZajAW43AVxuNaTMANqMXNmIhJmIwpmIppqMN0zMBMzMYczMX9mIcHMR8PYwEew0IsQj2ewmI8jSV4FkvxApbhZSzHq1iBN7ASb6IB72AV3sdqfIQ1+BSNWIt1+Bzr8RU24FuUjWrUDM3RAi2xJVphG7RGG7TFDmiH9uiAXdERu6ET9kRn7IMu6IpydEN3HIgeOBg90QsVOAy9cQT6oC/64RhU4nj0x4kYgIEYhMGowhkYgrMwFOdiGIajGiMwEhdhFEZjDC5DDcZiHK7CeFyLCbgBtbgZEzEJkzEFUzENdZiOGZiJ2ZiDubgf8/Ag5uNhLMBjWIhFqMdTWIynsQTPYilewDK8jOV4FSvwBlbiTTTgHazC+1iNj7AGn6IRa7EOn2M9vsIGfIsyv0bN0Bwt0BJbohW2QWu0QVvsgHZojw7YFR2xGzphT3TGPuiCrihHN3THgeiBg9ETvVCBw9AbR6AP+qIfjkEljkd/nIgBGIhBGIwqnIEhOAtDcS6GYTiqMQIjcRFGYTTG4DLUYCzG4SqMx7WYgBtQi5sxEZMwGVMwFdNQh+mYgZmYjTmYi/sxDw9iPh7GAjyGhViEejyFxXgaS/AsluIFLMPLWI5XsQJvYCXeRAPewSq8j9X4CGvwKRqxFuvwOdbjK2zAtygb3agZmqMFWmJLtMI2aI02aIsd0A7t0QG7oiN2Qyfsic7YB13QFeXohu44ED1wMHqiFypwGHrjCPRBX/TDMajE8eiPEzEAAzEIg1GFMzAEZ2EozsUwDEc1RmAkLsIojMYYXIYajMU4XIXxuBYTcANqcTMmYhImYwqmYhrqMB0zMBOzMQdzcT/m4UHMx8NYgMewEItQj6ewGE9jCZ7FUryAZXgZy/EqVuANrMSbaMA7WIX3sRofYQ0+RSPWYh0+x3p8hQ34FmVjGjVDc7RAS2yJVtgGrdEGbbED2qE9OmBXdMRu6IQ90Rn7oAu6ohzd0B0HogcORk/0QgUOQ28cgT7oi344BpU4Hv1xIgZgIAZhMKpwBobgLAzFuRiG4ajGCIzERRiF0RiDy1CDsRiHqzAe12ICbkAtbsZETMJkTMFUTEMdpmMGZmI25mAu7sc8PIj5eBgL8BgWYhHq8RQW42kswbNYihewDC9jOV7FCryBlXgTDXgHq/A+VuMjrMGnaMRarMPnWI+vsAHfomxso2ZojhZoiS3RCtugNdqgLXZAO7RHB+yKjtgNnbAnOmMfdEFXlKMbuuNA9MDB6IleqMBh6I0j0Ad90Q/HoBLHoz9OxAAMxCAMRhXOwBCchaE4F8MwHNUYgZG4CKMwGmNwGWowFuNwFcbjWkzADajFzZiISZiMKZiKaajDdMzATMzGHMzF/ZiHBzEfD2MBHsNCLEI9nsJiPI0leBZL8QKW4WUsx6tYgTewEm+iAe9gFd7HanyENfgUjViLdfgc6/EVNuBblCn/y6bWsv/r48Tv8o9HPG4i/ndPHfLbiIcGe/Gy1bsdbgrNif9/7yPq/JclBqhTh/ynN33a4Z/9zu5io9PyZx6LTpn6157/Pn+wWLN+0RG/XRWmvrh4SOmmUoVYbX4r5vwXD039dPW/2/EW3w2yljUPf27q+1oYu5TGjRQJHwd3H9DBzOs/3anHv9v3FV28W/RZ7t3K1Bd4pC+wGDJGHLh5b4Xzug9MvYXu33mVomLovQ5tjPamfq1zjkoXPV64jek7PfHNR6b+IuHf/fEX02LmrQqY18vUPzbGrjlx9UshX9GmcMHVfqZeOPTZ+/2cJIpvn/vo9V43U3ddOuXgDbfJYtRvrh/HNQw09fk7zrzf/0Axw/l2z+lPPjP1Pamf/PFiQ5DoOPI3W+0vClMfELnz/esKFsOjX+7r9Wi4qR91aGXe/vE0MaPT5DlFC0aaes2Iz96/XpXo304xdfvkUabe/5a6w7bd00X9FxbJzX4Ya+pW4zPfH4cZokd5k/bpg8ab+oNtf+RkjftKWFmUtLt42d/Ut+VZvz8+IaJJ9ne+P+RMMvWwjZ+Lw+9ChH9G4EjDz4Gm7vBx9PvjNlPcu71M26pzsKmfWr3/9+IfZonrH7WeNKdSZepXtXfeH8/ZwtXfJbHmwgxT7ze0Q+jvU0JFed3B4dPvh5j6/Q1fvD/Oc8SjJ4d7d3KabeqLFsQ03G4xVyT3HNNy1po5pq69tv/98Z8r0mI37N3WMczUux03aI1H5omWd9afa1YWbupftbZ5/76EiYXW/e3fXleb+n79sB7vZs4XU9ZZ+8+eEWHqG09HvH+/wkXHUeqFD5pEmnpB2/SjrW0XCN+BU1S9ji40dbOEsqbtHy8Qp+SVzy/GLzb13u3f9WwzXS06dX5rv/brb019Ulj79++vWmy+fG7/22+WmLrNsL5ft/f4WuTIlYlXtUtNfWaC4v37/rVo2irph2Mly039huLL4w5tI8S8Tv5Pe7f5ztSX+M95fz5EiK+PlXzXY0SsqZ87HtPM6X6EWODnGpuRsMLUf5m78f158o3YLV+ren07ztSv+O8a2/fEN2LRr7fXLxuxSpo37GDdfudIMXLW4CWxx1abes89p7a5JUYKxbxt26Z4rZE+L88ueR1+Fyk69zYPDL681tQvexrufjpvoXhmXN7v1qIEUy9f+iT+xNWF4kFbm5VuLhtMXZX+st/QYYtE14snL+XWbjT1Q9vM35+Hi0T6pyOHjbunNfVvxreJ8um0WHyWNrS5+41Npr75WIf35+di8dfBcUbnis3S9k92OTXWuFhcsHk1IPDWFlOPGt199u9TokT7iSesa58lmnqpspfVpDNRYrBN16P2LZOk7ef3/vGG27ci9Xra7Lf9tpq671d9JganfSsWfHbK/8yUZFM/MaL369stosXGX1oe3bllm6k/H9lTN3NhtBj96lXpj1dSTH3w2I8+f2iIFr4h7X/r1S3V1Nt42z8K81sivoitvNf32x2m/knrdhuNR5aIv8ouT6m+kWbqO7TN3CO7x4jJISd+/KW7TroO/PSi4sWGGHEifF/KtltSfzP5wdIlr2KE38k681a7dpn6xdnl3d7NXCo81t2w6heaLh2Hk0VnYi8tFT2bpV2wHbDb1G2HZ4ZZDFkmOk3VzLrWPMPUlb+vbbc2e5kQ+lPGNQapT1aGHW5tu1z8HZC5ZujJPdLnepvvlE3Ll4uoMWGjP8jINPVjCT1k7R8vFy+Lvwyw3Zhl6ndXLBvv11cjvvxz9+nJmmxTX/ZNtVOb6Rphfmhrfv3ivab+V6zyxcUkjXgxM8LLYlGOqa/Zefi3TaUaEWqxULM1ep+ptz9snzrB7DtRnG1I+nllrqk/OhgT3t7jO7FkyvMd27b+YOp/fFepuDb/O3HL+cWP7nn7TX14m8EfbNv9nXjdwelZ1sUDpl477Pt7gde/E4c/uOVhviTP1Ie2fHrEoW2sSOzbdN+hdj+a+svR3mtvescKz4tdK2v3ST30xdYgXXSsGBc1PvD0Fwel8/NZteuMvFjxeEfRT4MfS93QZVATp/uxYln+ikWB2p+kz+/c2N/vdV4hTvY7JZd/mm/q3ifO7skat0JsiUpRn74n9fOv20bNWb1CPJX1K+6VdMjUI6zG+/Y9sUL8/HHK0WDfw6b+Q7nW4UntCvHnXLNbC82OmHrAp6VP9zvHiRu2q04tLpL6xa7mP6uD48TrhM9rw5cVSNe3UI8tbolxotPH0xtmDjsqfd5fhc6s+y1ORE14GT675THpe+rw94MOv4sTxWNcK5ZelXqnZUUtogasFNe+djz9U+ZxU1/xyd0/Pp23UuS1MJ7+YEmhqXc50nT/a91KMWbaidDsCSdMvenDDzUnrq4Um49kfxojLzL1/OxB45dbrRJdJ1w+s63dSVNvdsXXaeiwVWJweOCuVi+k3ttv8nOzqFVivE7eJ1ytl64nj2eUFP+wSvy2bMWgdQ+kvkM7O2XV3VXi4MND4o7qZ1Pv0HF2mE+n1aL0n2troiqlXhQ43avl2NUi8NDLoAmBp6TXO3CidWncatHUo68s6obU98Z9fmf9sdWiZG3MscdBv0j3CV0/zh9rXC3qjry5/NNtqf/0p82qdj3jhexMkfZKaLH0vbzNOOn3KfEivvDi4Im1Uh/Up6T395vixcAUhd1ny36Vrieztr2eeCZeZAV/pF5jddrUp3UPOW/3Jl581Sx2zYgdUo8e5LzzhtsaUbQqYt9i+RlTb7L4njo1dI04fc2sS7fTUn94aPuw4LQ1wv3RsB6jgktMfeoZX1vH8jXCN3dYq/p6qZ9fWnvvdou14pylTQfXpN9M/UnO5iO7xVpx5b4+oXbAWVM/8GHfNTMXrhW3ek877Fsh9eG5xwN77VsrVv/YcP2zpeek+wRHb5eHhrUiZfJer3NOpab+8xfFb3I6rBN/vIzs+/aC1N1ffHYxzG+dsJi14MH1JedNPeafHJ1r7DqRMz/76Fd9L5j6Y+t2EcYj60T7yo8f6v6Uuqx9+PCDT9aJ3lHtTyRtvihdT0p/to3sniA8Yt29evQok96XJlb3B0xOEDM+7HJEFSv1NjF+R15sSBDu6tIw2W2p65qtiD9anCAejjlr1nzoJen+eeaByUteJYhRW9IcFqdLffb0S32GyNeLDJtLUyc0uyy9j/rq129nrhc/7Xw4J22O1O99/k+pfvt6kdZSXRV4UequR57viL20XtxyrFGvG/i7qbe6VhPu3XyDGPjDvYNuO6V+a/Y1YTFkg9i1uGr0hBblpv5h38PWJREbxLDP1feeRUo97Hb87TXZG8TkCusure5IPcZ37MFRNzeI/sbRyVnKK6bet0eLFa1tN4rWXxx4dUYv9fkfH55w8YuN4qPUwgfhblel63bPiU6blm8UETvfmO3cI/Vnv1bXjT+0UVxv9upZoP016Xv5t/m/2j7eKO4u+3T8Hq3UTy+s9Z1nrRWlh4ef11hWmPrO2p6f+PXViqkTdebG76S+YZB/534jtMJodm37Pw1Sn+oY3bTNdK2YELxgYOK31019fHzy46dLtCLX4q/FF15IfZjvgd8vJmlFXNLdplmLb5j6akXR8bwftWJDxoWlji+l/tr7192bSrVC/8una4bE/GHq5v2L10U80IqOK3J/kzWpNPWVfx77ZoLZJpE6f/+dsNVSr+62d4p7l03iy5ZnFse1/dPUO17fMLy9xybRsXKpi+82qWuuzev7fPwmsWl6YIbe6aZ0Pv8jPrg2f5Po2b4q9tGPUne1bPX6SPwmYQhLn3dWccvUz94vvZO8e5NQ3nAw++qS1EfPWnn226JNYuTMJ5F/9DeYetoU94OB1zcJy9/7f1W1ROpdt1/f9lndJjE2dOeO86el/lN95HcObTeLXeUvFybb3Db1vJEWc9703iza/2ruNWKa1J8Frlfe9N4svKtWjKzIlfpx85YeJ6dtFn43BleNfS31Ox1iPtRFbxaFfk9m7ve9Y+rbZty1+O77zSL2ZnDXf1KkrisQT6fnbRZ/fzxhWo8aqX/4UHtl2LnNIv3m+miF111TP/rL1cLu9zeLpSsv/zxyk9RXd2yXYd5ki9hSWLXK857UbX8S6+513iJcO8V3dhxcJZ2HITMiTg/cIg7001z6e6PUr9RHTc4at0VsXqN9VXBf6tOHrFDEh20RyqMx1Wqve6bu/1bTa87qLWLWCMsnDlulHtE8oo1v+hYx6MjzyUVGqdd0n/hPnxNbxAcbW303cdR9U5/XtV9lq4otosWYlvn3M6X+Wv/8VE3tFmH+9WFvddMH0v3GlYN7z7dOFGlf/x5Xp5L6we7TtfudE0WX006nI09KvfPCJos3Dk8UYbfnB9Z2rTb1tpu2TFUHJ4o3bhFbwpdL/Wevjt7jvk0Uv/f859Qjg9SLvBP6uCUmCv8exwaHDn9o6mZzaq0/OJAoZmyJ86vOlHq9+osXf/+WKHpe7ugb1uqR9P370aY/y6sSRVcxaOU/aqmrvX775dC7RCFzzxy78prUT677a2+S/ffioIXzawfx2NQ/L22hXTzgezGgheb6iSypzzjVblGA8nuxY83XnnPa1Ujv78ctgj6d9714eenkQscYqf965dlQ+1Xfi/HOrteqHkj9UOSvvV7rvhfrLyw/eMT/ianHl65pXXn8ezHVLGpyyimpr0v1/Lvw6vfC+831Lhv6PzX1ybv/rNjx1/didl3ouMRdUn+TFla0zCpJbLOr/ny/zTPp/tnv4e5pvZLEkCT70X/GSX37nAlrFMOShPv3vxR0q5d6+I854R9NTRKzHSY8EQON0vt16+kEs6gkce/iMLPXaqmrDnz46d3NSaJ9hI338FypR97w7Fr8Q5JIWr97Sqdqqa+0H9F0T0mSyMy59tdSp79MfZbzZ9Ur7yYJy7HaA19Pl/qows7nZ71NElZv9w/5J03qR9c/+HFkp60i2qP95y3+lHrihLQkZ/etQhuTEb6/c62ptygWS1qM3SrqP/f66l6g1NMSz017NGerONy6+Nz+FKm7Rw/1Phe3Vbj7dhzX6g+pP3Xe5Zy7c6vosqBT6uvOf0ufX/9HVuuPbRULnuz7UjNV6m4HHP6af2WrmPJJXs+UnVLPfDzoyhjjVuGX27zgiztSdz7+2dGPWyWLS/otBzf2qJM+1xd67bDumSx0VwecDJsj9VVXXmv+UiSLJcqLq27/IPXS5UdCLk9JFkM2DD34tFbqj5YE+vy0KFkU1Mx/lOjxj/T8xVV9Ezcli59/HVBRvkzq+Y5ftl2Ymyxs1NFOB36Ves/uubVfnkkW40SXKKfWz029ts/DKwPvJIuXK94tGfCl1AfebXW045tkMXmd2fU7O6Q+5vkHqfUdt4nlO5t79Hsg9Tutmyy/7rZNeDU3Dm3f/4V0f3X58vRjo7eJdhY7dm5fIvWVT+K9t4duEw6Vz17qT0tdNOveK2bFNtHp9G8vV9rUm/oFva7F1LRtIvhNK5/HwVKXn25SM+ToNnHkyNb1f+2Tevaxzy90Ld8mInqN+WbbS6kfHRaW9+7pNjF2iXX63ZEvTb2X2cLNhhYpIuzmyVNlSVJ/uX1a5M9OKWJI1JBl0+9Lff7BvhPTRYpYGzZ3adLAV6Zu9aBi0IrAFDH5j15z1KulvunGrE4hC1PEfcPER88qpP7a5corb22K2Pp9xd72fV9L9xVLu1f22JcijK03KO8slXrS3HEnLE6niPjAgNUTL0n96abgtAeGFPF6td2LiB4N0n2m1nd5yesUcTvtgI9HtNQHmrVX7e2wXfy6+61T1kWp74o9oVjbf7tovvW+u77HG1P3zh3+0Ty/7eJRpM9HcTFSv2uX1cRv9nbxzYBmW/7+XerLpj+47RK7XcwufePW1uWtdF/a1fxU6x3bxcDeH+Rci5N6zv2GXU+PbBcNA3vuGn1T6kPGXfru4uXtQlXZ8eevPd6Zetnfmul5T7aLna9LDnpvkbrqq1ZDN1mmitAI+w/PPJV6d3e1Y0T3VGFMWHQtpofM9H+Sb1/ufzfeK1V439WufDpB6n99fubmJ5NThWOG39OCWKmP21dwwjYyVVgPsJ9V+aPUVx6LTf1nw/vtvJwzdPJtqWc17bHk6t5UoRmXW/5xO+n/M2/b75x8pDhVdEwdF6kaKvVmGuOg5FupwuB+NvLx11KfdNGuw7evUsVnC1f1uZQudb22Y93k9jvE25+eP2xXLnU3Zc2lwfId4uvP1zXf38zM1H9NTjrQedQOMWZJ/rU9g6R+uq79+oaZO0Ruxp39L+dIffuTOXP/1OwQzdqsur03VepXW20eWbR9h+jdpG3x4YtS73NtvdPOwzuE+69PchybNjX16KtBTTSXdght2uZHDwZKvXjj2z9VNTvE7Qvzr1nNk7pzfMSxoc3TRPPvn/26cafUnwwvSOrWLU3Y9Itv+XW51JePuBjRdEia8CzLepnXwtzUv7I5MqZqUpq4m1/0YKyQ+pDeC/r8GpEmotsM6T1modQNrV40y1yfJja13mKTu0/qvQaPub0qO00cuiWvn3NH6h9+Elk4+5c08d2BVa7xnZqZ+v3I0K0+N9PE6gzzls3HSf1YTJ+I3i/TxKi79rfux0u97vRRv5a2O4XX+k/NnH+WeouL7Xs9dt0pftKXnTn7Uupr23o1Kf1ip6hIVsZddLMwdTsztz9yQ3a+v7/tnTAwTOqLP/wrf/3ynUKWePYTWabUl96K3hCeslNM/TPjootB6vZHL8wee2inaGbnnF9o39zUx3arUcjLdoqXY4oH5H0p9YHay53aPd4pytc8zG6+SerfHVe8rDfTiT9Lm8/4pVTqL5xiZs6x1on7dhsP3bW0NPXsIdsvXe+iE6p5z16Efi5136IdQ3z76oRbUfLSCbFSt522Yu8xD50obf46ZfdJqV+6Nqp93xE60e6zVRmT30j9zK3nmu0TdGLUyJynCz9rYepl/eJqWk3XCVe7a+frv5W6d9Tfk2LCdUL/fUzSnQKpN13o/UvNEp2YntFyxyf1Uv/2+iLXqWt04pDTXwNqBrU09U2Ba7edT9KJ5L93HrKKkvqp3GXmXhk60e/RKvX3BVJvEjdhwf4fdeKHP9sfX/VS6pe2WN7oelInVu8sfGgY3MrUP964w3tjqU54vHmkzIiReoazzYF313XiS73155eKpD7YZlYn9QOdWLh/h31oEytTX/YmeYWhTid6r2nSc4631DXbc54ozXYJsza5x8tXS/1yasqkn9vuEnOfW8n3nZN6/I+hP/fvskscerHlWk3b1qb+2Rrbvul9dol2v+RZpPhLvcnvOxJtPHaJsGa/t/tpm9Qjhpi/jf18l4ibPXe0xy2pZy8aOfvv8bvEL+vvt+7To430uXaZXfaVapcYaXckK36e1H1bffVp+fxdoiJ91AL/g1IP1Q9O916yS1wu/uDo+pdS3/viSctD8buEQ7vl192HtjX1fUEx3/RI2iXkHd44+a6R+rKUe398v3uX+Gfqm2fnL0k9f0pvb4sfd4n7hxePVLW2NnWV78jcRUW7xJCvPurbzk3qLayF7YNzu0SbiE/Ov5wo9RNfWsdMur5LfLDz3iT7GKnLio/dPXN/l8javeCfiF1Sv2TmNcqjbpc4PbBFWdMzUs87uu1gdpN0IWv9qN35Gqlv3Xi+U6e26SK64ot7F2zamfrffa5r1jiki4c+qsgWn0o9v3/hg5e900V8q5kPY6ZJfdgXi8bMHZQubM5tDO+9SuoxHZofuuGdLn792M617Q9SLxwS3nnU+HQx7taA8a7lUr86Y993x6elixsxjs1Wv5b6B72LHvSdny6eZbf9ulN3G+n680nm6NTo9/vT5DP9PV+pR3X/6ier+HTR8NENh5oIqW/aXme39Pt08Tbd6UeX7VLXeQYue5KeLjbZj8/K+kXqfllb7k7Ne/+6HFJ6T62RetYSnc+FE+nC3sN9xuj2H5i652TND17n3m+nYdKSKC+pW95yszlQkS621XnuvDlb6vH7jiz68P77/c+2r1++Serbg9r8sfHvdPFkh3Ne0HGp79k4UMia7BYxk9L+irwn9YW3P96tbrNbfPDlT/dL2tpK9y1PX1rc7rxb5H6w82jAYKkbxyXOHdd7t1C13pboNFPq0Vlvz/88cLfwP1qxy0Ur9Y1rPPq7ee8WJ9d93+rr41IfvHloYvq43eLWPxYNf92X+uvATi9spu0WtTNDdhywaS9d92JOTl4Rtlt8PPJepxwvqddu/KTw7293i1+a/Lz99lypB7ks7Bqyerc488p19MStUvd8uEJTnrhbDEmcFWBZLPWRU6fd8U7fLZr12/nghVHqaV2bex868H4/Ha179OjawdTPn4re0+PEbjGxxDhYO0rqF24etUg6u1uURkVN+PRbqbdrXjzbomK3mBN3M9kxS+pzLyaXLLq3WzQfHDhgxBWpf3huUO8HtbvFuHvdJuQ07WjqdxN0aybJMkTChQUOo92kXpZ5+eGZ1hlCPzjquOt0qS/MOf+FR+cMsX7eN4FjtVI/47xpb7ZzhnDbmdz9wEmpf3TQoUWngRki3vrDoWOeSX3y1QWha4ZniHfPh/zp8qGdqac6rT3zUpkh1qxy6TZqrNQT+s7rOTc4Q6Q++2jw3uVSH/itzcob8zKEy7Qvx47Mk7rl9uV3fb/NENlv36zrcVvqd7scHHp8VYa4+/d4e2+bTtLzN+zd2TcxQ3Sdvs5p93CpOy2e+Wb7rgzxIuRm+bCFUvcJuRdodSBDzLFf8WX3LKnX3XIuiCnMEAXJeWXe16XePPLj9k9+yxDL/96hzmplb+qle+u/nnotQ2gHx04b5SX1Zy3iLpyvyhBNoxPPyL+W+mqHS328ajNEl2Otfp+UIfVWc26t2v8uQ0x61zVXf03qQYv23+naeo/w9W22dF6rzqZedHaI10b7PeLI1n8WBAipX3mcsO1drz1CZeh5YPU3Uj8QvL1uwYA94tNOZSEvs6R+Mit0rGHYHuHwifPxHyqlfs63bq9SuUc0vP8zJaOdg6l3ODfE/Oepe0T+UX3tzRFS77vPO7j/vD3Cvi7cOShG6i3mWxbsitojHuVkZTkclLrl5vh2Nqv2iN+O7UpxrJa6IaV4buyWPaJHw5a+oV27mPqPzQt/qdXtEcrhh+L+9pf680nhDl/t3yMmqzzLTq2T+pqWf0T+fnyP6PyhyuPqKanv3dHk/PDf9og+Iyc96PdK6k823HbKv7pHFG8PaH62f1dTHz8lOsapao+48UfKqZw5Uu+3/NzviX/tEU1O+Q8v2yX1TxaV92n2bo8INj/x0+AbUv/2eOJ3C60yxSH/ll6PbD40dfVvrSrudcoUfqpvrG6NkvqdTp+6TuyVKR5edP2i00qpv+3hEHfaPVNUjPym67YiqQ+flX994LBMUTx78eHgeqmnjG/ycdbYTDHvXkGXAZ0cTX3QDLO4jlMzxc8rSh9PHSj1o62OVKyemyl+v7bpxt4JUm/9a9d+9Yszhbuz0zu7r6Ue1/TT70JXZorOR9PC922Q+onPml2p2JwpVKUOXtNzpX78dqzzF7pMEbHraOzgs1K/GvrjkqM/ZIrghdpxg6qlfnK49kLv45miMLbw5CSLj6TjWdX1o5SSTFHQZPKd7U5SX1AY9E3Lq5nC3Pm7C02HS3205xe/Rt/NFDeclds2Tpd67/K7HR4bM8Vz99uThEbqs/7uGzrlbaZIiB774Qc7pf6z5UdHz7XKEn49Dpu3KpL6qNhTLTw7ZYmgYHmXXn9Kffb5toG5PbPEKL/rS2c3SP3KRMscB/csYf9B6WelnbtJ99tr971MGJolepV3D/vyM6kPKq/3eTMmS4j9r7s3nSJ1v7RnW+cHZYmYE+FRV6Klfm/8xvt/zskS0zsnLytNkXr4lGvuYxZniWM3N4+qPib1BMczsUVxWSKjc3Sd8x//n+23DC5z3Zwl1t8N3bDhtdTfLt/eZefOLNH982jXTg7dTV1ZvWxu2x+yxJd+vz0s8ZT6oL3Njyw/liUmmH19ZcdUqTf0GtDUeCZLrJifYJG8TOqDf7MYq7qSJZZuGrj5yE6p3zAuSSm7kyVaLFi7vkEv9fZmifcUxvfH03x369l3pL542hj5j2+yxJlR23u9aOpk6pfn5kR/1CpbDPXaYMztIfVxK7OKN9lli5tlSUvjR0o9pO3nbcx6Zgvz5xfvrpkj9UuhsZMiPskW8h3+Hj+uk/ouY7DujiJb3DsotG9/kPqgZjeqx4/JFrmOubKIMqkPMP9b/suUbOF4Pj+t1d9S3+y7N+qTOdni9PbI5efa95Duo9wbTu5elC16zLco+NFD6vldHlvYxmWLE11XTi2aIvXrqoWj4zZli2drW638a5nUuwWkbKlLyxa2a/KHj0qXel3Q5Oshudki+EnK/nO/St2y5MeuV45miwfx129EPJR68F/pX31+Jluk9F73p6J1T+n1yl2yD5W/P84pZ88N6C/1Xn/41fS4ky3mpR88Nu5LqTfzMZcnPcsWGovgk4nfSv2vc+O+sXiTLXasfvD07Q6pjzvufnhRy73iwN05wdpTUr82J7f+fse9YsyVd92+eCD1iD4Fgyf12Cuuf1A8rrdVL1OfOXZSzBm3vcJvwqV38v5S79tnzYlBir1imvewYaqJUk9oNfpt1ui9IjSxv+uRJVLfMjzdy27KXhH05GjFgF1ST/oofll86F5x8Z9/Jlaelrpj3ZsT9Qv3iodKWVFOjdTbt2j6JnTFXhGc9ne3XTbOpr7qh6TPrmv3ikXRj1JOekj9z34F336RtlfULn032GKa1A9fmXXk6L69orPXaLuFK6X+z7Nddb2P7hU/+T0daZUr9eLTof1TTu8VNYPe3Dx3Werrdh+b37J8r5i/NrH2p5dSr72QtDf69l7hfe7C1mLH3tJ9mrah6tHTveLW0tN334yU+lr54w+nNOwVrbslPZ62QOoT6qYHnmuRI158ElD8KEnqDz5SJX7WMUfYufRakVYk9X5vq87vc8oRbsu7DFlyX+rjzz+zcHDLEZPSvmz+XZs+0v3S5eUiQeSIa88fPj8wUOrtxiUubvDLEUNq6xwtp0l9wFqXA2GBOWL4c23KmtVS9z458n7l7BxRHVIR5Z4n9R3yew6jF+aIT1PvlVlel/qfXcwnnIjNEcufXz5iYdZXuo79uju+nzZHWJ89Nsy1r9R3zfrlxI4dOWLmnCOrlvtLfcWQGbWt9+WItt3vJr9aKnXL1ct7LivIEUlDAzbszJL682X2gU9/zRGprfrHhF+S+nCV2/rg33PEyV9WL579WuquM0+fvGDIEZuzF32/toeLqXc5c+Uvr6c5Ir2u4+NrY6VeUjSt+4HXOWLWzZXrx0ZL3TLuK/8PW+wT3sk3Nv2VIfXnow1xGzvsE0uU8tZFF6X+cPyV/Hfd94m+/XfZHnol9bklQ6sW9N8nfFUjT1zt0c/UP73r9IHBa5/Y+c7z/zBdn+Fcf1EAwDMiKVJIhOzICKGIQ0mUQoRIZabIlswyi6wIGYlC9t7zt0gKKSmZlYhIRnb5e9X5v/089znfe+8599z73Sugh673wVdNVzsPKsRTNJJ80Ic+nHYkXMiD/k239Y5mo6vvjkw5eDUPBB+s6zF0o3O+OP4yzS0PdH4qmFFtksQ+xmH/e0dAHnQKHrsnKI4ep0jH5x+VBy+PHv7uYox+04xFeyYlDxaOHIqZDEJXKQq/aZ6bB9VcuskPStCjzTzSuqrygGYgk8NiEF0t7s1LteY8MHLT4b3EKPXPjQISZkvebnz3nQ0l+DA6je4rTv7hPBj9vpm71xq9br/dsZipPKhP0VAxjkVnlb95jXo1D7reHVOmIaL3p/2IctmSDzsdWKU+/fzf+AdtFV/Y8sHp2fWHDkwH//kPiZ195wTywSepkzdECL3hMXGddDAfDm/WoJQdReem+yggq5IPl9pMwhf10ZvvG5x8djoftDqSAvTs0DPPyV/fdSEf1mdjSogB6J98fcIDbfKBm+ONgGYSeo6UcOGcaz6Mcg59HSlBjw6V6bT0zwfpHu21hJfoB/PTpt9F5oMDf5aH+Wf0i1WOzOop+ZD63uOK2jI6a1uqZHlOPpwjnyUqsEj/81BqiTOCVfmQWV+VoS6Kvtlvj91DSj5ANLDZqqHvuWB5j/ZtPmhudeV+egHdqogh020oH+znB1/MOqO3JzMSRybzoYttB69JGPqpw7b9Biv5wCsbK/HxKfrOVJ5FCn0B3GD6/ce+Dv3mNwkWObYCOHWVlMTRjb4gFCeWyV8AZSt3mfom0RVv6h9nO1gALIFvLcs3y2D8yaumwcoFcLhaMjODB907pcvl96kCuKQjOpCngB6VHBVqbVwAe1fPsrfpoiespT15b10AVnbipuvX0One0laccC2AyDNnK08HottK1L6suFMAitpqMkUp6P68hAGhyAK4xhzTK1qJLl7NNhOXXAAXj7ZX1nWiO9LV0tDlFECu++1uq3F0D458tpuVBSBvKqcsRCP7zyNXJ4RHyQXAHua9urYX/UC9u4JhVwGUpAzumZRHH7U+fbJlsAAyxH48ndVFd6exM5SfLIDmVon0HXbodanvrLKWC4CbQZZXIxi9VDXIhZ2+ECa87orEPkH3m/G+HcJaCI9yqyiLNejW1TX3F/gKoYZPl8qtG701+WiCjVQhMFwdGKOfRpdOp3nac7QQzP/+CChjOIT3Rfv2fI1ThdBou2XgpiD6CwGTikqjQpAXbNp0DtCzn481CFsXws+8lCV1E/Rhk4rmeJdCOHBLolPHHT1dhfSa7s5GnL9/Il2i0cX0t7+7GVEIV4uTjhXkoX9KiPs4mlQIPH+j5tdb0BUZTQYMszfmqX+96PoX9IHcC59bKgohnbPSd+oPeohr7Ig8uRDEatav3dsjh/eXOd1Y1ptCyIp556ckh27iUPKdfbAQLOgbW+j00O/FxY6H/CiEULfT2hP26KTOvPGFpULQOLSFc/Qeujbb8ncbuiJ49PiO4krG/+KYeY317CqCG7Rq1cJE9JlUyW8afEUQWfP+sd0AOncn65dKySJI2frqd+syesOXA4PCR4tg97GCNhV2+X+e1O7SG69VBFrPt4i0y6DHBHx/R2dUBGf9rrG56aBnzN1vv2lVBMxbLqbJ2qN/ZrnYMupcBAoB9m8ZQ9Ed2o0aDW8XgbyISOVaJvoDNr+KlvAiOCLJYUhHRn/2sT1PPqkIhF+9qt8/jL6NViM96/nGuiQ75i3/oJsEfYtjryiCkeC8LdWcCvh+PpEXGkIqgvWVaWqhw+i7pON9FjqLILxc5GfuefRZ6UwHm4Ei6H0/2K3liv7k4IfLPRNF8NIvnUj1AH2d9YCuxlIRjL5abXxbiL79aydvH3UxnOnx/FD/Gn0TG+fuWIZiyCl7zkaYQP8VM7f99I5iOH6TJah/y2F8h3eY0tLsLoYB8eMSO0XQaxXPrdRyF8PrL61c5ifQb5zsmXYRLIbRJ5ImLy3Rm63HRsQOFIOH7aa5UwHom+mCe79Ib8xTue3XtzT0+YTC9qTDxfCci+PSxo8EvtvDLInnoBhk/rifsB1ELzjzrHyrRjEwf3Qs0fmDXnr2xnOSdjE0pj7I19175J/3rhISvfSLQUT1qpqdEnoc6fF9GZNiiHru4/XEBL2PmcZ34koxJNabWUx5oovq/rrx9GoxyFvG05xPRA+etrpk4lAMRd6ltj3V6F4Xrpzd6V4MCV+UU5w/onMuf1Zu8y6GNidKtvAS+p/D4+IBAcVwdbXr0e/div9cNdCdSzF0Y7z+7M1BBfQwtRCG2ahiuH+y5MxnI3SaAc7FnPhi8ElLEvnrgW7cKDNi/rgY4gUVmeUeoZPOtL/Zk1EMW+O5mEOq0Rdnx+u7cotBsKxNeuYj+iG2e9mhJcVgIf/O/+YyujrX81i16mIw7CEwsHMq/XNLOw2/5cZiyD3B292piG5jZ21b0lwMwrJeP56ZosffoTl37XUxPNYyM4nxQW9n3qfE964YfkoZHEh+jH7Jt1agt7cYNoVO2DY2ogtKvGV8MFwMVXN53GtD6P4BNnOaY8WwtlXQwIDq6D8/N3zz06afxVBsPcj+gh99Uw41sXq+GJLibZwM1NHtVBieO60WQ4C4pt2aNTotdVj4fuoS2FHKtLPpLnqJQZDz8JYSeFtwwjElB/1b/OL5R8wlcOjprYiHr9DD9389osteAuHbZT2eT6FzXdPg3sJdAlPXNim8Z1b+54FV+zYRBEpAW8L+A7cMuqKL8xcPsRJwfkll6W+ALr+oQJGSLoH3edoj6zfRJ5+5Zo4plMBL5Y/WiYnoxu8FQp6olIDuiNTsmXr06bGTNkYnSuDApqFY7iH0HIWhE8zaJdA25XR+C7UK9jHeccEX50rg7GZnNSYh9J+rVjS3L5RAQNJ1CylN9Amhc5/lr2zMc+07yc4OfXKxqPGnTQkYe3jcIEeiO7/yTc66UQL5uun28qXotsu1HpfcSoD91Uwb5T267icbfXbvEjATnI9xWEZnb7kj2eFfAkNxsp2y3PDPZVi3MITcK4FbBkphrGrocVxrX5SjSiAoOr5jhzV6kczF+t9xJTDo/iZrfyi6U5FIXEFKCfQdcOO+WIB+bMzshvWzElB4v005rwt9l9Rfde7cEuCOFtrBvoCu3ke/931xCbDWZeie3a76z4ngNRteVQKCHf6+T3jRx4sMWtUbS8AqdDr2rzR6ol/84zXKxr65yCbaqaMf/KviUv6qBG5uj40ZNUQPvnNGw/5tCXz9pB/seO1/8Q2JewR7S6D+Qt1NOh902beJk31DJWBNx2yfF4mec6ynMXZ0Y59NHl6/lI7OteQefXqqBDo6oj14y9HJarfMaeZLwPaD1qOfLejXHfql61ZKwHuM9u2rXnSN1+lUrlSlYOtIL1Y1ib4t58UbsS2lwDsQn1m8jv5D78yTL0ylwJ+ypFW9U+2fx+6SuZHEVgrubC57O4TQhRTdFc/tLYWyIk3+2cPoqizs9FsFSmGsg3hFUBt908iud0TRUqjt5h+wuoy+sHYj1fNgKSjuK0kpc0GXyRK4Jq1QCjRMpRk7QtDlRQ/JjiuXgtDS9RXvRPTNnalraeqlcECe79nvfHT2YYtm49OlwMLNmeFLQDfNuB2x41wpnFhPombtRlexnDdoNS6FHPFxcvUY+jNLAtedy6UQMqs1ZbeKPvzjy2cFm1IIT6YOkmA+9s871EyfT9uXwpCjccQffvSy3P32z11LYb48mqlfHt3Q7tTBy16lUFTwa9vLU+hTL5rm2P1L4UxSQwTlEvoB2nuVHXdLwab6aHyHC7q85dNbIZGl8P1Y2YGxEPRSESZFlbhS4HKx0WdK/t98YttWfieXQoJ38k71InTi957agqelcCwmweEeGf37VRkv65xS0Bt9Yt/3Af2RXv9h7uJSUM9cZlGeRG/59m6hu7IUepfHLQs2Hf/n7yw5ysMbSmHftsqr4mzoSVtznNQppXCR6hl/rSi6PUew+FpbKexe+51oqILO/CpvrKxrI797599S6aNXXd771O7jxvz9vrytu4rOuavHVGCoFAaO0j0J8kE/z/eRte9bKSg7Zhy9+ACdtoWvPWZyI1+i1CXHstAlj5YGnZorhXo/K6rDdegmjfeUqFdKwdNnh+zRN+iuIRkzNZvKQEHq9Gmdb+jf22mfO9OXAWfaBR3nFfTw9mxTUaYy8Hx/R/0pszrmqyGK+TNrGVS93XzwiyD63p5q0iOuMjB+JLFbWhF96YyAuy5/GcwKKK9H6qDPmnYIbxEtAzknz6lVK3Q++ZoPTVJlMOAmMubhhc608+tdD/kyKBMOn6GORq8RPK0gpVwGER6TLI8z0SOf/vo2erwMjhtGnNGoQ3dtehubeqoMagvLcv6+QS8v/KVqqFcGr69lHGgZRd/zTGtqu3EZmN7I+Jiyhv6+o/9R86UyUElZqgjYeeKf37fMOe5rXQbqPd9aPfajG8cUTh2yLwPppWJ2HxX0+vs/4iddyqChLzUjygC95PZlyPAsg2CjeY/S6+hpjxnGTO+UARcsxI3cQTdlHY/YdbcM5izGaYQT0KV2/pF9FVEG1tE7X9wsQO+kqPcGPCyD/AeVIz1kdPMLTb6KyWUwLMFpofEJ3WfNjm82fSP+/gD15l/ofJ+0KDnZZVByXPaBPr0GnjtuYxvzojKoVHI5M8ONfmo2jn5PZRk4vwr0Sz2E/tefOvtNfRnw5OaLmp5GT11IOXmPXAbk+9IGIhboFzytRqGtDGT4jGhoPNFbZYyDFt+UweJui6M/o9B/nfLgK/pQBracCbTjWeia44QGm8EyiOpUNJ9rQC89dOgCz7cyONL3wGj7e3Q//Tdz73+UwejA8KT8JLqV3cOIiNkyILnZCzvRnMT7K/228InlMqg44slQw4meyPmgcW29DLTIp5NZZNB9Vl6cL6crh6qM/Z89tdBzrAQm7baXQ/8Ng+GZK+hL3k/9BVjLQTFvV6rnLfQiC3X2Ps5yGPuWy8sSje6ruCU3hq8cMp9dul79HN1PcOroqf3lQLZxDXRsQj+qNttBJVUOAoUSTvIf0DOL2a/UyJXD8d9dctun0XfHXPjldLQcBMszeufoNDFftLW39x8vhwuXJ65M8KCnCikwDWuVw/zVsTe/5NF9d71JTtAthxilYUl6HXTqH4H7dYzK4Yz6njsSV9EftuqV010qh7rvPS8tb6OztR6GRqtyGL9vxpKbgE6gPfzS3a4cLkfMmG4qRj+WePachEs57ND6UGjTil76xPvTyK1yuLpbn3lgGD1MutE85XY5SJ3JCbBcRi+5yvZdP6Qc0pR4mFZYtP65m8mdG4wR5WBycKEyTQw9nO/vDCm2HPTd3QOMjqOzdke4eyWVw6jusDvPRfS4e5JL0unl0LzZO/63G/qywZDn+PNyWHgbOt4fgR5/9slKWmE5dM/punVnoYuH3fAyriiHzWmsR/ub0Pu5tJaZ68vBk3GPxvxH9IO7pT1ekMrByeZpwt5ZdK4owXm/l+VgPjAvd57xFJ67OH4n+TflwJhoIJwqiO6iLPZjqqccrjdudlhURm+KV7TOHCiHHAftneZG6Dal5wYvjpSD/At7jj4ndIM0Z0PWHxv1/Dk32DoMfcAxvv3VTDk0vDt1eVMGer0U4XjgUjk4FEXn5jWg7/o5Va24Xg6vAgj2Vz+gX67mkZjdXAE7jXnyZGfQHyTrpeVsq4AHcj+v72A8jffas+Cd5rsqgMLtVvJHEF1moCaQg7MCxJnnA1dV0G+cm5rr3FcBDrSlYwwX0NmZeC3vilTAgfmZz/td0Zk5z3apSG7E6Vr0MI5AT7ztqbJwqAL4wuiLHj1HNzyZllugVAH9DNbh40R0PU8im/WxCtirYMB2uh/9197+23u1KqBgnkOnYQGd4cj093c6FaDCt6iiyqKN77R3y7r3DSsgNEFm4t0B9LLZlapjZhVwSJLZ8JYGelfSDPeKZQW0VL25K2GO7vymP6DkegU0UtcFzXmjayXUjdo6V4BPL8u5tnh0n9lwrX23KkCDes/vkpL/+YhO3ge/CpADVtfc1+gHHGm2RQVXgObZk11lY+iU2Cw7jfAKODP+m7WD+sw//3HucNufmAoYbbY8vsyN/ii/SqQisQLC47rN5Y6gH0oTCLJPqwDnzeHuAQbobuLeQwLPKyCtsT1w2BE9SKfhSF/BRl6sBx7o3EfvpxuPiSmvgKzkvxmdWeiXdP5MaNVtrHfNjXSFhK4ttKxGRaqAPN6gaepBdNWgvoTq1grwTXSUrlxGV7n6bNKxswL2LHtFeLGd/eePW3VURXoqwPvl+BZdaXTOp0Mxg/0VoPtgPVv+DPrbSb2RuK8V8PXtuovkNXTF9MxDZyYqQGCbpL1CMPqBqt5A2pmN81LZnqiXjv5RaKqrbrECTp3kp/JtQO/+Osjj+rcCNkk5Pq/pRWcaK7gutrkSJnoXH9Av/G+84IWKz4yV8LFovdlmpw7W24Ohv492VgIra5vmB0l0Rn7Vk7p7KsHROon3wmn0b62ekfT7KuHw3zKdyavoQp73uxuFN/yQyWB0EPqIoNuemxKVUGj85o1GOnpKg4yZxKFK0Kq+IM7UiC54qOXJiGIlHEg+sjD6CT3/lsTnZLWN+auXyXYtohO9rvLpa1YC7wqtu81W3X9+RtT1yladSuhxVmWe4kCPdtFJJZ6vBJsMCTsfEfSD6qufbl2shHNiDvdZ5dF577uzH7SshObEZy4V6uiVsg26Y9cqITbEUeCyPnq6aFdoqtPGPgS4prFYoE8ZFRPPe1TCGy69yddO6EvZF5a2+VUCz3AOw4Pb6IF0ryUoQZVw5wLvqlkketYFOgvv+5Uwx6xPln2M/jqMPk4mphJ2hY5a7cxHb/bvaBl/VAnbNb2/LNeilwiZLKY9qYSC9lKViZfodGY5wsZZlaD3SNLn60f0zO11BswFG3UlEP342xh60d5I/5aySlgev5X5awG9zIGvwLe2EqLMw+Jp6fT++b0x1w+HiBt5X7d25WNDt7ketGnyxYbLFaicFETv79Xb/6yjEo67Uq26y6K37+47a/J+I4/CtHkFx9DdN/O6sfRXgkONod5PPXT7wL2PWr9UQszDpF8K5uhxzm9rb49XQii38/0wJ/TDRdAv/6sSwqq8BUdvo//gtFybWqgEDbJp46ko9JQYJa7MP5XwObXUtDoV/cHci8MXaatgUxbfumQhuiUn/fldjFVQLH0qr7ABnfbromMbSxXcfNRuodCOXrM/MdSfowpOS57Z/7Ifna9lPP0wbxWEqV//azmJLhr3vXpaqAo2i7WM0a+hczk+7MgSr4JpMeqxcsZz/zxCfPKLmWwVfIlu+nudC9098+dvVsUqGH76RFrsADp7SRL9a9Uq0Mk8HjCriE4jPL078GTVRv/RniOfQpf6NCGseLYKem5fvJtqgv7pafihGYMquP9ul1rAdfQ4g3eq2aZVMMjEKuDoha5Fbjh92aIKlm3/SlmHocuRTp1nv1YFJuxu162S0L8IeJq1O1ZBlyb7e/vc/42vPWkVdLMKgqRCXPxq0S0MK64p+VbB+wWrE4lt6NOthBuzgVUQ2qqv2/AJvfKzrVNOWBUkvZqLm5hAH3LMd77yoArOCY5y8K2i/1ALc979qApU5l/1XWHU/+d5QlROHalVcMBE43MOF7rid+YbwZlVIOCycGDtADqzYYXt0fyNOjnv22h0FP2H4i+LudIqyOD0Sa7XRh8xbzLNrakC+/exzWJm6GZxfPrmhCpoireGpzfQdz5h0+J4UQWt9jGMAn7oVJpJyp3tVfDBok68IBI92LjwYEh3FXj7+2eqPkHXeKTLr9xXBVc6gm8NFKErddzeOf+5Cq5rX8sOJKA/JyhS5X2vgrjV1wqyXej75O78NJ+uAtZePdHJz+ixv85+4lioArGhR7cLZ9FFqjIpnWsb52XzcWUvGoN/fl07sCCEphrWYcZKhxVd3HX0ofLWapi6o74sIYQeNtXuNb+jGnoqB9bY5NF/+xy+nLe7Gu63m7nQn0QX+yJ4zIKnGv4UWF+kNkaXG3ggsEeoGgRV4hvorqHbS/jRvDlQDUzm0Y9YvdC9Hnz/HCJTDW8W5qcP3Ec/9aKzUflINUT3W7Vop6CLhsskzUM1eEze4fEoQE9OYXbL06iGyj/jK7mN6L7l1toWZ6rBf0T10vdO9OVIWYE9BtWwxUX4tNRn9DujHkudJtVwx02JcnsWvctN+nWIeTWwV+173Utz/p9vmruUqmxbDT+pPKyV2dAv7Fl3mHeoBmHOoZhcYfR7T3ao5LlvrJe4bMh3GP3m0RhGC59qmKi6Wp6uhW6VFfCBI7Aa7KpfFhwwRX8bM5zeGVoNoj6EE0326DGVuddDoqthvnrS76IfekPzkLRyQjW48k2b0kSj17n6Lc49rgZVa9uhsnR0RdfgutyManh1cJnRoQxd9uacr3leNThIHBuRbkafknihwlFaDaZUI9fXe9BnTq3/6aiuhiSd2097vqNz+CbVBTdt7Gd1eUTVCnqwa4LH0ZZquPtBUOrpNsN/ntQ/Lz33uhq8TzqFxvOg77Ipmch5Vw26qQpPHh5E/1r/Kv3Kp2o46MjlmnIMXS/imNHuz9Ww+1Q9faEB+ngAK2PHWDXU1NVefmmD7qup2hD0sxqen6ny/XkLXeoe5YbS72rgDTlnxX0f3eTHk72zqxvf/S7ObvgYvZyz62U2dQ08mRuNe1SEvr/R0P0yQw1MCfKNjhDRf/tI8bLvqAGD394MSt3oCX8uvHjNXgMvPiVQJ4+iD37rvhHIXQNjJ9m6aZfR335K3akoWAOM+Q/v3GI0wnfFncqKX2I1oOBauXWBG93Km9PouXQNsNFxufseRL9z4+WC2eEaoGmzIDEdR9dYJj5khRpY3Cf5O+c8+j4CtfSrEzWQeI17h44terNF2Ct/7RoQWn/D9tcLXczfyOqwfg34HBnfUhWBHlFru/rzQg1w3qCb9ExDdymoj868UgO7frQSNcrQUxb1BC9erYHtVF3h3C3oe+RFKnc61IDmcqPO34/oCpuVNF661UAUp+z28R/o9zeFd9/2rgHV7PYXA3/Rf5I4zOUDauDoF8mAfhZjPL+jQz8m79XAEu2iyjdB9DDaYbdnUTVgodWyaUkBnVKxe+1CfA38GjnaxnoanSkm2H/H4xpIZVh9rHQJPfbg/s0vntXAp29pfvbO6DUif0N8c2sgIaPD4XkQusx2OvpDJTVw+Iag82QC+rS7SvBEVQ08tjx2TykPnWchkyq9cWPfslsrHzaiH+FT8jFqroGTRkbri13ov0LX5re/roFbYZFW1t/QT5C+21He1oCEEdN4/xL6VdO/w169NWDZeTPq0rYL/7z3m5KB9HANeFHZmkzwouvPPGkeG60BmSV/7Tuy6O+2icqlTtVARq2V7b6T6Ikt758azNeAjnZxcZsJOnd+BhPj6kbdFtDuv+2Azn/q4S0iVS1MfaTqUg5AzxJ/NuyxpRaCW08W0sWjfx/s1JBkroV4p5uk3hx0yx8ceSNstXCMJLGjqgH9Y5/P9uS9tTCSuz0ptQtd/cjKDT2BWpBirbSI/ob+9X7Ua3qxWmAZabEPX0aXNFUSbTxYCw1rQ7Ux203w3SWxFuimUAvZR9N1nvGhz4a+6RdTqQUfv1yJRjn0lPlK2c/qtSCSmGz0VQtdb7bgXsLpWiBeZn2z8xL6C7ryvjPnauFZenmitgv6ZPkLcdoLtXBKbG9VdAj6tN+Yd+3lWrAhTogNJaHDKMtLJ5ta6BEjLCoUoQfYnWAVuVELicJH9yWT0dMj75gNuNbCB6e/WVs+otd1EDNivWphkJgVeWcSXS6XfkLLvxaYOrp7qalM/3l2qq7Epnu18PvE/vtRbOg/9yc7VEbWgmiPaqawGDpn87cC+7hasBBpFGtVQb/9U/IHf0otWA8Cj5s+ei6vu3Dv01rYmmIdIGaLfvFt5eWonFqQ/9Nx4YcPevrt2fgTxRvrSuJ6XvkAveiJ8OvVylr4yvDDPjwLfUuu3npJQy3o9PUX2Nehm7C5HLSl1MK+lGh7ozfo8UYhl3le1YLa+8w87W/ow9/Cw7u7aqGKsf6G9gr6s0NBVWEfa+ESwaXCkPniP3eruj6sOlQL/E7Xgu0E0WU+q9AvftvIYywMhx1BHxVYP1AwWQsKaQ9by8+iD/3KOWs5Vwvzm7eojVuip1YrO+5ZqYVc6SPa+z3RByaqIzo31cGb+y8mnSPRHy7syQ2mr4P2W+eEWp6h/9K6TFFiqoMeY88lwRp0g3N3+2dY64DtXp9tZAf6VZ/o2edcdeByicOTegR9WtaT7hJ/HZClOg/4L6NvHwEOVtE6eHb6SeBWZrN/vrLwRaRNqg6C/ogEpgqiH+m5IndHvg6Sw7dIKCui+0xUqcor18FfpeHAUR30ouRRrcnjdeBw6mxYkjX6ku4P3aen6uDO7MyxC97oBU6U88Z6dXD/+vVi/gfoV644GTMZ18HDEcP3C1no3UFTxpRLdeAYaVj+vh596zFFIy/rjXk+2KLb9BZdatVA/6B9HWjt2pZX9h29bOfRM6MudXDl0KbW0r/o+yem1FM86+AWS1BOPeulf+7wxVbx3J06aCPJn+sSQw8xzZPYcrcO1C5WUX6poheXl/E0RtSB1VQGDZcR+gXtO9vdHtaBqX8qi+4NdKk7zCuiyXUwx3N8JioQfWvB5ZGh9DoIb5XO/JSIviDp+Douuw74fRgOHixGVzE/Wnq6qA40Za89jG5B101tjqOqrAPmr9Pdq/3oX4HBo6q+DuR8js47z6G/TN1seINcB98mpuZnGS5jP9lVIyPQVgdj7M96/fah887zbe99Uwc3v65ksCmgqz9S+Rb5oQ5MpB5eqDqDrnZ+e536YB10dW9fsbRCH78dHrkyUgdJOXShXN7oeva1l4t/1MGgHzfD4AP0qhtxkjazdXCGb8YnLxs9qodrlWu5DhaM940FNqH7LZ1u7lqvg8vjWqeu9qBfEhSMuEtXD04PtuWcn0I/lPv0nPL2eiAE0wSKUF/554d7m9nmdtXDM7rJkpzt6J/W7/dkc9bDhECUhfQe9EK7uYeX+OqhQ/ZofKMg+t1rK7qs++tBIezYWb2D6EYnnmxtk6yHslsz98eV0M+fGibelqsH37OPdO+eRO8h1d2UO1oPHsYhj8X00a8vSYn+OFYPIp+3ur27hP5KVqk3Tase6g66v/e/jj5a3xdiqFsPf8JZyXI30d9+YpbZZlQPl48cVpn2Rx989/4T0aweft6U0iyMQPedOuDvYVUP54O0vrgkol+w3yEkYVcP/Y/fb1fORD/50L/li3M9WP/hf72tBP1stq/1o1sb/ukOz5d69NQJauqzt+th/poKXUMrelwKcwpNSD0UDeYGPe5GJ/1Nl60Jr4ceW7bkwGH0r7rVrQ6x9SAh337KcfJ/6+rSNRVMqgcWF764K0vor5uu/ehNqwfbE+beRrTm/3zCiMoz6nk95PT0/dXfgV7Qw0Z7orAeOrWG9xnuRS/0yAxfKd+IQ2j4YrYfvcG9cGdxXT14XyCfsDuETtkqFW9Nqoc0adXTfqr/+66j0G6ul/UwaxE4H6+N7jsQFfemsx7oNvcfqzBGnw+zZwnpqYcl8USFXiv0mcKaMKWBerCYYuimdkZXv+1ONfO1HowNfffI+P7vuwdT3bMm6sHO/RjD1VD0zUvSY6Yz9ZBxPjsjPQ79K72UIctSPQSu/5n8nI5OGxtLavlbD1SeMV9FCtHpX5mJ+2xugODm8lDXWnTS8P1Y6W0N8Otb2TClBZ2fdu/S6M4GCP84OM71Dt3IaptJyp4GYE0Myro1hJ4mZVqjt68BSvbN7+77gX4nlo6dXqQBlq194PgS+r36bU71Eg0wctGep4TWAs9vj90L50MN8GFhZ6UgC7rdNv69IkoNkMrfRJ/Kja53T8KhX60BbF43sXKLobu4hjc80GyAhgHLwXR5dLWFo1tP6jRAjPKKtfhx9BOHlQ3WzjeA3Juu/Hod9ONX7ieXXGwAXY8j5ecuou98KDRsY9kAEyx3fH/aojcsMfDvvd4AZj7zDNHu6F6l8uZdTg1gFf3NRCEAPWEk53GIRwPQCz11HolEjysx/6Dk1wCZTJ46Ccnoe5UuMs0ENcBPnprfOtno0+kJx7LuN8BXwRJrpgp0WrqdbqYxDfBusijtLRHdNeTl0x2JDWCgSpud0oF+S62+o/lJA+iNrvnY96G7G3xf9MraqJOn3/cd+44+13ea52BBA+QpsMdx/0ZPmxtR+1bWAIctuz/9pbLEe7OyxCKptgGiPzvPfWNCX1QuvqNDbIAFO+Xht1zoVc8Gk2lbG2CoOvhp8370znXF8pqOBtjik6jUKIeeeY380uF9A1javMivP4ZOXHTvF+hvAEHhS4sEHfS3TbqTH780QI5N/t5XF9ELevSWI8YbIO7NJp6+a+gndD1ojv9qgFKG3LVfN9GLoWnr0kID0FUs1GwLQpeqEmEu+NMARBc5I8kH6DythTssaBvh+HD5+/Op6NSB55h3MzbC3kdk+cA8dN/FHYyvWRrhr3Sxd2U1+oVD32n8ORqh69jLzOlmdJ+TPctyvI3w8KJZpeQ79CXl3skJoUa4yVRX6DqMPicw3f9EvBGaRw5GN079b99o2dsMZBthxnb7ReZV9O6J0+UMio1wl+/JLpstVv+8cSgyuVG1EQ7FHKomsaGLT/bfdj3ZCI1Ke08LCaD/2X3IfP/ZRqBLyWiPOIjOez0GBgwagVpyr9qaMnre99+cMaaNQLrWleV0Gr3n0cU5DYtGuELZuemHMfqKH6V11bYR2Islz9rZoN9NPZBc7NgIfCmuMTOu6HtXoq5b32yEjnmpDl9/dNvYaXlO30bwFSil3hGFftxOc1NnYCPERGpKZ6egZ/o/agkMawS3RDVTjVz0pPcDoYcfNEJyxg//iSr0S9bsp6YSGsF7e1zWw2Z0NUlV+qepjRAuGd6m/g49V/wC0TCzEU5e5p1eGUY/dPHyLcb8jXXNp7BV/UQPqNIVJ5Q2QqiKPniuoVsdPjDgVtMIs+HRN9S2Wv/zpg+TYaKERqgVe5bOzIGeGhErN9jSCEpXevu/CqHz63EPxLQ3AsXFf1+jLPpdjnv+J7sbITFj/EaqGrpEbxf/2qdGGDl0pSVIBz327hKh+HMjvLgse8DZDP3k7hVT6++NoHWp5LGlHfpm7+65PdONcNlmP+9FT/RHGcH3On43wvfc0WKTu+gTQYycgWuNkG6qaHA5Dp1+m1W2Ak0TyGU6b73+DH2naITsJEMTCJd86vYqQVdvC6pL29EEXzLJ5Q+a0Ff7NVXP726C/CyvvMJ29KIzH4gMPE2Q9e5MbVcf+ji9pGqjYBO80rr/ZWUc3WThVJ3LgSb4xe8vJLaE3kwtLisi0wT17r5Bl+lscP7snc/7DjdB3vmOTcms6DwcMnuioQmY3hGT+/nROX6du6uu0QQ0q5mGgtLo4kFSs0vaTeD2oVXGBdATapovFOg3wW7HW9ItZ9Ab3HY1mps0gVMztcG+i+h7E9l52c2bgPypIvnOdXRgaPdpu9oEPPlDDGO30HuzDn3wc2gCfdmOJ/p30Z+fOy0p694Eszadl1ri0KMnmQLGvJvgrKK0JmSg++r7vk0OaAKHx2pmjaXo/tYPeXVDm4Df9+yT40T0lnW9a7TRTfCNlMnc2Ynu/besqDq+CeYM4oquDKJTKVfP2j9ugsPsdneWJtGb4i7K8GU0ge6oW2D8Krr8l1SH97lNcD99U63i1qsYZ9XneWhJE3zfd1HoGwd6Z9V8v3J1E7Aovm+JE0G/Pk3DPNvYBMZNNU+05dFzPbKVs5qboPa2UQnDCfQQoWFbk9dN8Eljbe21PjpDe3Y007smWO7/HRhvga6ttqmC1NsE1PQxJ22c0cMMRt7fHG6CWyE8WkfvoDN+PDcnNtYE/nvGQzmi0A+maG0fmmqCPi9gXH2Mfs2pRSB2vgmGzB07vuajawi8kD+5uhE/oKX7bd3/4hAFn/3ZRIADETG8rW3oCgVCOUa0BGCS4ism96I/UrIuKKEnwEsWwt3m7+gUvS9FjIwEiO6rf96+iF7cnVxszUQAXilrln46238+lB1d1MRCgBd5dC2/2NBNS5vy97ARwGjqZwujEHptt0i2KwcBhMLt2CQOoXPMvUhv5yIAC3dbqcFxdN5fqYkivARwlDZOCziHTlWYF+XPTwBhI8uhSnP0m0xTgX1CBAjmOOI844ROmTW/KSdKAKs1YSOZO+gVSgxXo8QJsC3EK8YzCv3py8/nx6UIAHL+gi9S0W19Jo4dlyXAoZB7TFyF6A6y/JKP5QkQMTOg596AntN+d/fiEQLYTXZMv3+NHibKua6rTACt79njR/vRuYQ+juSqEoBbv0Y198f/9vkxoZVWnQBKCWcWuFfRp5ze5l46ubEurjLGR1uv/fMBr233q08RgHhMIYCDE/19wo1rO88S4I29iOkTUXSvZ/Mn7PUI4P37TYL4EXQ6z7R9LQYEYJDzP0LQRJecc1zmNSYA651gNRNj9COT5m88TQmQJHKgZOUq+qSye+a7SwSYuNUUmu6BnkrMviVhQYDnDVGvz95FF9Jd1bprvVGfSuNe1AnoX4l2ez7bbsSX2xNfn4VO+Lk0qmhPgIJxe17fSnTxwvTSh44EGI2R5lBvQef6YOXz04UAzrbl/iw96EyqauqaNwlQ8/iY2bdv6PRNclufehLA30I0v+k3eoyoWseqDwHqvlQ4pm2+jv3NwCL6/B0CZGjI5dxlQxdje6RbFEiA8tL5C+5C6DMqn5kY7hIg7aRa4DU59NrMo68swghgyG8rbHUCvWhvTnB9BAGWTSvVrc+j370ppML+gADfGDyH7K3R3YKL5x0fEiBL+c+ilzu6IpdWzsuEjTi00VFRwejcDD9NBZIJ8Oqa3/PcOPRR3tRtvqkEEHdhU3ud+T+XMq7rSSeAzb6nZvMV6HNbuGwPZhLgvYvzX/4W9Gte33aGZRNgu9UbQeMedFH9yrqveQSommB8GzuKnmwebqFcRIDMZSf6ngX0XFcb+oRSAjTd1m7hobfDe8rweO6vio34tj+YHXajj3/gO32qhgCFiUnfyCLo4eRNE8/qCTC4mKW57zB68bfBkD9NhI0+bKYYqIn+iaGOz4i8Uf9lW+snjdHZVmNri1sIME5a7bh4Df1XoK3e1jYCfLTydXvniX7bQWHUsp0AV2z7C3TD0I2D1m81vCEAW6K1T3cSemJkE8PubgKENlp/vpSH/vX8zUdOHwhwOkV0cLoO/cJTfqG2TwRYnfnjevc1+nMlcpHAIAEkvaUyhAbQF78bHvb9TACP6a1ObVPoq079jT0jBLhMPfDR/e//9jPx3PGD3wngZjk7JMJs/889RaubQ38QQKwxIWSYF318hFHj608CzNXs6XhyEH0hWptydJYAIiuUKms19JGZW6rxvwnAyTOqLnMO3edVVO30EgHWCS9vbrZEp/0cJaO1RoDfnvVnh1zRtX97ZD9dJwBj/9aOpiD0Z20ae9eoiSB8k2ohKw59mH814jwdETjfTb54mIV+vin2TyEDEWI995wIrULvvcJst2X7xvjJdw5BreidL+x7zHcQgSvHViOkF52pPBfqdhGhXUywPXIC/e/IiyzW3UTQGDtHm7qK7r2HzOjASQQnXbWpsm03sG8wJzu84CbCpm6l0Dfc6MdDznbu4yOCX19k75wk+tCRfgkvQSIovQ4Z4lZFLxw7FvZOhAj69E4pZ/XQ+bT9R8QPECFvPJ4lxAJdUCD+aIgkEb6+OqlKcUWX2H8nZkiaCPbUnaIMweiS7Cqjh+U2fOBWp0E8eurzDoWYw0R4nf1A5vlzdIf4g3d/KG3kJd/aYFMNOk+KRbc6EOGTmJr8lbb/xXG25E09RoRpS6felj50l05p28UTRJCMATg0hR5543WhrhYRqCZXbLP/orvSyMzlaBMh4tlPI4EdDvg+1zSXo9ElQuKozfZMPvRts8buF/WJkDpYFCYhi65StbuswpAIZcVsXfXq6LJnUn4ymRDhse/I53OG6D9sv4nYmhGh1Ny2cfoq+kTjzCXiFSL8cZu6GuuJfpCGEMtpRQTmV01DyvfRlcbPtrheJYKI6wGR6RT0HYKPF15fJwLDLR94XoguY5MjKOxABN7hv6I2BPQMcxfd285EOF/wd+zAW/TPLxY8P7oRQW7ghdfSV/Q5Lbl06VtEaLbN+vrqN7rhI/GWMG8i5KuPCmTRO2L9W/Z9/+pHBDrzd0fv7kFPvKDKoBywUbc5NVKOB9BXxExE4oOJoLz52x8zZfSiYJHj0/eIMGWYnq2vg161+/lFzXAi1PkoSuuao0dFfnBNj9o4X7prj/Rd0eUSqu6txBChIEvms1kwuvDgiWT9eCIE6IoyOiagmzL75+UnEuHVHnGOuzno2j1XazY/JsL6yxCGrDr0xYElyqU0IqwJBA+/akdvfyPTUfWMCByjLqlLQ+itxqzvdzzfyFdbsrr4LLoxb0rvtVwieJCErstSO/1z5/bWPlIBEbK+2ogYMKKHMCb2cZUQ4Q5PlcktVnR/f8Zet3IiZGvU06Zxo7/r4eluryKCncRe4VfC6JalXa+F64jwIt2naVkKPaWWn3y7kQhmToFdB46g28TtqPpIJEKwZc9F82Po3N8Ts6WbiSBznMsi6TR6gVFDQlgrETa/X/zcY4B+455n0NdXRFDvZxlgv4QOPO0ORzs3+sAeZgOTq+i36isN494SwVA77mS6E/rvzXJHf74nwjepU9U/PNFpHmvwnuwlgonfu6wjgeieAhPrT/qJwD/ds+t+OPpTRZ7BpSEinFFYWR+KQz8d+LlG7+tGnTB8tTv8BL36sUxs7igRtrArGD/MRi8T3XGdZoIIjVtTmudK/jf/llsqF6eIwB1bVW5Yh/5ip92Oil9EkDKWEm6goH/M/za0fX6j/2zK4RTp+F++ZMbybRaJkHawLebhB/RHqg4eTStEoAk7HLX5M/p+N0/g+EsEgfzEHV4T6IrX6Dc7U5FgWjZ29+wculcde+tLWhJ8q2vLuPEHnZYu6x7/FhLs6P9WPUnnjOO/lml4M5KAVizMwHEH+uyUCnU3EwkmDpvd+r0Hna7pRJ34ThLYJtIK3RZAb5pucQ5mI0F5r5DpNgn0Mg6i0CAHCe4F23A9lkcf6pL5IL+XBCLC9jbSquivSzlDonhJoH+s/+hLLXS3cx4y3/lJcP7SxSdW+uh6J0/2qwqTYGb1QSSNGbqRSGhgoigJ3JL4GbNs/reuu0r7Z8VJ8LSyjE3bCX3734ttpw6SgNg2UfjbE30Lz+S1Z7IkiD5748PTQPRm7zG6NXkSnKoajtKPQH+ceybdQJEE6R4TH+kT0E2VuY8UKJOgYV2qrCkN3bDFoGOzGgk0Gwx5vXPRz3yYvXJJnQSnuWh5FMvR71It/Ko8SQLTgIGitQb0+vcX/ZhPk8De+N570gt0vhEhBtuzJJjclBsV3oV+rV7nAUGPBBX9Y4MX+tArpz6y7zlPApZTY2Sxb+hFdIREZ+ON8RlnYP0n+o04Gs42UxI0niDofVhCvyfyNIH/MglqAkdWS6ld/jnjqaSd3hYkeFR6WSVmG3pA6ETYO2sSFAp82OPOjj7m/GCT+DUSEIR+RZruQ6+LjHANsifBd1rd1BNi6D+vD3ztdyRB2dYUTdlD6BPRt/XkXEmw6usZKaiCHhfmUh9xkwTbn0U47dFEP/25XHDUkwQhdb7TLOfQR7hPhKn4ksCObpqR6SJ6fivfVPwdEuwkhLRst0G3u6Z1ZjqQBNL8E7wsTujmd2tzT94lQbdlIweHF/qxHNfNaWEkuFyTXcIfhK583tVsKYIEkQZnfxyMRF/fUV2q+4AE16wMWo49Qn9irro55yEJDNmuHDd+il7/aut5qkckoHrAbumcj37pHdvTC8kkuPF3r3BkJfqOtcuTJakk+OHPEVFIQH/TOia79SkJdikXPnrbhs5cn3fLIpMEXWcDtVa60QlGubW12SQ49+5omtDQ/9bL/WV5Z/5GXxq5/dhgHP1mhJ68XREJ3iTMqN2dQ8/dv+hILiVBLLVCZMMf9OcOXVlclSR4Lvc7YJHe9Z+XDg5+cq0hQTx07ZPbiX57kXvb63oSSIo72d7ci66sEKEoSCCBH62HSZ0w+gOuAzY+ZBK87QhbpJFGT+BbiOxuIUFxpK6qrhL6YPNkuXgbCfrVb8ilnUB3DNr+Mah9Iy/TwR/mdNA7Phou9b8hgV4oiJw2QR9VfsEm100CBUYQyrJCF5U0OxjxYeO710Xf0jqiuwns1vz2iQRhSc8kr3qi8yXMXVQe3MhL2Dml9kD0ZaoZh7jPJKjf37ckH4mu1r/db2pko59f+nI14xF60WPNsBPfN/oS6/ZQtmfozg1PYh//IIGG5CazsIL/zbOUJen3TxJERF4Zoa5G/zWT8vjMLAmUWd/x3iahG85CauZvEkQlrzGvv0Y32b+c/GeJBF/++FcEfEB33/Ii/vwaCVpZtrBs/YIeS5cdWbBOgpFcWYG4SfTd8UmBm2nIwJSUMymwiP5B9LG7GR0ZRAqYHCqp3P45z6FCqwoGMmgU0Wdrb0MvEn6tu307GSJtjySPsqPXuPw+Yr1jY3yqpmYQH/rovf37GnaR4c3OT0VC4uhGvZY0bLvJ8CQ45m2bPHrSu8yv9pxk0CxjL3FVQ68enSRQuMlw/Tyj9j5tdEF/heS9fGQg8bNlvDFEf78jyMVNkAwcnR9rgszRhWi6NF6LkOEU42rEUXv0H5S9HIIHyKASvI9v6Sa6O8l61FuSDItjU65V/ui3ruaWvJMmg3Mf/V2vcHRx3nHPA3JkoNDuMlVLQJc22AeBh8lAQ1f+i/Ep+mOns1R9SmQw8IvS/JSPvjrgTJABMvQxnLLMr0I/tTnUJ+wYGVrU7qkFkP43/myM3JcTZDhe//OraTv6FH/4jyNaZAjaxn/6yEd03+9uqQ+0yVBBavHg/IruRHf67LgOGbbZ+19fn0Kn/bptVVWfDHkxCwLfl/6X36/VGY8MydDU0JbRTeP+zxUczpz+dYEMV52fTlGY0CNGW3+eNCNDrST/evUe9Kli0agnV8jQ6vqzt1gQvf2gg/iiJRke1OX55Uuhc7582HL2KhlY/P5O5SmiS/Ynm2VdJ4PUwfv7i06gf3rlP/PnBhnIxxckK3XRzZbVA847k+GhyAgV0RT9WvNX5gI3Mpw/uZzeaYPOH30xifYWGQoZPzF/cUbnrSngu+hNBp5PYtpLPuiWT95nlvmRYS9btNHOe/+Ln/5WmDFgox72FsocjEXn4n6WYRFMBsbTooN6qejdjid4a++RwWQ108QjB/3yQlU8SzgZpgNas9PK0Ve2LW+9FkWGskNyL9ub0PWY6X0IMWQwvxJd/7cNPdR4eHx3PBmSzvkFyvagHzgeaOCYuFGHBs947D+jK4n+rGtJIcPNgmeR2ZPo+6149/GkkSH+iUD390X0j9ps/u7PyKBm92JanObmP09U6hh8nUWGM2dkv7gxoUvd0zwimEsG69uM+YQ96O2hAdHeBWSgOzx/ZocQOnuC18jbYjL45T5otTyIvpdOSk6snAzjdPf21imhW4qnBvhXkUHcy/sU+0n0gUstrz/WkuGvxA5993PoUzOZuw42kqFfc0L+oxm69RElo7tEMjD8LFhQuYYeei8oYZBChhjl9ZgcN3Q6mTvdcq1kOGkQsI3jDjrVPXGmiFdkaDjdZxl2H31L/131kQ4yqCsWJm5KQOe+He2h9JYM8zJPCr2eohcQ1Z/HvCdD2olzz5YK0B/OPX03/pEM7/3sbnnVoPNb5ayp9m/kdyxSclMz+g4LQ/5HQ2SoC7nSEvoGPUwpW336CxkOXApS3d2PLqry2FJjlAzJN1IfZ4+hz1fK3n48vnEeS84NKs+hW8xeS5ifJAOR7wTNh7/oxkdV8k//IkNP+Z7tbls9/rnIcGHD0zkyPL/otsbKjv5wf+2r5YWNPr9luauGD/3l5Us9uitkqHp6OtJCAv1aZ+LA8z8b9wXrDhnmI+jehOuf/26iwJ7jEw1N6ui+3p2fz9NSQIvZT8ZNF11fs2Uwn54CvkaO0eIX0c85nPlIw0iB8AXzj9+voqsesuwwYaLAGHl5a44r+snhzcQSFgpkxH7af+M2+tZq2eItbBRwl8+WkbuPHrPpR/JlDgrkeNKJUiWgG/4VDarkooC4SOK2rqfoyr9/2m7npcDtzbSDGYXoj/YfPmXFTwHih4nHPrXoYn00++uEKJBuNqNt3ILOoaNLvVOUAlf1634ovEWnauHqtRWnwKjzpBfXIPr3O1b5TVIUiHbYv0o9gX6CsN+HXZYC+qs7b/z8jf6TbKN5Q54CdS06XQNUt/AeebWXhXKEAh+9A/Z3bUd/w6rVw6lMgeOks66te9C/DY4nOKtSgF/FuJQshL5u8+d863EK7I0+NkqSRued8N/Be5ICFudLmFuU0XMz3F+4n6JAloimVLsWuufbHq/XZzbiPM498fE8ekvhMzEBPQq4afroj5mjH3P71ONpQIGv1VcurNxApzbzvP3GiAK7vFaNWLzQQ5/6CYqYUkCU9ZeOeAg6xfd7s+8lCrxm/KJ2OgZ9l0iFZbc5BZi/uEk6pKJL93z5I2ZNgTus2uxxuejGJMeH/rYb8+dmXGmqROfhNxH5aEcBY5fzn36S0O8eSKuUdKQA+92OKr5OdCZW1WPBLht10rYn1rgPPXDH4bY+dwrUZn+yjx1DP3w+5KyMJwXCQstPvJ1Df88m2nnPhwLJXad42DZ5/nOfYB7todsU+PFZddF0G3pJj1WzXCAF3uxW7MriQL+qtKIYHkIBlvbe/N+C6Esj/flfQjf2zYgcpimNLkrLyHUkggL3tibZPVFGF3kZEBwVTQGBQ1S6K1roMZbHJr/FUqCPN+XwBcP/fZdaU+doAgVOsTEJ11ugc3Q/KIxJooC18QqHgCO6Jx3P1vHHFHAQpd0Z6Y3+qmXCHNIpQNfcwfLnLnqd2kJFXMbGfKz+cDg9RDd9pkI3+ZwCNEdl94+l/W/+u0nnjuVRQN1vl6pFATpdq1/yo0IKNBmrmX+uQdcadhn+WbLRT35fDrdqQc8OTeE7UUEBb++dpB9v0TWmli8lV1NgZdsatccQeq5s6KOZOgpIvGzSoZtEfx2k2XGyiQJ2rzblJC6h02+R35RKooDyAQtm6c1eeK+N6EjON2/U7VpI4GsW9GPw0PjUSwpo6uyks+dBpwOq22mvKTAh9TyB+QC6/Za49IVOCsxkfT9cpYD+sekMQfvdRp+s8ZywUEffGyra97SHAqlX/+Tv1EO/fld4dql3Yz5F7P4tZujXBo5t1hmgAITZXvW7js5Z4MOaOUyBoKm4K4oe6NO73/KufqUA9yu1GyuB6I0qaiJ6Yxvnl4U5sjEavVmtVez5BAUic9LIIY/Ri1Stxf5MUWDOK5FJPxc90IRdWH9mo86vpjgKVKFXF/Ry58xTgHJWe2yRjH7QuIBlfZECZVu1b755gy7sEUV1fpUCcS4q3AUD6GdF/KZy/26clwst/RET6KVBHu83UTdDc2RIhcsieleuZ43h5mYoGeDLNqX1xn5SHpCYv6UZyNuVKjRZ0Lnro92ptzVD3Be3gSM86Gp96WeMmZvhLZcLn9QBdOoD5XyFO5tBw/29//7D6F/JzTM07M3wKkttXegEekNDd8OFPc1gaHUhSeQcer/UUHDR3maYMGvSl7iMPnXwq9bmfc2QCOziCvboNB8GGUwFmiG4ZJPgCU/0RwpvmouFm6HPiO+oUQh6xNUKXzqxZvj0ltP9Riy6sHe49EWJZmhojOq8m4bOEqL/ueRgM7wv49fOKkC/nLwlgv5QM1zVuPmjtRY9uD3nkJnCxnrpJAqnX6BbSsp9LFVshrP+4w8536MrdGZ7bFHZ2DeVs2laX9Dz/2O6PuOpbMMAgJOV0EBpSSmEVEJG4zKLzCgzM6MSWYmiQpSRrBaKkKIhJCErnb0JpVBGRgshZfSeT+/l6//3/O5zPde6n9OwQMJFjwB/GmfZET/Rm8X1issNuXEmZSo8n0EXa3XfI2xMAPZqUsFP4Qj8nllxlO5iSoCAPjmTbVLoT/v07Z5bEIDh7LA8eBP6sPm/TmFrAiz+zbeoRhX9n8sNN9fDBDBZS1YQAnS7TYLdz+0JcFnD+JSdGfqbIjOHRUcI0Fgo//mRA3rYXx+Wqys3nyyB8/w+6Is22OpVeBAgXfTKPvcQ9HCF5SWLvAnw7LnlrtdR6IpS+SvdjhOAuObfEYVr6O+mZiMrThLAIVXrcUo2etXbjd2LAghAcburOFeEbl0mvtstmACunObWU5XoN2+RMypCCaAlH1ba/wa986rB0KKzBHC+u73WtRm952aUtlskAe6F3P3T2Y1eW3MxtuIiARq6j/q4fUcfnd3LWHSJALvFNwoN/EX39Khe6naZABd0zr8PXBj5vzt8G7GsSCBATbRUN88K9At3PyUsSibA+NLUlRkb0XvOXm50TSUAj9DVOGVV9Mno3l/PMwhwMfqJImkvelLl2IZFtwgwlJ2xwMcMvWtlualrFgG8ffuWiTiixxXKBj6/SwDBf3vty33QY1whTTiPe77nvjbX0+jb9IVKXO4TwKsgO2lpDPohszBS+UMCzLzuPUdIQRc/l/Jh4WMCWDXUFpy/iz5KNf/qXEKAbbfoQrsfo3/SfDpZVkYACf2y+7NV6HK1JbNCLwhgVLr0QhMJPfiwFY9zFQFK3sZnXG1Ff/f36lzpK+573az/4tSLTin0nhJsIMCDLpvQraPoUtbvvjs1ESD36qCBwD/02fFPXc+I3DmNkrH6JHoe98nl8zQBKgGOZmRm1a9GN/33tNyRQYAXmdPy+ZvRFx0KuFnCJkCoV99Ywk504XMNofxvCbCicfJfqCG6z/E7Bx3aCfDw9FsLH2v0fAmBzU87CNC7T+aTkxv6Pb+JPwu6CCA7Hvb8kD96zomTJLvPBPDQiqEfjEA3mPVJedxHAB1q92abBPQUqS+HeAcJ8MlpO9X+FvqP4j5J268EkMlaUepRiC790J1d/IN7vqp6V8Dz+XlwvPxvlAD3m5SsY16jT+UwtQ9NEODMWJZYJntePsOrBx5OEWDOQXFZRRd6V9ja1Nlpbj+nhji//YYucHVMw/ofASJUZH79/ot+LU+nrXABEWJrqM0ywhf+96H7Y4HTAkRwIK6cNZVCb4teKWwlTIT3LcVBEXLoVzYVZxWIEsHTS1a9VA39wun7in+WEOHb7/X6w3roxa4Ly80liMDhM76jYIVuRWdr5q0gguCs1r7jLuirCmYqJ1cRYcT6+p6Sk+hirHg1U2kiBAXMxfw5i56hHlqcs54IgzXLVxvHo4fW1K8d30gEpZsRPFk30dtNPBOMFYgQ7fpWc+w+ui7B/Ve2EhGK/OoazJ+jp4i/sBtVIULb8o9ZT16jL13hWmmkSoT7D5iUZRx0t3JH8Ux1Isj6a5qe7UaPYRQe+6FJhMaSyvUD3+fFs0+vWn8XEY4/HTlgP4O+nnez0M29RChp0ev3Frj4v5/utLf8qseNc2ghO18U3eEVJw2MiCCntu5LjwT6vcgUTroxEXr3NytsWoMez5MuMmhKBMPa09d9ZNGLNrbr7rbk1lfeYdsTRfSJN46BKdZE4JNkTIxvR3/duOZO32EipEnKDu3VQq+blHqj5UAElecPhRMBfQ7MvyQdIcLtiFK79/vQv4VV8X12JYLRRFKLogX64QjHtRpHibAvPzEy4jC666at2+O9ieAsPHeYcwT9+oEd0HmcCF8fqDtv9kRvJXmaqPoRYXrmQnqUL7pPSJNFbAARdC5t//MxCL1XwczyfTARfr+4kaxzFt2sauaAyhlunkX5DmVGzcvPXLNe1Fki2EwRTGauoN9g0tVaI4nw8vu2ALcUdKPZgfWKUUTYcCSVRLyJ7ucqKxx5iQj/nulYbctB7yKHf2NfJsIRu4hFmYXz8i/6jbopkQidlYWTgk/R786GFoQlE4GotWh5aAW6nd/KcHoqEX7u+e018Ap9swrTeP11IjA21w05vkEvEbshEXKLCMfsS3LZNPS+Lr/3pCwiuCquSTRuQV8TYJO5Joeb/4mDRa870PlSDG1P5RGhZXnB9N4e9AeiINZ0nwjBXe7RtUPooeW69SuKuHnL+7Bn7yi68sH9J088JoJ8ufvWxql5/VNqJVlXQoQ3zoaH9vFE/e877jlWLisnguaPlhKGEHrrkMdhrxfc+X3ipme3BF3I1ufHyyoikHt0hHtXoB8q8YoWrSVCD6dMKHAd+qM6p2VuDdy5frVyD688uqnZ/qzyJiJU97wqSldBb5ORXy9EIsKziz/NN2ug7+eZzHGkEoGfw6NUvxv9V/nz1U8ZRMgX0dtrb4iexOOWwsshwgJvnsRfpugyjyZ4Dr8lgrjEtaWpNuhiYcEnH7YTwdRgD2u7E/pa5fbm6Q4iFG9yIjV7oHteXqdu2UWEgh6tP6En0F0s96fkfSaCRqG8l3QQeoeh5cBEHxHeXg8RIYaj8ymqa5sMEiG8NehbQBS6/atfsdlfiZAaF7hwXTz667pExs8fRBAjN7gyUtCDf/5ZYjBGBMsXz8bO30JfILbb/MYEd359Uxt35KI7tFrGDk1x53SujD74AL1RQO3l7hkidMV4Sd4rQf/o2Nt/7R8RHiz+c8upEv1uisvi3gUk0Hla67iyHv2oR57qTkESNJ3ic2wnonMSHlvGC5Pgk/Pqm7eY6GNNZ499FCVB7kVr8SNt6PKkRRHblpIgqnOatqELfZO5Y0K0BAmCzni/Geqf976LfdJbV5Cg2aJnuvw7ukLj1pubV5PA270+6OIEuqN0yfVz0lwvNle0nEWveNefzFxPggDZTpn1AtH/e/lDdvSGTSSIr6+1/SWKvkbfLzBEgQSKp4FJlpznDlWOJCUSbFIvi8tdi77lXtne1VtJ8HzY6+LZTegqDFtpP1USxF0qrrHdgm58LX+yXp0EWcMsLQ11dLHbN6jiWiRw4pOfWr4b3TZL5bbXLhJcL5v5M2WA7rrP2+PlXhKEvM/f22WKXmGyV15EnwQxtr5Egg26yaHyPmcjEhQJ5KeWOKHbSDbdeWZMgu0NmblZR9GDNX0P8pmR4OWRvF/xvuipJ4r+HbYkwd4S4cSzwejTDucePrQmwcr49T5+59AtSrtMpw+T4M/LnVc8YtAvrOEMmTuQoHdR9g+HRPRefavo3CMk0DTOzbRJR5fkOCz/5UqCfM30JMss9JWnvuYZHSXBjjtv3pjno+8mLFC+5U0CLZ1LBhaP0Leeu/Nk+DgJjjI2CB8sRx/VrFLa40eCR+Lfl9vWoLfds8m7FkACtyaNE85N6GkuJyR7gkkgecNU0IeGriwxfVH9DAnK9p4fDmpB/3OUbzDuLAlO+ktLRX2Y14fjF03eR5KgqiUsKbUX3eVY4H3lKBIcW/3pQMFXdHv35unISySI/ppnXfUL3S3qnhn7Mglcvy8tYE+jnz7+8aZsIrffmsJhmC8G56v6YmdIMgnWLFGRExRFrxVPkialkoDH/+zhTZLoT8Vn7FZdJ0HFuVK24Vp0fXtmku8tbh3ZG276bELfHMXzqjaLBKF8a4qStqCfUUrpX5LD7efCb4LP1dFTR84Ke+Rx+/PAl2edu9GVT9UpPL9PAttIuwfCRuhH9Ox1BYtIcIFybVjTHD2Gd5+N/WMS7K7sOnvsMLqrSaxbcQk3Tlq6fZYz+kSpxLGZMhIsSJiLYXuhV7T8OG7xggR2gf6zQv7oB/dJeudWcc+Z20HQC0Vvy406MvaKu68eZ32IPI9eHK5ubthAgtix37qv4tDjvJW0bjSRINXw5sRMMrr/jJv0IJEEryQpf+AmOpPVOqNNJcEs56N5bA66eUhcWyKDBKcHN4zRH6ALRAYUd7JJENE48GXFM3TDiNSwbW9JkNgUueXoS3Qi34BuVDsJrKzVmkob0JMK/PlaOrj7nGn3aAEFffSHXMOmLhIE39DpP8xBfxC06EzoZxJM8CsHPnqP/rhu1WZyHwn8g8Is+XrQbd0PtqwaJIGletBF52F0y8GnYb5fSbD1jg9/9Rh6+qdtK2t/kOD1zIMPK6fRw9o4pYvHSDCUEy14lu/S/37rcJqR2wQJbrP3xXaKoE8M+reUTpHgR6uBvYEkestqLye+GRJsGCdfeLQWvTkkqPPQPxJcPik3s1wOve9ChkPhAjKkRj5kRKugm78hs34LkIHqcW98VAO9gCKqayJMhveHXAOP7kVnrXApzhQlw9l4VcP2fegSO6oXf1tChktqPn7mluhTuev89kiQoTPa8jvBDt178AoheQUZ4gu03+i6oSclTUp9WkWGm69DxmqPzcvDUi9PVWkyqPBbhe0JRD83xSmOXk+G81dX29aHox8g6Hxt2UiG9gsbkwyi0TumsuXkFMhw4U/VamoCOp/kpEOoEhn6l6sssElH77lhcIWkQga/7zT9riz0EZ6YZytVyZB2vf+jbwH6KLu0+bg6Gd6tp7CnH6PPXmL8qNYkw5u7hHXJFegRmS38orvI8HONEkm2Dl0puVHSeS8Zhu8ZUauI6Ms/Zqx7qkcGW02fzTYs9Ox/B2T/GZKB0935+Uc7ul/wZxkrYzLMZE1NJn1Cjy89LHXPlAwXjwseUxlCN1K7v3DMggx/9W012KPouoGMX/rWZFi2XtP19F/0oF7au/TDZPCY+N2/li/2f1/Pe7eyz54MCc8HKEQR9C5dvRSNI2RYa3ZYJFgS/cbKco84VzI8eXCteIM0+vnZka3tHmQglPQ/aJabd77n1LiCNxl6TQr54raiH2ogPg87zu0H+/V1uzTR98c6+FNOkuFfdV77L0A/Kfd0w+oAMtDMI6yeGqOnib9mnggmg9Lw9Gbfg+jttWmna0K57+sd4K7kiJ59U3qF6FkyPLi++e9XD/T7S9yeHYkkw3Lj4F8lvuh/MuwMn1wkw6sDOeahIegj13mbZ2PIcMtneiFEou+66ORgcZkMV7za5BbFoXMaPDruJpDBaeGFgvZk9KkmycM/r5KBudQw9sFNdKsJfwqkkuH07hByeC56fb2/ZkoGGTqMXPwtitAjri7L+XST+759VmfkytAlyYd4VLPIYE/P7J2rRrd9p+EUdZfbt08Tyjua0P3ky0o498ggr3Nq4CV9XvyrSLMb7pNhcuXNC7db0fVXBRkFPeTm/5dVREQXemvCs7jXj8hwwu9rp/sA+lDLhUbxEjLsVKwoMBlBV3fonPAoI8Pomxm22h/00vPEjeUVZGj+sPTo+gVx6A+0TPmqyNAnoOu0RASds1P1pM0rMqx4966KRxJ96uqTuPx6bj/3KV4YX4vusfhR5q/XZEh6GfVoWA49c6XCQwMidw982gq9W9EDRGVK0ilkmO67oNOliS5mklLSSyeD6oGmOx900bu2hBWpscmgl7b/+AcT9AfL32bHtJChaZfTnU5r9FC3e/EtbWTY9tpMp8cJveB456mNHWQovXNCd8hz3vlJsZbBnWRwNOB7NuaHvlzu5uamT2QY2OQVPxeKfj1pybR4HxnGn3XRRS+iD639RvQYIMNb67qz0vHoE1uVksqGyVAUZJ2+PQ39y2rSgQU/yGB2emjFviz0HVoNC6xHyXDsFUfApQD9Xqf483vjZHAudHALe4Ju4f7KZfQ3GUyTWfLXX6Anr6xeoDdNhlX0KIfn9eir7YVzU+bI4Pa8bqqVjD4Y/GDnJ14KnLv1lv8vB313fSpxmwAFzhOXnV//Ab0siWB5YSEFtOPfeJr0oW/cqtvMFKGA8uZdVSHf0d+Mz5mvW0KBWwNN5/Im0Req/nvtJ04Br4VPHjf/Q6/csVe1djkFDMiGZgLCl/F+N666JbqKG4/7e0cdcfSfjX5/nNZSYKNI1bvANehRX+1tHslQYGhKlfhoE/pV8bDCv7IU0HJK2ziogu4cQx4zkaeAjOvmUXlN9DPx+7VuK1LAc6v+tmO66K9OjYUObqGA/0+Vrkcm6JYXiU81t1PAgqA9N2qNfo+/sTtOjQJkVvk1nSPofkbdwm07KaChPJwW64XemLBORU6HAnkjSgtb/NGH1kSYhOyhQJXGm5+yYehJMOHSpEsBmij/gdNR6Nd2XfYTN6TAm0taUtQE9M2Ht51238/93aISuw0Z6B3s4dPPDnDjj64UOXdnXpxjL079M6fAB8m7au2F6H9mUjwsDlLAyKOUpfEM/dOOUIs7hyiQeAw+3ahCp7ceVftmRwFL2Rtef1+jV8jbLdvlRIHXcXxubnT0di/zwXgXCjyNb2WRW9EJzQYv37lTIHyNY4VaN7r1Y80oBS8KiCt2L703iJ61Xd4g9BgFBLLLepaOoYvfEZ1740uBY46yyjHT6B5bB0slTlGgd1/E8G/+K/97yvoXLh5BFCjVXbzh1GL0nqfB/KWnKXBjozxrUAr9u8S6/H9hFPhMWjbhuQH9anyZjkUEBQIXyKT3KqH3G2+lZV+gQHFBVpGnOvrJhORDX6MpcCaiVWtwD3pbLLtNO44CpodW6/nvR5cPGj14JZ4CCr8qX09aoRfH/iC0JVEgcu1MbZQj+p+JNzvkUihgk6KutsQTfeR34K3gdAooiZTI5vihV9ePTTbeoMCcUVWS6hl08kVDi6WZ3HMmcwOJF9E5fp53Xe5w55RZznFOQO9+aTnwOJcC/efgye90dO10PsXpfAokF6fyZ9xBD1OJPGrygAKXeafadzxAP1NZdeNmMQWeb2pQePsM3cPtxev+JxQIeK45fqYa/Z5twIBaKQVizR/vWfcG/Repjz/6OQV04n35SQx0m89L17ArKaA7+9o4qB19MWtUcV0NBep38Yis/4xe+uqS6sk6CuxrCTBlD6OvbCWqVjdSoNvCY1HM+Lw49SuUFhIoMKYha6w1N68uKuZrbckU8BCd4x8Rise5bkgULKBR4IS1gV7xMnRpWf+hUSYFGi7BrPca9N7w0TfQzN1Xa3W15eXQfX+I377aSoGp5LSJga3osfdZXh/eUWCXxaUdj7XQjd5sUlb8SIFQssdIkD76slNLhkK7uX147Ny23WboVyhJOW96uPFkrBkRskW/O3nbQvwL9x4pTdnR5ooev1J90nWIAqekN/8uPI7eYGV/48k3bt01tu09G4wu1sC3bfonBSYO/hKyikQPiVNrMP5FgUukxkObL6ObNvWZ3JikwNGBgU18qehy1yXpvX8oIPSvLOxTJvrQqoZ9qrMUOGgfYNVQgF7l31d1nocKztp+j/OeovM8Oy9H56NCcd9k0uWX6MF/EuNXCVHh3y3HMf/X6CLewl+8F1EhIrX/oz0dXXDpuM5zMSpECfSbGbWh/1hqcoV3GRWomwv11T+hJ0YJMC0kqXBIObRObhh9PFxeNFuKCj7aeQ2rxtHPLyvSH1pNhVvnzpgsnUOnuCQE7lxHhdcrDByEFyb873VnSLdiNlCBZ4v1CL84emSg80v2JipUvRtdzLcW/aKbCVt6MxVSd56q4JNHD7O/8umEMhUCnaT6BLeje5yUGqrcSoXzDppZojroF57+GuLfQYUNsPaDpCG63fbVvQc1qDCzQqJAxgK9dMGVt3e1qPBj4NjkFnv0fA2duq+7qLCk4kTzbo95cb5TydUCKpRHemlZnkQf+uN6NlafCu57Cjd7hqK/eMAwazaiwsev4fnnLqKv+BksJWNCBclIlaLrCeh+Hy07fM2osPOzmE5ZBrrvOZfrLy2pkM5/zJZzF12oPdtYwIYKNawrc2MP0c/+ERo/aMuNR6F2h1Q5+t5v2TfvOlDh1LeDv/bUoq9+aa/29QgVRqfTdX1I6Eu8tEiablTYvI29Op2Dfvyvls2lo1QIdbKJbvyAXn3erp3tTQVv6xNnxvrRW3+n2EifoELJZ/e/ciPo9BM9pON+VFBoiRM58hdd4KOx+osAKpC+yT3K4E/83yUtG28tCKHCs5HE96zF6ANE4wmLM1RYdUfgptgq9CyjjyZZZ6lw9HF3r/lG9Hx62I2BSCoItHo3pKigPz6y5oNaFBWuUwa2tGmiP5hokLp4iQpErRLFdfrolBveZvTLVHBkCFceM0NP3iscvjKRCru3GrZW2KKXD9+/45nMfX6u+JKAO7r6Le3qZ6lUIH9MINj5ojsaNDJnMqhwz3P7rcen0R8OaH8wvsXtH5XBGb6L8/JwIbc7I4sKJyhzv5wT0OUExz58ukuFr+SGyOoM9OfByuwteVSYfnE2c1UOukyjyauw+9z9szr8wLkidKMvJrlvHlIhOGxhcnf5vPg7NkcsfUwFusVpr3116BbpvZZHSqiQsUqUU0JG3y50Zs3DMu7+sVrFWdOCXqb0qetXBRVyvIe8EjrRp0fXZEIVFRbQydemB9ADrRTME19x6/6Nz/LUGPoLrX+/2+q5e2PrQH7/DHpFdm6mbBMV8ifrkl2EkrBP/BZq+BOpAAXtSzqWoXOy1EhVFCqw0yIV7NeiC0jJHBRgcOd61WzrO3l0FSap2YpNhd6kvDVHVNFDSpTMslu487ireurzLvTDDw1rB9qo8DIgxe/EPvSY++Lyah3c/IQEnp2wQh9LS40738nd8/FFMjFO6F1OdV2UT1S48vOSs4Q3+pvh61uX91Eh+7OlemEAur3i8lC3ASp8vmFbsOsceg6PdsWjYe7+1+9/0hKL/tZ+7uvkd+6cShgf9E9BD1jlsVp/lAqL1GnJIlnouxXdda+Oc/NDq/Z+dB9d3X/K+d1vKljNerw3f4aezdgUvHGaW9+BJQNj1ei/lHsv+M9RwS9fLCWTgM7vt/1SFS8Nfhs/fGvIRmcGC1/kF6BB65ByxWgHerqsb7DlQhqoZfSp3uuflzdHa5dMERostF5najOCHjpbo9u/mAY7FOV4F07Py9twwert4jRwW2N0qF7gKu43nkXfzi6ngaI81TB8KbqvzOBzwkoaDOvztGisQe/buPv00rU0+OKt9m9cDt3i6wIVJxnuOTEllBfb0XsPan+8L0uDrEsNO87tQt+h9jF6RI57vk2Zjv4+dN4Tg+t3KdKgqJX9WeQgui3b8UXsFhqsG/bZ/M4JPQS2G7C30SDEr2nxA2/0z9e8SKvVaHBDc9v1sEB0n9u/9b120kBz7e8aswh0IbXeihJtGnwY9o7ZeBldUE1u/d/dNCD7U7/OpKL3+1dHGerSQOSU38S7bPSTNTkdyQY0CHyalVv5AP32N47S+300SPqa+/1WGfrTVvOgjQdoUPaJ/DGiFl3ZZGmpnzkNJgxc/Y+S0RkrVwxUWtFAllSSZ9aCnrH8iOSCQzSgSwme1epCf7WkW8vMjts/3U/G5YfQiW1Zh2440sDh9Zj4ynF0D+1rPp+caTDlvr5V5B96ksCLQCV3GlxwjN61YFEyzvtCseAQT24fGnrum5ZEL12c6lvnQ4PQsmWTkzLorN69Tgt9abBPo+3AhBJ6s7WEvrU/DZ7YzRpOaqAPyomszw6kwc3c5r4/uugR8hsn+kNokJZ2T4nHDF1f2r5xWxgN3j2qWCFshy7TXHgp/BwN7LwdiyQ90PVERaHpPA1SND/0yPqhC6VdGhGN5tY9JaZJLQx9jaLYbdtYGjC67pruj0F3v5GnlXuFBhsSws45J6OP3tFjDSXSoG/SySb0NroK38ARtWs0YF/KaEktQC+/cu1zRBoNTK/5zZSUoFuPaDoTr9PA2G8Hk12NrjD9kbXkNg08AreajBPQo4+f03bI5sY/9NhvNQd9/O+SzLwcGhiu/7PL4CP6Pv+bo1/zaLDT0eW5/wB6YtRiXY1CGqS/U2jPHkOfGQ2MPV/E3QPtuQWMWfRtEXWNpMfc81MkpXmFr/3v7z6MjC99RgNHDaaupiT6JE1AxrGcBj6TK5cGyKBTBP9C/gsaqMxB4iMl9AYjqt23KhosCE4uG9JAv6EX7K1RS4PXoZZxSnroGmWjvucbaNAszxT0N0OnWegfIzXRQC77sPpzO3QCw91pKYkGm75uXzLrgf6mz8zIgUoDzsZHN4390QuNeeTzGDS4c3AJ80Y4etqTsNlhNg2izj0sG7iE3kYso6m9pcFkfqPRrhT0JfsfpUS0c+edfP9yaha62CcXM0IHDYZ6c8KGC+edo0+dE+uiAWHo78p9ZeivZIYf2H7m7lUq7/GCWnRd+Zr9OX002Br875gABX2DgE7XwAANflL2rjr+Ft3xxFHf7V9p0F+66CyrG30jn/rPsB80MBN+mqj1FX3s3MPjjaPcuSgKtiiYRA+6WNshPEEDULdxF+ZN+d/jak7pW09xfzfBeLxREN25vSY3c5oGo3vh0zlRdPPIuxM9c1wvPyKnKY7++7CknvICOlibEpt+SaFvFV4dEyxABznPezWl0ug8ex/X1Cykg6aThFjgRvSaTNIwnygd/iTovVRVRO9/c2yp2RI63DU9WPtrK7q2e9KWDHE6/B3zWVupjl4lsQ0+LqdD5tvi1nM66DcvmBtvWkWHSj0Y0tNFN9zft//kWjqoxx+wE96Hflx0ZM9zGToU/R6VaTZF/3HKT2lGlg5W7Y4G2QfRR5c5iBnK02FlQHGjjx06ObXkS6IiHa4LCWapO6OLJvu9aNlCB8HPaawFR9FjC65FrNnOzeeeUNfmY+h7gsS1j6rRQdSp9UC+P3po+tjX4p10OBbamno6BL04f8v1MW06GFGy1E3OoqftqVXX2UMH+URztXUX0cWnc6lRutw8jC5JHo+d1w+n39pSDOigs3WhET0RnWN46P3S/dz8BDnZ309FX8grbW1/gA4p37aSL9xE79BVbswxp0MB6UGG0x30g5nn5Aes6KCl8rVWKx/9Zd6i6K2H6KBvuM5Qqgg9/sfbltN2dDio6q3w++m8fl7WvqbWkVv3FYM+756j59wVc+R3ocOABEWgphp9TuF0sqk7He7v28qb0zAvflhUleZJh4+U3Y6XiOiOIZT3733ooPxi1TJfOjrTrmRkvS8dWBuG5Wya0U+GvZz18adD9vqWW7vfoUd7fuYpCaTDv6Y/xxW60K8Wyf+dCOH66pjbEn3o+95eGtodxq3LjgwF3mH0uwFTzJhzdOBIWEuO/ER/LXy+mHqeOy+kz66fJtCXKolHLIumwy/rY4uap9E3OJUa2MfSofHlIkkCb+r/Tpez5825QofYP98jqoTQpcT5KvoT6XBYQtOoRAzd8MFTly3X6NDMK+JXKIHO8bWbC0qjw4665PG7q9AD+v+kV12ngxoMfLglg85/O02G5zYdlMK1N2bIoVcuWndvXzY3fudiaooy+qfaWyuv5tBh9qNLc7IqupjGv9iWPG5f9Z7TSdZEFxkzH1pVSIetTvJ81/agt56O0ncrokPvlpgtqQbo93VvpBY+psP4nsoXGSboQ5wrbd9K6HA2cODebUt004eHl6mV02HtQ60fOYfRc/X+6IW/oINQAyvrgdO8910TcKy+ig5fMzjFz9zRXz17cUmglg4LeI6uqfFBP3iecsO0gXvOu4ffiX7op+cK7qY2cffqKGnD22D09Y+MstuJdLCT7q/sCUcPnH1wTZpKhwfKcs/GLsyrux857CiDG8/g40X8cegNwfl2RWw6HJe5R1qRhL42TmPLzxY69/+g/IBSGnr36nOT6u10uC3pcVz3FrrBg4AXZzvoYOoUZmF3F70sR/xkQycddion3zhVgN5yxllK8DMdxPTJevHF6LF55i9N++iw0MnUquAZOjO12yJ1gA70rbtfN7xA561c8qFtmA6Xgutvdr1CT43uOLL2Bx0oH/+wZ1+j7/Lc/dZ9lA5la5b6r6Ogd1JV9R6Mc5/vkj+ly0K/s6ky/9tvOixu9nh7tBWd0UWeVp2mw8zdwTtXPqBPeR01OTNHh5BvH2lPP6O/l4tJesXLgE4XT5e2AXT/+E0EXgEG/LuZf/jfd/SPfw1+7VvIgDWa9aWK4+jRvZ0rkkQY8OXdh6DDf9GnH/3YxlnMgAipdbejedL+92WvgvauEGdAUELxplJB9Maz3vpOyxlQT7y//LMour4FcVfuSga0uKifFJdAn81KVupfw4DzPWc3G61CTyPXLFaSYcCi7jsHwmXQ2zUPDPrLMkCmu7H5qRx6i9nOynI5BnBOiDT2K6MTj0ecm9rMgHyhnOXrdqDLjqzU2LOFAWe07rHttNCv6S7si9rGgJzInWNpe9GHqvddIe5gAPVQzFmWIfreOvYGkZ0MWK79+LiYKXrHw7xnltoMmM5rrTc7iL7t3Uv1jN0McFy4KfKqHfrIwyVP3wEDwj/W3GM5z8tPaP5aaQMG/L3WqCLhiR54J+Ci+z5uvVIcNtifQE8MDX5/34QBdw48jLgbMC8ep4cKw2YMGJRrhi+h6PyFIr5brRgwdGX6xLZI9PHHt/ODbBiwrt14LjwGnUSy4LywZYBXYNcfQjw6xUxh/K8DA35XfHKWSEE/nyojCs4M8OQJUfK4gX5zWG1VjBsDMoteuZZlows+dltDOsqAbqHuWb589M+b88RFfBjA9P/Hb1eEHlE+PmdxggFu2/RPPypBd7pz6FOaHwM+3KRZ8L5AV9Ose9EWwIBPv+pT7V/Nyz9bJXp1CAOOJhnsLX2NXlGVo+9yhgFPHpw9JEJBp8LSqXtnGXAkPv6tNwu99tm5vP5IBtgGZdQ1taLvcejSU4xiQEduvbjsR3SdWPW2k5cYcM5qGyeqB5114azrs8sMEKsW+tsziH4g/XHnrwQGNEr4XTX6ia4uTLLSTGaAaGpMYtEE+m4l4suzqQwo9zg1vngG3WJv4fK6DAaQXhwin16Qjnsg6agP7y0G3HtpJ9S1EF3J6e8TwywG9KVkl+5fgl7/03vo8l0GRHntJ5UtR/+bfH8V7R4DHjlEGMusRa+NKNu7+D53X1111bgqiy49E29/8CG3XjLLk2c2o3tZbvbJeMTNv1Kjtd829GUv40+0P2VAFvFyTLcGOiO02GN1GQO0ha+ut9mNfoYWZ+lcwQB7gQlFsj76xonVqrkvGSBE683Za4K+ZMdRod4a7h7wiYx+YYn+ot6pWa6em8/+fs42W/RXHTxpx15z94C5XnLxEfQ/dRb7HhEY0JZXXil/FP30A72f38kMMBhysyg4jh7MbE3aTufOo4yf9cYAdBs/IZlgFgOSDGaa8kPRG181369oZoCixY58uUj0S+NqG6ZaGbBAU23kYQx6nqlCqs577j4fk32kkoBuOvVwIuIjA8yD5N6Wp6B3b6uwqO9mgOl9F99dN+fVV944m7eXAdfPjAW8uYPuvMyly+ALAwKa+fstCtDnNvySjBtigHN2FamjGF0kkU+X/I0BS6rUVx0rRWdHJrouGmHAceHM95OV6ANKl4PNfjHggq+Y8OW6eXluHDuXPMmA29VlD1YS0GcCqWHsPwxQYT2peERDFzy+6IT4LLffzsuq6TajH3371PIQDxPCstXXt71Dv/6pXPEGHxN4poQi/brRdauWT7ULMuGuS4OJ4Bf0/fHs6lWLmFCQGRWX+w395dlPgU5iTMgIPqW2+xc69YWe9J2lTFj29InV+z/oY14jr7okmPBDxK3rDE/G/04oGbRaL8UEGbPij1JC6NI18u/dVzOhSemZaZUY+o8nhYfzpZmwyv268hFJ9BNPPIl965mQeD8ygmcN+tfOI8rym7jv9Shpb+EGdL6jiZd8FJjAu+lLoPlmdH/Xb5yHSkyIefVkxeRW9OUT5ySGVZiwZL2QSq4G+lqjnSbKqkx4Prm8wnQ3OvGUVPBJdSbc6599OqWPfiNjTeoTTSZIX+tZ/cAEfWvz3vwfOky4njYwZWuFHrQvsmjbXibEJm03WWiH7r24JT9AjwmpKz6L1DijG+3bnVZqyIRTpLV6pzzRA4UrQsb2M2Fkh9DQJl/0+CBtUzVTJvAPN/F9DES3yiIsD7FgQv7Z0NSMMPSa7MNvnx9kwvdT+mkWF+blObk/buIQE4StTQUXxaFrxgeq7LRnwp7C59+JSejr8iZIoU5MeP/jnnFsOrrlTz/bShcmHHi0U8ooE70ktu3db3dunPY3HATvoRuHK1tqeXHz5t+3hPIA3abzWFXYMSakexnqXH2KrvcmQarKlwlPnr1/Z12Bfh+uHv/jz4TkBtLXVa/QzdxOlmgHMUGAb0dwz2t0hZ2bhsJPM+FDz65TjynobuxnK6rDuPkhLfx0ho1usGex1t9zTFgr9Ypg2D4vzgQtc50LTHDaEb5eogt97xtl27PRTLgddnSkpw+9Z7LXujqWCe+M7mo8/zovThVng79XuHPxy2wkbgy9KDBdQSeJCd5taeud/qCfZET/C7/GBKp+OnE7z/X/fYOJAq0qjQmOVwJ7hITQk79FJPy5zoQN41Yhn8TQ79Vd2KN9mwm72YciqiXRTxOU+8KymfDyaO7f62vQDwtGnn+Zw4SyMdufQbLo1bGnRKfymKBZl+V4UBH9wP5/VzULmeDAn7ZbdTt6s/lmvjNFTFDkcb4uronukvXF98Vjbn2HZLwm9qAvVt1JnihhwvDE7KP3hugGSyRWapQz4bPt6hP1pugXNcKdQl4wIW7XrZxCa/SYPM+08iom0FiZZtcc5uXtEOfV2Ctuv+02Cgx3Qw/YX9Oh2sCE6gfVYl4+6A/D1n0LaGKChPo6WWt/dPXeyZESIrdevOlPdU+jF0fpDv2gMMFzy+7y7RHoTea/36owmNDA3L1dNmZe/nWlnp9kM2Hpv0q55QnoHQez4x61MKGHzU4XTkXfGR5tNtzGhJJDxWf/3USfe0wQUOxgwsBNn47Ju+hve9zLfDqZ0FGgXP7z/ry8LbGxLvzEBHr0KoHhx+gLFK739/Vy94/GIXZ/OXrI2k0nNw4w4Uj9nGRvNfqOnul+92EmiEvvbvnciF56fKVN7nfu3j6wTaSHjJ6Xf7q8a4QJk3umX/Wy5vXJhSVC0uNMePT99eCXNvR93z+bO/1mwusDRclfO9FVOgYv3/7LhBoDztPRPvSPausr2meZ8K/J2eTP13n5/BLTupyXBa3lgS4LfqG/61oyZMPPghNT236I/kV/ItjwM1WIBaTgmqmVvDfw+9A4ZYi1iAWd/Jrn5Reiq1+NaBNbzAK/y4TzGkvQg2ovvjBdxgL5t/F/jVagP224FR8vyYKEhsJRO2n0nMgGS5IUC6bXgafvJvT1Hb8WCqxhQUndaeuLyugGNVsr9NexoNHX79WNHeg7BfwOXdzAAqmfxnlPtefFn1X8pXYTC6IWK/OTddEPu/X6Tiuw4FrSzp6e/ehNGhJ9WsosqN2cvPufBXrajIZl6FYWmOUckpC2RWdk7H9SrsoCh6LH3rud0Z90GsyNqLOAPfNyp7MnelaFvP5WLRYEm2XHXPBFX/v3a5jvLha07A83zw9CH7l8Le/hXhaYZgVlkMPRp3TE6vv1WLBkpNj+50V0wx9uTFkjFqz+ZpgpdQVdOCKO7WrMAs0dRx30rqE/qg0nZJuy4K/75hsnb6BXJ+588t6C2w9SlVa376B/q315eYU1C4jfVONJBegyyjOHbA6zYDS0Bn4/Qj9eNCOZYs+CKePQkM3l6BNiL0h0JxYcG7uk4FSNrqyyyU/YlQWx/4QdrjXOy3+HvsA+DxY4/1EQJpDRPw2KpUR7cePx4tWaYaGPKkaJ1R9jgTHpZb96Ozrb/1bktC8LDtwJED/VNa9ely0/aZ5iQdtR07rifvQBgzyNkCAWUNN9hwa+oc8FJkU+O83tk7xf6fLj6A+6hV9+C2PBzALBOu9p9OcOK/o3R7AgdyPB5+GCm//7tsdP+L0usCAwwCb1qzD63jzainvRLPh9sEVn+zJ0TcGTazpjWXBGxcczdCX6nXsJ4qviWTDoqbq4TgZdcs/GmUNJLOC1O6QlpIDum6v6LuUaC+Rcx3oObkXPTSstpKex4FyryuK7Guht7+/6LLzBAtZixeqvu9Htd02sNrzNgqdHBAd0DNGzzz1ruJDNAmuxwYxEU3RDF7p9TQ4LCn1Hmjqt0cUKDXsn81iwv14vRNURfVJyuduOQhZcNpu7H+eOLnpSm+VXxALHQ8YOncfQb/k+2V70mAVBkvrJGgHofC0nL/WVsGAdSczo2hn0Lrdgqkw5C3zyGZHD59GHml8tcHrBgrGP+Vr749D5vxiq3KjizldB2en7V+fVy1boAOcVC7rl1moIXEdndf2zF21gwZfEBWe8s9GX6ig57m/i5nnm8i5KPnr8hmjzaCILrmcyo1UeoQ+a86nVUrjzGDtlll6GLnCmaNEUnQUWHQqZf6vQP9kEvN3BZoFg6fkTRxvn1SXTJsWvhbt/ZGTqGGT0JB7LvQ/bWPBEU/m6Nht9g45LV897FoQtJPwsbEfnnY4IkO5kwY47i5nLu9GHJwrH7T6xgDmruD3uy7z++dh+Iq2XBd+3aq+Y+o7e4ibSQv/CghpVl4u+E+iyO/aoCA1z4+ev8f80g67Iczxc7zsL1HMDP9vy38J7Jzyh8twICwxn898xRdBrTO8MVPxiAW1xyCFjCfSWjXeERya5++oN3+Gm1ei0J7HSSn9ZECF6ugNk0ckZ1hs9Z7nzzhzqq1VET268IGbJw4bM0ZiQParosssMF3zjZUOGnVd8nRZ6oNj4zyt8bHjSXbJRTxfdJeFqm5wAG2K9Yg0I+9HdnRa/eC3IBr1GoaEDluhXbEKSXReyIYdkL9lsi+5vVOs6I8yGLpNMgqMLujHfgOJtETYwlv+Y6fNC/+jy85uGGBuoE6erA/zQoxTfPmxezIbKZzZzsyHom9XTnU8tZcOCRUXkpAh0M0slEVFxNuQ23lwlfQmd3/Rm6UMJNohm6I0+TUT/PdluZbScDYY6ZEv99Hl5kB0e/LyCDZzj5hrtmejC2bTw8yu58bwdu+eXh35ox1m+Nau5eVPsuC5QjK5Z/iu2cg0bDCTkluWUomt90+A9JM19XntCQqdqXl2K954eWccGc92Td9sa0NOqRXqS1rNBmfzoWQgZvX0wc7+iLBs2+rcekGSjr+Idvk/YyIZq2iK/inb0V8zJGXc5NnwP9ZOy70avWltvNifPhh0LZA7MfEHPq9C9nrmZDedndAXyfqCnHg1v26nEBs3RcWOTSfQ9I95LW5TZsOfYkeVjs+hfNwkZnFJhQ1//rRPZArdxXqh2/iLb2DAxTDM2FkPXK7JNe7CdDeXjK55NSKIfjuctMdjB7ZOIrNyCtfOe32H7pluNDQ5/zq4+vAldzte6+ZwGG6Y+tkkLbUGv+/vrnZQmG+7dYBdXq6FbP9B6V67FBlpqfOOpXej1O9exLXW4ddm50UPeAD3UP6/h6y42BA3WJXUdQD8j0VR0eQ8bfi48r3fLel78w5GJG4Gbh/GoizaO6FDJ9qrXZUOzwDeTpR7oX/ZUaTnps6EktfMO8zj6HT0N/t8G3DkaPhORHIiuH6tPTjNiwxfXj/2W4eiGtK5LW/ezQXb3lg7xKPRHrUI6VGM2zBCvOLRfQRfxrhnwOsAGN0MJzzsp6Kl7fl/lNWND+vi3P5630H+vrdpyx5wN+pKaa7bmoie8mWvSsmRD8Edx8tQD9C3jBJu3VmyIj77HQyhBP+gr+vGUNRtMtfgJaZXos4OsIyKH2NChfGS5Rz06WXlxW+FhNjy8TB3dQUL/OPpmv74dd+8FBTgKsNAnp0ZLO+3ZQFhyyvJ9G7rnXJpkuCMb3pwfYD/tQheuv39K8ggbfD/87Yr9gn7ot0JTiTMbvu6hhrv8QDc/KrXE1JXbP9Wh97Qm0ZPqAm2+uHHr4rHBVnIOXeeNekqUBxuOG3y9OSqQ+b8v2+ZCWOvJBpbXhDdbDN2j6utYpRf3HJZb07Pl6CLSH1ba+LCBGWPxJE0aPUJCSfPHMW6cF7o3hcqh1x1uM48/wQaeenUlJxV09+zOI5tOskFQ61StngZ6Ws4ez3o/NhzuKulS3IMuJDV+1PEUGy7ck0qWMEJfXD3nNBHABm8/Em3ODP0SOJmlBLFBS+nTza+H0N87C2koh7DhyKvosfdH0MVoPCuIp9lwjZ/9geKJ/mK30U+3M9x6dQ/a1JxEn/RpbpgOY4O2wg/HpyHosbyFCTfOssH/Gc9oXgT609paM9UINsiY6624fQl9v5WUED2SDRY0NjUlaV7eTj6r8r7ABo0J1uKEjHn1IsZ58kZx85Pq2nMpG52z+JZQdjQbjnrkGkUVoK/58zlv5yXu8wrlWhceo9/f6bGTE8sG26yXNeefo5eFrXjte5l7H53mMC+8QpcKmDESjGeD54l1QdFv0Pcylr3OTWBD/+aG+3F0dGndQzt3JXGfd24/nvQWXT+sMa/1KjcPzy7VpX9Ef7PJTijgGhtSCYP52X3oh8bFPRelssF576bVD76hb7s+9rIgjbs3Ku02lI+jy1f8EoAMNhRS8qsaZtBv80qavr/O7ZNFir0s/qz/PVLh4JXgm2wQFll495Moum3Lw1qx22yQc3AfHpNE1ypd+fVBJhsizx8mC0qj00/eXaqfzYZpHgGttXLoxqWaWz/eYcMLjxRtNRX0M4o9BqE53L29YSXDVAO97ELWwaX3uN8PVa/GvPagDzi72xXnseHG3bvFUUboaX6qhw0L2GBi1DV+1xy93k7YtOs+G36tyebUHkaXIHzRCnvAPefqlG6XM/pLZ9I68SI2GPNKGvB4owdTHs48KmbDgY7F7zb6o98sudJs9Jh7350R5jEJReer9MztfsIGtsammlPn0dXjdLzDS9hwzPeC8K04dIUmoU0SpWwIO7nra2MyergE9f3jMu5euhLm9v0GutnaC5f3PWeDi6jd8dU56K7Rm1Q+VXC/T+C3gMkD9MmhSmp4Jfe7yCt8Z3gJ+sjkTjeJKjYM1s3+La6cl3+znO+Pq9ngfqXApqsefU/yj6B9r7h1+XtVV4KMLu0iO9Jdy90nxh2NJmx0fxctr/B67r2ZX9Qe9Q69Z/vWZvFG7j7UXhtd8wn9eSiv5uPX3Htku3Xj5CD6C3ZJutEbNuwu8b2uNopu0r1zsIvA/e5qvTIX+AfdWT9DPYzEnccGykwpbzb2221C2DIKGxLjLVJ+CaMXxpCfF1O537GGmlU7xdFTcjIHDehs4OcrOHNuNbpPorZkJ4MNNZzntEZZ9NG+PM1QFhuqquIrhJXRo03eWi/hcM9p0NewUUNfYEvzetjMndP+fwfu7kLvK4wN0HvL/b+g8Hly2ABd9R1PcEcrt74XBLW1zdAjY3X8gtvZsPbztWXxh9AnTLa7ir5nw+O9dy52HEE3a+g2vt/BhvZLFnEqXuiM6H1Kez9yv7ezm2Sj/dCtlD342jvZcNB3re270+hgs/3tqW7u+Zyw9dvPo6elP81e+JkNlMdTUfFx6K2XOo7c62FDQWvN2b5k9A31pZI6fWzYsqFnkd7Ned6h+qa5n/sd6Ja4IycHfYmfva/vABuGXNtH5x6gVy7euIh/iDsvg/3Gbs/QQw5fy80e5np9m2bTS/Tt7ZlbNb6x4c59Sp1CI/oJRYPnjO9sGLDt6rxKQVf+HKvq/ZMbT5L69QkO+uJ0t8K5ETY4/f3a59KBbtjCFr85xoa4g5sYlB70GI23odvGuffa3lnznV/R15ofayZNsKH+2A2fgl/ow48T5Nx+s8H19JLVkjPo9gNaAVNTbNDhv+IVy3/nfz+aHFCW8pd7D5bKHJgSRc9S2/Zt8wwbSJKTpJPL0aWOBUk3znL33mul7h5p9LhXmvsc/rEh36TzmqM8+qbGCO9RHg5c3KnS0bIVvU4Azscv4IDHUp06C030p6sirm7g58Azx427aYD+OVE1o0qAA+UZCw+ZGKO3Dh9JOyjEgXRtYUGKFXram+nLQws5YN1gaH3AAb2yUOR01CIOsLM6tBju6H7rEhxWiXKAozNcdfAEesDLEI1SMQ58FkpvbQ9CF+WlLDRZwoGzx8cTXc+hr7x0qeXTUg50N6p0DsagL2AUXA8T58C2Uy6U4CR0greC5VJJDrjT7lvxXEfv/yDM83A5B3Zv2RicfAc96oXJQ5DigFPvxPZ1hehwsW9/+0oO7Ni7J6HkKbrD6/Yu/9Uc+Be78oJ+JfoNgQ1+gms5wPhXuKS9Ht2quXbsjjQHLnwT2u1HRj/x7NEpDRkOvLriyC/AQXdXGOylr+cAr1jdsbvv0bXqAiw9ZTmQ8uTgce0e9Nhp/bLpjRwIyVQXbBuel3+vI6LpchyI/hcLIb/QC6OqnZUUOODI77VccgY9tNWxsHEzt3/oI5cr+O/+70/6db7YK3GgPtT4pr0YetlOe+kRZW6e1yUazC5HDzF7ZnpZhQO/37cn5a9DDyvWDVy3jQPjNebBpgrorBbB5IrtHLjcLPJ7fBv6SlOePLMdHO4eVl2Zq4V+KU3pSa8aBwQbP7aZ6aE3K8eUnNXgwNJcFbVpE3TrW0JFyzQ5MNior/LIGr3bvuL2Qy0OnJHZRTjihD78PT4KdDhw+InG9BJP9JPt0W5tu7h963SQ9eYk+mjGnZ1+ezggK/VE79xp9PT77Xz8wIF3RB9rtfPoPFe2kjN1OXDeIpf3exy6X3VOjKo+B/ZePW358Bp6QfXmnWQDbj6dBXd73UKfFiB1uxhxQPNmIGnjPXS7VWEXJ/ZxYJdI22hvEbpqoPbKJGMO/LxsXXO/DD0pfuED2QMcGGkT2HS8Bn22s2dLlSkH4msXb9n6Bv3eEKHI0pwDeTOJLeP0eecrlEh/seBAj1X26trWeflcmn0lwooDCUEuvJe70DPXJwyLW3PPXz562Xpg3vmsUIMiGw4EDwU9lRlB/37DNR0OcyD89oLTP6bm5eGHXkerLQcu0es+1PHmYD9Yrll50p4DC+WIPSmL0MVVh8wWOHL3hp5mgqcEerdwUdgtJw5UVm9v1l6LPmFln7XVmTvv8pzqpXLo1yPGn79x4YCIlKbhkAp65oJzBEc3DpyWivJv2onuYz9EH3HnQOgzhnYOoH8d202LO8qBD167CiOM0Z/sC25Y68WB5ZWD5U4H0WtI8Y/LvDmwSWbcY7cjesVQ5DXjYxy4LxlRvu4oOkHG/HjXcQ6QhHPuLziJ/vTjuHaILwcsT57THgxBr0wL4l3kx90z97edYkXO+93ypvocf27+V3fsexmHvrG0P0QjgAMxyrcb8q6hf5luXU8L5OZTPfFj8i30K/xpTW7B3PvoKjMz4h76+l1SzpMhHEiOj5r2LUa3WHL0e2IoB4TPvJ47Uo6+fyQoZEMYBxxySwosX6GTzAzHXoRzYJ+pz3cDwrzz0996m53jwNoqoffaTPRtqhuaP0dw70H5Eh/VdvQjGQrqZ85zwJt+7rbSJ/QCxf4k0YscEO9K9JcbQr/mbPfxXhT3/MTZLxvG0Ldnn5PVjOGA79yPBeun0TUOWrrSL3FAbRt8XrIgF+MfYKW5x3Hz/KUvLUUQvYT699XkZW4+y8+sEBdB3+PJ6EyM54BXvuDJjCXo5uuMJtYncuBxfW66lCS6mYcr34skDkQsPXw1ayW69u1VC02TORCZtcNhvTR6pnIg36drHJDyNP59fwP6laijEyGpHDjue99nizz64wU/OoXTOXDwmX1xuRK6xorFtXczuPncFli/axv6N9nGNLUbHJjqmS18o4YufY3flXyTu8+bxNwttNAfNrRucL7N3Q+Eku/vdqP/W7vjw2gmB251jpl56qGvEJZKjMvmwPOZ/vMjRuiRQ1Gqa+5y75dlt2IiD6Dvkw1gluRw50t4pZOIJbqMVLe74T0OnGCECGTazHsvZfrXd3ncPbavNlrRHv1Ao/pJvwIOgCNPS9UR9Oe7VvTyFnJg+qvZ5AF3dIsZP6sbDzjQ+7H020cv9Eue2s+VijhAF9n74tQJdKvW04vri7nnH+ax4TuFvrtkvavNYw4Epgs13QxGP2KtWTjwhPv9dtdDUCUM3XZdZe+5Eu49aLpeuikC3TXojtTSUg4o+1sKOUah73gyoFdQxgHP9rk3o7HosirpHlrPOUA9vMc2IQFdyOpOOL2CA08rVtVsvIZuGcx32a2SO0eNeb9q09F//HqdMP6SA3dh4J/9LXS/re8vXanm7o3Jie7xbPTu8wan177igFFRZ3rqPfRe3X9Oz2o5ILbyyZpthehPWcLahvUccOYNPsMoRp+MdRN918C9TzfsfXCyBF2sjqfN9zUH9FSlH4k+RydyBq7/a+J+7w2ui3nyEv3qagmzdAIH/mO6vsOpbMMAgKMlWzKjsiIkKSRxK1kpSqISlUoZRWYaFCIjlYyIhCIyskJSQmRzdlYS2atkhPrev777/Pu7zvWcZ9zrbVk8vNWsHP3IlN/cpto2GNnwKXfqI3pcjuKTt5/b4BRb8PLoGnT3TIEdpvVtIGqetkWzgSlud6tVfWsg+u/bbYrdLeg9ZfeMPJvaQKVfYymAgm7lJ1bN3tIGsVdrUxW+oG/uYqgltBL1X3RiPakLXU6xJnEricgvh/LL13rRS95/Xagkt8FH9j2PpAfQP49KHbKktkFk1N3wphF06up78UO0NhhOTzlxdZIp3x3WddxgEPN2R+KS9G/05NMN/HztbaD86a5n6zxTHdgTr5Pa0QZq81cqb/5FX2t754x6VxuMsl/sU1yWjPVzdei1uu42uBDg09G+Cp015kXIyR5i7v1dmB7KhS5tQY2Y+NYG/EPyxlr86MLRQqH+34m8+PH9w6ggummG/XXB/jbgcZ/mTBJDJ/VU2r38Qcxp/A5bzDegbw+T19UabIMBvUMyK2XQI2ejBJqHiPMGl0y+lUeP91jRdXqkDYqsXke6bkEPPuSd8Gu0DZaUDTjkVJn2/2XgcNB4G6wLvGvVrY7+3tpiSWSyDcob7lyL0ULXlX379NUUUd+uHnA300UX8BdS1/nVBnLzw3tW66Nrvbevap0m8uKdy48qY3Rt2ZcGZ2faYL/S0Gk/U/SdbIwPv2fbYD7vfJ7WEfTPSb+U784T/aLgF33OCl3RaO6R2EIbHIxKprw5ybQf/e/jWYvEvFp0M93zDHrH1zyAv8Q+vWMOqdmjW5whuuY/Iq93/Gn57Yg+yj9ReZaVBEGGxbLFLuhRmsd+/2YjgRJ752EfD/S2DfESd5eTwLbBy2K3D3oeZ76W2EoSVH6P3sLiy/R7vUSzrFUk8E827Kr2Rz/Bc/y4zmoSHDePPxsajL4yr/dYKwcJwvckVBwKRxe8omFqx0WC0WLraeGH6CcfWWhOc5OgeeHH36/R6JonNcSCeEkgcfhAz8t49GjerklhfhLozsc9dktCH5/cW56xhjjv9m457efoBnr2flprSXBKSy6CPQN9q/E+jSZBEtBNAhoo2ejN+9r7bIVJIJ3A0pOcj97gLXt3UoQEJmeyG1yK0c9KS0v6i5FguCk2Qucd07nutuYKiJNgzZpmeZ6P6FwDCjteSJDgjLVtfPcn9KN+W3PUN5DgN8Xye249esqDDonPG0ngkv5pmX8L+tRxpYDjUiSYnCtZsKCg14lu6B6WJu5tTKdB/gv6Xp485RuyJBB/cd5tqQt9weOrB7cc8V6gNUXqRZcNS3/9VJ4EjxhNhhkD6L73VvZuVSABJUTR69Yo+v6SefaPiiRwdLS7cWwK/Zyhr6z5FhJMR9w6sW0GXcnrocZ3ZRLcWx3Fx7nAFLd+KuChQoLqocyn/f/QRZ8e271ClQR5u8nLPy5P+d8rOFdtjdlOAhrXOr3E1ejybJrCcmok0LF7cPwaD7rT25HpYnUSnNu7x+iYALruJfHPRjtJAK+1eDVE0HvNPz/4okl41r0cIQl0sdRRU0ctEhjt0N80K8m0TnQQ28JuEhTruXoxNqGrn370KkyHiEOyeNJbRfTLu/j2i+uSIOTLsWeJKuh9x/90Ze0hwZix6rXbaugbp00vaOuRoEqwWMl+FzrocP5o2keCdMXfxSaA3umsdMLWgARvvP+sU92HvrUwt2rckATe3ynHRI3RxwwjpfyMSfD9aORlVlN0e+s2L14TEtgX6NoMm6NfknSsSDpAgvauMRmKFdPvG4//22pKgojC9E/vTzLdT0Ti9gozEmisvQGZZ9CvPla1OXSYBH9pVyNj7NGFxIVu9JiT4Crl1fsAJ/R8Y/0HrhYkyPgmVX3FFf3i4fI4FksSLLWOpJz2RJ+0u/74gRUJDrmttT50Dd03+0b4xuPEeSMzR3X9mO7t1HvP1ydI4LBUZqUaiH72pbaF7kkSzPhYJsiEMK1fOCvXakMCvubgt8IR6D/zhyZPnSJBwjubfM5HTOu08OVOnCbBxIofASyP0evVHe387EhQfkF560wCurbgLw7ecySQT9xXOJqMfjzm5cun54m8sFUX6EtDN+kP1lK+QIK9dvwHOl+htypFVJVfJNax/m5LfY2+ObZE96AjUa/+lJq0FKErmi4v6HQigeBYypr6t0zxfP2ymPMlEqR9fVXw6QP6NsNpr4XLJEi81qtcWY0e2x75OdSVBNvOWQR+qGOKHxtDXjE3EswDb2F5M1M8z/KYZLiT4FfOxvfvyEzrt/y4vtOTBK5mMSnvGOgDnI3JtV7EucpvninvQo8nl72zvEoC5Yd9f973oq8+UNDY70PUzzOMyx8H0EPjc9s8rpNgd5V9efUo+tT37IZlN4m4NUj88XkKPePAq7eRvkTd8wkZbppBT5t7/lTyFgleDe6sIy+gX+B87P36Ngm2S5T6t7OkYh1Ov60PASR4mCgs3LuCySdt2ZsDSfB67EzQMAd6GPuWipNBJKiLeNH6ixfdlm/IeSSYBF7/Jn4vrUUv3PyA51oI8V5lpjPsYuhHPTe8YA8jQdTulra1G9BjBaJUYsNJ0DPne1dSBv2MzMhr2QgSOJ1zEtu6GV2qVnJT4X0SXJ9MDtZWRqeIqT3Y+5AEzzhVWg9sR/+rLTXRGkmC95LS0yd3opeY/th7KooEKxPu/rqkjZ7q6Bs2Fk2CFd8uNfvtRR/KGfh8PZaoMxY9gZGG6IY7NyysjiNBjdWYUNoB9EUpKanH8UR/N04JfHsY/XvomPamBCLfA7maWyzRj4T5mhYmEnXVTvNXvzX6LiAd2ZtEgl271KcXT6PzfOw/2PqMmGds+drW2qO3KrzZbZtCgqOS1JAtTuj8MbobR1NJwNP6cL2hK/roOv85nxckCH5z5P4ZT/SVVO9Pq9JJcF9CvvPGNfToL+uDo1+SQN9EfEWcH/qJPR7a0pkkWB2gzfEmED1J2nPw9Sui/66IGyGHoGvHrr+rk028C9/ujJ8RTPGQf0m8MYfos1+3662JYlon7NSL469JcOTVvVLVOPQ2jSmpgTwSzL605LJ4iq7WuCHao4B4F84ELa9UpriyGVxgLSLuYbmTYdxLdO9/hlb335DA8kPr1vJspnir0UoXLyGB+8X26W/56InVFSMZpSS4LBcds6oEPYubIqNRRoInkjyCyuXoKQVu5tXvSHDXx9z1aCX6yc9xHoffk4DdzOXlzVr0fTYGYd0fSCD14Up5WiO6aYBnjNNHov702ee2tqH/2y8TM1dJxD/V2neBhm5XbRZ6p5oEh1/aKMh1ogv8m3ZbU0MCzcs+BUe+oe/k4D+UVEuCx+rvRG//QPeffiapVEeCb9zbbXJH0Lc2Jg+U1JOgfmn4ZvckOmcSX4p+I1HHuKeu88ygO18bPkRqIoGprrkVLKDvcFKatm0h+v7jdXxXWJ7/7y03yWEjrSTgX3siLXUF+q73ncJXSSRYmysmRudAX9TQf7ycQsyxdo5OnHzosjOruR9Sib4sYxmvK4hutUzeS4JOAsnB4TQvMfQShwRyBoOYW56qPczegP5P9ZysejvxLmp6x/tl0N0v3nCq7CDB+tiN/yQU0LvX9L4w7SL6VFa7v9VW9MRdkZT2bhIsnvDte7gD/eFAyKx9DwlaA0VkmjTR1SVreH59I74jVr/ZsxrQ/cf1xPy+k4Ct9qy2wT50VksWMc5+EjjHKAsHGqM32cxxx/4gwWkz6ZZKU/RAzs0zUoNE/NeYnmezQLc4d5+UM0T0x8byL3uPo/9xlk/dNUICVtWbSoG26GWbpy7UjJLg2sc4m5qz6Bee/thoPk6CO/s2XlrtgH6qeUVz1wTx7rclrA9eRr/7zsTFYYq4N62ncpHu6LZORct//yRB6fZcEv0qelcnRNyaJuZbOZuT633RY9YMcnLNkGC8rbD6fAD6M+5XN2NnSfBvuJIz5y56cvOd71LzJBiRi9o2ew+98ainds4fEnBrqanvecT0vyleYZqLJOgl54uGP0ZfXxTUVL1E5HWSaCc9kWn/YSnLDv0jgZ6B102ZVPTVMrVbOljI4OlKXbrykukdb06Z2LOR4dlHPZuKbPTKR+ttp5aRYbS96QlvAfqR8ybnbqwgw+MTt0pPlaDvGfewXbWKDBydF968LkfPVHh8IJKdDNWzDyLZqpjiTShfWYKDDDZ67KZHP6MLZ31Y/pKTDNGH2wdfNqHzDpQ3q3KTYU++wNklEtO7f8wIL+chw+GfFe/MGejzO27pGPGRgfRk/PfLLnQ5LZ0+Ej9xLrUMHpbv6D2NPTdtBMjwZd/SymOD6E97z3EOriXDb+PZ7tdj6M4eteFuQmTIrkqN4fiFTvdZwbYkTIbgLbzK5+fQWYbXOQWLkmEDi8GLiiWmfCxb9Zl/HRnk8ywWxZe9+N8/9n0SSRAng0OB4fZr7OgHrY/YbFpPhvdeivsZ3Ohha7OjX28gg8BFrj0aAuimK1o/7pIkg/PUjHCsCPpfydJv1VJkaPeZbZ6VQL9ne/63qQwZAs+L2R+XRvfMaVtkyJIhSdC5q0wevWL5wqydHBlcBud2bFBGX2bR/WNUngz7NZucA7ajn464WuelQIao078DB3ei+72oSWJRIsO7gps3TXXQn4R+cgjdQoZ9d9wsi/TQvZTd5NZuJcNrmR5eCWOm9W/XMRJViH12kzLumKJruH++KadKhpeLljITR9BP/XISyttOhlufrvodP45eN/k6ZZcaGRg39pVV26L/OR4lVa1Ohktna+gq59DnxAViDu4kw+piDmqiA7q1nMISTZMM3vkSBZwu6HvsaVantcgQdo/T7ZoHuk3N2rSh3WTYeLOHf9gHfWB774CbDhmEC15GnvBDfxavJbEIZDC3dZ1uCET/1i9hcGcPGd5m6mnohKLfZgmy49Ejg/ZHZeu8++ijFFe32H1k+FSrfVo2Gl3gYIfnRgMy6H27YRAfj37VvNI5w5AMmVvmuPmeoW9ulrJSNSZDX13Zm6AX6KUv53eU7SfDUAtZ928m+uF6vZX7DpAh3fJAltdrpncX+1vfeJAMq9y2zU8UodNuyQYcNSPDvOp9Occy9Nrvb5S7D5HhdPoVjf4KpvjcnNtkb04G2fY++TM16Ek7OU9PHCGDNHl6oasBve13bb/3UTKox2a/tm5D32/Qa8tiRQYV+XWG7TSmvOOxarh7jAw9gcYfjneip6hKK/KfIMOKjH2i7d/Q5WP0fOOsyXD2nshR6wGmeBAvqpa0IUOGXJtb1yh6crrH3wxbMgQ4XnM7/RPdV8xPUfU0GR7qb7Tom0VPt2wzeXuGDOdeNAs7LKE7aF88tfcsGe66PywfZ0v737Nzde3rzxHxGeOh78mOTrtnddrcngzJUwG5i9zoX4szDrZfIIP9+YaFQAF0I+4dynYOZBBssVTgEUWXufSLddiRDNPsqlqP16Nzvun7fMWZDNuHLypLyzD9vmZ5wPwlMvw0WLU8dzP6huuHVG67EHE4KfJOayv67vzqVvYrZJAszLCs24GuZ2R77oEb0e9sPpGtdqGHioqNCHsQeVTovX0A0H+x/j6X5EmG2huNnt766IOdI22bvMmwzaclnt0E/cKdhW05V8kwciE8Jf4Q+ih14x21a2TwWs57b4sl+oOXxxreXSeDxqqzJz5ao/+gJS3fd5OoP7JRHJZn0Nfv+qXS4Eu8F39O4og9el+m2SHzW8T9X3sn4O+M7seab/flNhnkuBqcRd3Q8wSFL54OIPLUpf9lnjf6l/fXTw8EEvV2v/Dn/TfRKeROk8tBZODRda7v80cXUNRQ+B1MvNfERK7fXfT78cEL10PI8GQ6++q6CPTG2foPbGHEXDGUJ1PyCL1X+K9XSDjRL86tKjwah36+RUKSL4IMm+dKN00/Rb/7c9P7mPtkKNlBvfHoOfqshZCpxEMirtLOvdmeiT5fN9iaGknUVYY7mZKLbiXzxEAhigych3goXkXozuoKua+jydD5AEpEy9DFSJEcGrFkMFwncKu8Ap30ue1Y+WPi/p2jFO1qmN535HucXjwZdvxtfruqEb2Do6ap7gmRv4bNW3La0GtnPKbNEsnA8i4x8CgdfcJ3jJv2lLiHRqMPS53od9yUxE4+I+al/vautF507WfKor3JRNxeOdVzaBD9KG2S42Iqcc+MbzULY+gpvS4TY8/JoHzz0sP0X+jXI1/WuKeRoaCCW9dinmmf+bEP5tPJ4MfSTGL9hz7Du+ugXwYZBmJKjV8vT//fV3mFLy5/RQbujo7npzjQA16HPQ3NIvJlo24fLx+6f+iO7Xw5xJxQOrXqoyB6SnPA2+hcMpRNLfC6r0PnNfTasS6PmLvWOi7KSqIHl7MnP8sng7GDYdOXTej7FzRYNhWSIXZ7kn+EErpSHYv5qyIyXCi8Ib5PFT1o4lSMSjEZTDaPxP/RQN+rbt5UVEKGnMbfS3na6NRzlJldb8nwkZqu76iHrrP3+5qKMjJ4XOVykzZGXx19XVK/nAwx/coBXaboJtLxUvXviflkv5jPYwv03HwtIbMKMiy1fTlicQLdht1mkfyRDIUpVwX4T6OvHfpDOVZFhuc9rCXN59HFRNc866om9pN1a889J3S9k0k2djVkuCfN8vrAFfRJzyTugVoyrDsdtozbG33FZt7XTnVEHvls2d18A335zpF9k/VkWOs/dfyBP/qPcyqNHo1EHwnrPXnkLrr2lQ79+SYiHlI49YUj0DetH8q72UKG/jbvNZ2P0PcpWfKxtZFBd4Pqp+Q49AbrDWeCSGRwj9C3uZiE7uO85zkHhQwvNpS3b32B/lii9EsElQwNLanac5norMoBrAJ0MoQ8Xh708TXTfZ5MWBfLIOqA63BB2Bv09+dZ5de1k0Fi/+lay3fo19lzNyV1kGFc8EqFVCW6OWuKsHQXGfQr5JImatHbuOh/0rqJPFW9f7a8CX3dwP5WhR4yuJnnc4eT0Wkmf2JzvpFh+bKEROsvTPc58+2w6nfiu0zaSkDpKzpH8t+loj4yHHkwfnmpDz1q5cEEzR9k4Je69LplmCneeuqUygfIYJvTRU+ZRP80eCVXd4gMvqtM+r1m0Kvoe2Sqh4l6uPiBYbLIlF/26mGGo2T4cMwwX5LtJdaHAwf66seI76y+kStzq9BHdG9tNZ0g5s/zJcKt3OiLC83ObZNkUEssTn0pgP59u1qCxU8yPDCeFvQXRe95mltO/0V838n6XD65Af3Nz11tJ34T36fDh7I1ZNGL+8i0rhkyWO4PIgkooldt9m4+PUeGiVnp7kkVdCMvyZLv88T36bMdrc3q6Kq+LY/sF4h6NV75Mns3Ou/vm2eGFslwNeTLhXt70X/c2yzp/JfoU2sDuC8boVsuNJPG/5HhvEp9nJkpesCEo9cVVgrwXSvlUrVAlxL/wznNRgGDMGt7wRPobqo+j7yWU+Dcn7dp86fQ4Xsf1/wKClw60dvUfR69u1vz6vVVFFil1dlR7YSuRvWgLrFT4Lp8QeurK+j5npEytzgo8ObVlaxH3ujmLvfPs3FRwHi/lMuNm+iJrhcfB3JT4FRQi4h9APpzObHylbwUaOwOyDgUgs6zN5l8l48CLC3Gkrvvo/9z/tPBsYYCy1sUb8lHo2sclaKFC1Ag4siOGsEn6HNpgpU8ghT41nTp17Jk9LU8bUkPhCgw+Kp31a809H61wy5rRCggfSxx2fcs9ON1kSpRohQo0nz5g5yP3ucW+V1wHQUOFXLnfSpBD+k8cDdWnAL75Rl2Je/Rybnv14uup0D4T/7FV9VMcRvdlxa/gQKJzp9uPKtnigeNso3iksS5Rhf7olvRL+yG8EQpCqz7VLkjnMa0/oFLQ+tlKHBbX9I5oJMp3nj37nwmS4HUUqmw673oV5XeXpWUo8CIQ9tDj0H0USNSZoo8BWyfaNy6PI6+nTO4WVqBAtH3T1k6TKPXi1C/P1ekQH7gkbXn/6C/Eyodlt1CAa8iibdnWDL+94SMrd/TlCmw4fhnw1Mr0UM91ZrkVCgQlWpTbsOFvnt97cuX2yig8mlAzGYNer/BN8/N2ynwa9j1tI0I+qHIWzsyd1DgpM6yCNv16M0pyX0K6hTw6X+ZeloGXVtsT9ArDQqMszknn1VA54+3FlXSpEB7kWXwBRV0zaqxxKxdFJgQdT/qrI6+V31aYMtuCjgbNnC67UbXeOR0PVubAmuPOGRe3Yte5nOIsgUooGhqte2WEfqvu0nrc3SJdzdIenbXFP3xqaMnlPdS4IGBydxDC/SpJ5eDc/QowH/0/M6EE+h1HQMvlPUpcNVz9nT6afSb78qLcgwokJbO6VZgjz7XPvpG2YgCXIOvnCqc0bPJVzJyjIl339p7sNkNPXGv8T1lEwq8di8R6bqKfrzKxS7nAAXM03Y2jvqiz09+k1c2pcBAkfPFpUD0zfYJPdlmRH24ZzvGE4YuVP4kZMthCiitFbGWfIgedL9TOtucAruUU/N2xKJXeVnnKllQYLps9ZRRIno6p6BS1lEKQPxRUdtUpvv8sSJe0YqobykPFDwy0MOTFOYzjxF5mlktE5aL/q/Jz1jhBAXKAxdWpRYxOTtbWIY1EQ//dChlZejSA9nl8jYUOD7wOIT6Ef3hX79v6bYUqGcTkJ+sRV/s85jZdJoCrkLFuZzN6MlbQxZfnKHA396IjfIUpjh3L/0lc5YCMbLPr+m3o5/Yx9aZeo6oq7Es78/2oGeony6SsqdAwUT2sP8PpvftavFLvkCBqq9FLKmj6GcbD2ptdCDyQkiKpfon0/rRtIGnjhSI010c7J9Df15vf0fCmdjPctMy9n/oI0t/BBIuUUBhlaS30orM//1Uxf1HYi4UYBvyFT/MiV6WIrk8zpUCeoZXXnnxo5uqZZ8XdqPAtTJWmURh9NFVW0ui3SmQ0qEZVC2BvpSRuiDgSdTzXdKkUWl018xVKpFeFGg+X7tKSAH9U6zVUb6rFPg+tFVOVwV9JcsDpwgfou+Y2qs4qaM3uma7cV2ngKGQh3TsbnQt7yzH0BtEfa6yY6ney7TOs5Aj7L4UcGjTqp0yQnf03rMlyI8Cl9+yX91ohq4a0jq77DYFOn6R1hw6ynQ/p7cX3PanwLuJ1Nhb1uiDd+1P/QugQKj4nZX5Z9Dlwu0Xb9yhgFi/36m+C+i3preG/gmiQMbrxBThy+jXTT6wX71LAVLvQIuJB/o2Mf6rv0OI+txxYeDWNfT9Q5IMtzAKmMxuGnpzC/2P7rj8ZDgxJ0QoU8eCmN7lpZvjpQgK/JwJfiV7Dz395auE4fsU8L6929n2EXpLTfSHCw8psP7GUeHHcejdIVvIfZHEubZ1ZpGS0Ou8Xehnoigw9+OLEk8aOr/QscbuaApk9ljF7s9C/zz0Pc86lgIXbU6NBuejB3vz3mU8psCXx/OKNSXoV/XopkfjKTBWv9VyxQd0izaNlaQnFJiR43TS/4Ru/XxLjmkiBR72RDkGNaDbQZFBw1MKVErSLD63McWhTEOL4TMKtK5lbOZkoF+hORlXJ1Pg7NfUIdNu9A7qowLdVKJupO6NetSHzvsceMqfU0Dfr3zzl2H0xx+djmumEXXvnkTmhin0pJy10UXpRD72OwlemEVvGlb/uC2DAiJxeU65S0z5+7u5KzuTmPdKZ7Pmlr3639cd/DK8OYvoO4cNv+zlQD/haj74IpsCtQ4Zk/f40Jc61WmSuRQoXin364sQugdfQGHiawqs3FzXs0kCvSJ4e4BoPgUamh6Xekij23/Ytze6gOj7409vVm1GD95eMMVXRAG7W31KAiroVaeuPwx/Q9QBT7fas+rohz/ESbKXUIDy7vDBot3ok40cKQGlFPgDYe9X6TE5W8Oaf28psNQvt87aGF2xg+Z+7R3RFx6qnM01Q+dtUfj0u5yoS9I5Mcst0cOtqlZe+UCBbZ4ZRSdOoiuPJewcrSDi7ZRiRZ4dOit74YkLlRS4Ubz7zWoH9IwNKy71VlFA88CPWDsXpnO9Cnex+USBmmGV8+880QslDe0YNRRgPym7XvgG+oZ5Ff0jnykgfr6x0s0f3TbdQKS5jvi+qFU+0nIX/XtyYIdRAwUCdI+2KN1Hf2QzEFHVSIEDoUYaYdHov02dVHWaKdB7gj9s+An6mmGumpIWCkSeK6nfn4J+J+Wz8fY2CkweNZh59RLdZyS+PJtEgU9fqrh5ctGTNW5JylMoIBCryX+lCH3PvIdnCpUCQttes1DL0FVSPEvF6RTQMVTp1KxE/5TqOxbDoICuZ2Vq0mf06cvh/PztFJgyd7Fa2YKu7vFENqyDyEcPmL1ERY+Ufrl5RRcFVjhqBdA60J+P5kj4dRNzYIXTAvSi39PJYp3/SvTZf4xTmYPo/4ITqG7fKKCcHfZacAJdR+NG3GgvkS/7w8du/0YXemt40L6PmOePfBeaWEDvv7kw+bWfAnl745Rs2LJwnxOPAo8PEP303hvlRnb0hOvc7ORBYv9pehK7edGXRZy7fmCYAox5o7ksQfRTkdHdn0aI+vCr+cN6cXTSr4RtMEaB3Lku94dS6HwS3h4l4xS45+y7dsVmdLOrG9O3TVLgUXZJss9WdHuX6LrMKWLeEIpeN6GGnuFE6pD+RfSpv+v8z+9GX0EjdyVME/2o5Ci1cy/6hFBMi+AMsc+o/YJHjdEvxQjmRcxS4EMn295mM/S170z9V81ToPBLkLWRJfrKCW29W38o0NfcfabqJPpU9NdfcwsUUF1ccxTOogsKq0RdWaJAUqKi2jsHdF2GoszwXwpYjKiw7XJFr9NpSbVjoUKsqOK7Ei/0xFwhgQ5WKpCPSZ3deRN9+/2/V44so0IYdf1sSQD6/T0BFQ3LqeBYIn91Vyj6foXkv3orqbBlk9GPdw/Q/bIslN6tosJ7uLNHNxZ9UCHeeMdqKqyVGgypTkQvX3XZMouDCiY/rn4wfo7e+rzRXIaLCo+TobclE933bL5OAjcV9p/f99MyDz3n+TqxtbxUqNW5P9FdjN77eXl/GB8VwjXk2y+8RxdScUxatoYKO44K509Vo49pGhlfFyDOG3fO+0YD+m39J70/11JhmlVEgZ3EdD95p5wchaiQeVezPoqBbtH58Ps3YSp4S7dZSX1FT5FWNjkuSgWb6h+k1/3oX/pUUlrFqOB63F9LdxR96EbMoKE4FVobXz1s/YluYmS9/oMEFYqXO1HPzKPzp17XU99ABYfvtSun/6E3D/6yyt5IhT2G9bLBK7P/93yPCmsZKSJOOK6pruNGd03uMn0iTYUfy74qvRZAN68z3LZGljjvClZBAzF0JYMFtpBNxL11Dwx3bkQ/e2W66p8cEQ/HnuR4yKEPp2718NpMBWMt6dPcyuh66hkCYwpUyDcK/pe2A/32LZuUs0pUyIKW8D1a6HvajTa2b6HCRDsbe9ce9ML4C/cObSXO27b5io8RepzIm6EaFSo4UU0+C5mh78pUUdNWpYJqjCt30VF0rxdkl4LtxLu8T9K1OMm0/qkncZvVqDA/3XNm2g7955bA/CR1KmR0al2JdkAvPhf6VnAnFSzWllzWcEVffywzL0yTCl/VbU60e6E3WffEsmpRQapDdYfvTfTZSvlL3rupwBaluygViG7f47dtTJsKByfv5X8ORb+8srfPDqgwdk3KyuUh+mSQSTBDlwq5b1cMCz1GP1dQImK6lwqXVMHpw1P0uk7ZuCo9KkydprVffMF0D0fus2vqU4H7I2mnQBa6/sUp+xwDKgTUad15n4+u4GhUKG1EBc4xkQrHUvS0lw8mHxtT4Xz8lSHhCvQgt5p1PCZU2Ln7IGtNDbqi0A+1gANUUNIsWOXZhO7/bURn7iAV2n9lLspQ0NmlKOqXzKhAqtfqobaj18g8keg9RIUnIpfyg7+h26lr/7I0p0LadgP3XYPoLKlvihuOUMH2crPU+Di6zZtlTrpHqSAjzP0x5TfT+mUbuYssqaB7dbXpsUX0tX9XP918jArj9Po6nmU5eJ+1ZRJPjxP14eqxHTWr0RPsVMPXWFPheWzpPV8+9GMijkNBJ6nQ5vKbqiGMzqJ6Sm3Bhgot6gLcPyXQdea4XV1OEXV+vdj2bBl0kwK3uO+nqfDJgt/IQRF9NDMkz8qOCjrLWA5sUkX322RW0nCWWMdsTKdvJ/qA84dsOE/83rpnYyqgP62mPSywp8JHvZ4pOwP0TPeH5+QuUsFFajpP+iD6iw8jsk8ciPjhkj7TfwS9aOwblceJuGcBj3/pJ9Af7nX18HemgpneeLjTGfRAtkesM5eo8PfF49UqF9FtrxjcdHAh6gZc8/x9Gf0eKWig05UKPfzxrWWe6OwOh3QPuVHBUuSfWMANdDPvpOAqdyo0m7y2MAlADwDXcnVPou88K7y5NhTdaNmHbxleVGhaKRDT/QCdtOzutPhVKkQ6khIzYtHHbtf+vu9D/L5gPsrzKfrPcp9+tutU0Ku5f33vC/RPs/FVnjeoEHP7yWG+LPTvl+UeDN6kwt6P0sJf89EP260zsfajQtLJrY05peiv+Nynm25R4cumT65+FehCJQrhuv5E3RsfWX64Ft0iRmdNQQAVuvwy70o3o6cNZgbJ3qGC5rNVizMUprgacRqKDaLCozUcpxo60O933tzFcZcKR6NL8p71oofNdPrcCKFCaq/otNcQ+kXPO+njoVSIeL1jk+kk+v4o96rT4VQYes1rtGkWnX4vtYl0j8jfh3nH/y0x3UMCf82++0T9Wdho/WV5Lvad+dKsNw+I+STq3IFCTvSG7se35SOJ+rzkv+XBGnTRO5n74h9RgUry/+ssij4lM/KbM5oKQjmOH/ZvRD85Yxl9M4YKZ6X3uG6WQ1+2bVhqIpYKq6q4+Fcro/NzJT89HUeFdaKU5KEd6GbvvdlJ8VS4lp0o1aCFzunreFovgQp1y1wfZe9FV77tmVaYSAUiTKYfGKMrLEW1yyZRgTJhpO95CH2l3KfFmGdUqPQ+GXTCimn/29m42VOI+p8WWaxri37I0ojTJ5UK2kNTDLnz6E+qHs0OPadC8qtbw7zO6GE5PW0n0oh4PqI/OueGPm+sGN+QToWlPQbdvT7oBz+7HNqdQYXj1JCKpltM61hnTmdlEvOJvdCj0mD03Wr0IIksKvCa/DyaFoHuH/RzZUQ2FQ6QpVdHRaNz35rz+JtDxLlJXpZ/ArqEeX/r5ddE/Cw903VLRQ9WKhL7mkeFUMX5artM9Dydc+ZmBVTQEqrQtMhj2mfxuPeHQirMzi08NShBT/l0KGzrG6LPchRMa35A54gNCk8qpsJ6v5FdyjXozsfDr/OWUmFz4Ksr0k3oK3bZHvN7SwXPffOPRSnoqefnpCbKqLDmR/trvg70JHarDttyom+GWpay96KPm3rdbn5P1I1DbvmsQ+hc58wFdSqocNdsR8LCBDqv+0BM9kei/iSmeM3MoMembVspUUW84/6qPT+X0Lvkt5wNr6YCh2qzrzfb6/89Q5qWvfCJmNPmRI/OrEA3q5D/4VhLBa8/tameq9E/yklytX8m9q/R4fibC93Nv2yDcT2RLzmWmZ586J5zvzaWNBD155i23YwA+qW8Gl65JmJuV4mM9BZGD6ZsHY1upkK90jGteTH0kLuKb5a3EvvcG3ny+nr0ml9Fl9zbiHOd05tZkkRX2N2wppdEBUX/y+y3ZdHlgi+8OEQhPEzo0fLN6M3zQbIfqFTY7qQTc1cJ/V2J7KMtdCoYcA3xc6ugrx+E8ScMKmhYiq6M3I5e/KpNnaOdyAtlkpuwBjpjE935agcVBH2EjiXuQr9848CDH51UqBIaKpLWQe9v3pJs0U30ox8HwjP3oB/W9U6q/EoFiZp9Hdv00ff/lAlT+Ubcz31ySqkROsvK7eee9hL7X7fYu+cA+raERAWuPiqw6n58Um+Grk493e3TT9x/m2zTkSPoo61X/QZ+UCE6Rcm7yxKdlPON++ggFeT8GXEXTqBP3osNqRyiAr+OktpPG/Te8JifW0eo8CZZwfjmGXR6XbtR4igxz3jRqOzn0R/ZnQ7nGKfCC3/VjqiL6Bc9pMu9J6iQHbbnuKQz+m7xjR19k1QYOLLyUI4LeriX+Y/DP6nw+knABy13dPukN93vfxHxIPkuvc4L3TbfqFrxNxUMn+WzH7uGXlC/PPbxDFGfSQ69P26ib1w2YLlijgqirn07vG6js3qNLHObp0LCFlmWlXfQtbR5nnb/ocKp98r7Yu6iW7iZyJosEnWMvIxVLhzdVDkprniJCnSxdPWS+0xxFbJiQfofMVfsWddv/AhdJvGa8QMWGlRO2XF1xqDP+P0JXGSlwS7yrazL8eivjW9nX1xGg+ow70+sT5n2yc9ZRVlOgx/vja2ik9HFxh590l1Jgz7uP2c2v2B6l1/CRVmraNAmHNZf/hK9SvPRQ5HVNLjm8++beRZT/FNZrQM5aODVdNxqMBd9e8cp/klOGkhkJej7FqB7nMootOamQfir+qy1xeiKXu37anlokHjqR/irt+gdqhMfVfloMH38Z//e9+hJL78rPuWnwc/NU8XtH9Hlhwv8VwvQoPhkP5v7J/Sy1SdrPNbSQPFmWw1nHVOdEWXMfBWkwZhAybIXjeg9m2XWmgjT4Fz6k1KdVvT2A7vXvxGhQV6Z7yCDjJ4eKS4oKUaDN6SzD9zp6K6cH+fC1tFAyPlgHk8H+kCNbN2MOA2UV+iYZHajW1MMgs6sp4G46E5bg16mOr93o0rjBhq83agz3NuPrr8xp0ZdkgYJkeYTfkPoGtdHjZOlaCD23fuSxBi68Bl6KacMDXQCX58rm0QX+uoo5CVLA3r/X8rxafTfrKmnejbRwMHz/Pu5WXQO2vXo/fI0UHv6Y+PjBXTdC1PFhZtpsKMucFHjH7rgx3816xVpIGWz9zCDLe9/fzqeUnlXiQZn30tu8FmJfu0PLfPnFhpsMpO1F+NAHxmP9Tu5lQaGLmab3nGjv6d+061RocHpGymnbPnRD5e8Ht+qSoOKto1rWAXRU5JYQuK20+DS50bt5yLoO6OaeJepEfssftlrKI6+/alAgLM6DU78fMMyugHd+FNzL1WDBjsb52MfSKNX8C0ogyYNUqLcX6rJoXsHR114uYsGsnGbVDsU0Du3xobz76YBv6yg2m1l9D+8/xKvadPg1O09eXKq6Oe2fH7yXYeoD9PZac1q6Gb3xu8c0KVBUtVJQS9N9Os7Lp8s2kMDbpVDSxLa6LpyehvW69GA6hNqW6OLfs/BoTloHw08u7k1Xfah9/3tdJjQp4FoXGe4iBG6xXDclJUhDZJ7545XmqBHKSecrzAi8nrq3DNnM3RG09dP8vtpYPxH6rTwEfS/dafXPDShQZyyWlylJfoFmXUm8wdosOV9osnlE+jC3RyuZ0xpcIBm6y1my/S+s4q368xosJh8Tbz2DLrSlWu+2w7ToNf41y6P80zxtv/nhThzGhyfridJOqDT/O9rs1rQwP7Tsr4WZ3RlUdN/F48S+diddNnXFX2RUyG71ZIGJaeS3bZ4oB85vsFw5zEij85zTHZ6o3/5u7kp6TgNAjm6foRfR2+b14dV1jS4cGGdlbYf+gpDl8TLJ4n4iazVHfdH7+lNHqDa0MD16ffUpCD0M3VfJLRP0SAj8cqtw6HoQjNrdJ+fpsGXp+60ZRHoiueMTTntiDqWM/LizUP0Ezw+Rm5naRBL7xh3iGaKz/FE5S/naOAvaZAnEYc+8a+ARdeeBusjlcbaEtDLdhW/T7tAg49KD1OCnqG7PE69yO1AgzM/Pdu0nqMX83v+dXck6tu3Tp+pdHTSU7lb7U7E/c/UPkl/xRRvGsVjupdokKqoqWGbyxQ/5A2G6ZeJfuetekCwgKk+ONiEc7sS520tam98g94/4VTufoUGQ/KfegPfMv3exrD9ixsNWK/YndN+j34yfaQXPIg6H3v/1MxHpryosqC/8CT6S5ApJfcT+o4032JObxr0b06udKhDv7HvfMCVqzTguBCiINPEVGcil2vRfWjwV2o119dWdKOAY927r9OAS1fqQjwF/TOHzaWUGzRY95SmZclAf76OZ3CVLw0KxeRD13Sim7+8YHrJjwYsD0XMW76id6Scf0a6RYPPXzIehX9H/7a4rFvDn4i3hi7T/QNM9TxdZ1ViALFPzTcB7CNM8fmIX5ztDg2EZ3eo1o6js+dfFb8QRIO5NusTQT/RRX66sDcGE3kRq7SoP8O0vt6vryohRN9ckyG88g96TfTflOhQGqzhIGfVLKEfoN87/CeMBt/2ZZUFs+bjPDmTMGJ7jwYDd9T3Ga9Av/RN7kpVBA14ItwNOFejX7+j0Cv3gOiP685XNnGhf255phP+kIjbEa6SB3zoPNlBQZORRF974yxnsRY9ajWj1CKKBnI7gvhERNA12h4wSqKJOilq7d65Dt19IqtXPJYGe0XHzJI3oB8xk2fcekzUw+/aafbS6H4df0v64oj9y5p5Kcmhb/NVumP0hAZKoVIVPxXQtSWzd2clEPWtrDSgVBl9bc6Nr7xPifVPCX28pYpewB17yT2JBiGiu64aqaMXyc/9oD0j+kL4pgy+XegHBp6Y7EqhAZ9l15Ev2uh623yfJKbSYPva01dT9qDPjsXTWF7Q4Ovp10LO+ujnl48vnk2jwT9yi7K6MbqQtTtPbToNRJZVVLAcRN/J2MSpkEHMybf9GxsOod85s/xXeCYNOL+KmMdaoFt1rqqZeEXMz5mBh88eQ0/csiXQPJu4B9fa+q0n0b9oum4pyiHqUklv+eIpdOX+xo/Cr4l9cjAU6s+imwvAnmt5NKgfecn/+AL6g/TKV535xHt1WbrZO6G3BR5hhUIaHLP9fkDNhSl+7o3tSS6iAWPULHm5O/pYavilZcU00Fr21IXihR6aoRR4voQ4l2hL8fNr6G/86u7UltLAKK3Px9MX3WTVKbfNZUTdEO8pMvBnivONQ8Zh72iwebTSSSSIKa6yznKNldNgMDDiyXAIumZIfanpBxocMd+nX34PXSxW1Px1BZHv5f0XHzxEzy08QOWvpMGwssfKc9HozhWn9NyriHtbPSWxMw7d8rFpAqWaBu9f2+RyJaILign2qNXQwDug7O23Z+jfpHJ5YmtpoPGVU7f4Ofr9+yLyc59pULr+ENx7iR62+6DS8XoamMSHlJzNQu9cYbzubQPRv9JLX+16jS5Zu+q3WBMNXOK/iawpZHpf6zul15tpsLuKjWW4GH0+sfxiZwsNQl3Xn6ksY7rni1ls2m002DeutvvJB/SF6IPBiSQadN7Z/9CjCn37v4SZJTIxR/nanDatRU++GXPIlkqDZeKuGfIN6PzDatHvaTRYlRzgvKwFfUrcu3o9gwbtB+IyuklMdWn8aLfvFxrcOJl/+i0NPUStube7nbhnjtaHMe3ofPUdbTqdxPdjxK/d7t3oSf7XXj3tIvJ0w3q7Q73oj9XSXP5208By/BCr8g+m+yk5sd62h/j9lntiXMPo53ofFZd/I+rVakr28Bg6S/BBLYnvNKDlbCqrm2K6h+sBGTf6aOBsELQ34zd6dtQ2ts5+Yk6b+aUXMo++Pu2IvtYAMVd/d/3gsIQeE9DvFj9IzOdb/xbuZy3434Hle+j8EA2yZhNklFagT40b3js2QgOBE6Y8PKvROaT4rhWPEt8vrgJuk1zokU4ah4XGaVBzeMyMzIe+MbF0jecEMV8JdKW/WYs+ERz5njxJfP/WfveJF0H/vFhuofqTBiv82Gp8xdHXNWpQH/yiwQaDXeFnN6IPf1qAiWkayMuHNxrJoJNKV0QfnCHm/y3zQcry6DzehymvZon52dq/bK0Suntj+9LqeeI+38g7LmxFd7ybyH/xDw2qdMYie7ejs/hE89YsEPXqZ6tavQY61en9rPQSEYeNFPN8LfTNymvrb/8l6kDt/FA8oLeFRwZ9/UeD3C+6CwF66AYWalu0WenwbCYz6JIhevihufJ4Njps5dMMtzJBtzpI3zm3jA62gqOce83QewSbE4+uoEPaz+oVW44w3YMnYzR/JR2mH1b7iFihH1H7KcvHTocX7SMXlluj128UNr60mg7ReVqtk7boEqx6lvUcdGCZL8zvskOPT7pyUI6LDpkPjvE22KPLfnqqHMhNh6Kjcj9KHNH37KqZ7+GhwycpKY30y0zxVvs9R5uPDn0txmwxbujbt/86GM9PhyjVJMM7XuhCBpO0mTV0+CAhvcrzGnpiDc34yFo61J+h6Z73ZTrv9ZS0XEE6XG8snT7qj26rYDbGKUwHkc3NUoZB6L5xDImLInQw0F3bsDMUXSBi185qUTpIMsLHFCKYvMl198Z1xHsV7gyViETnW+etcEOcDmejRZL5YtB1dxuzMSTosHHXFtXl8egXp3urtm+gg4qtt/ZcIvrvlbou9zfSofntbOVoMvqg+snlI5J0SFyZW/ntBXqfwfYAA2niXX4n7qZnoEvPV4wky9DBVfOTSlM2+k1eVp0lWTq03ZJNqspDtzeZ8DkmRwexqx+C3xYx5fWl4KQCeSIe6h4N55Wi12h8yuFRoEOKWGptRjn6Nofn6Q6KdAjmH1+f8hFdpHJjaLUSHWLNPCfjP6H/ZVW33KBM3KeH5u6oOiYf+Mp5bSsdVolrsUU0oTNUxV5RVOiw59u1vXfb0L8+69m+VZUOF6znF/2p6JyTymkh2+lgv6F4m+8X9KEuFra+HXS496Gwx6cLPVvO3FBHnQ6PG36u9vrGVK9C13s91qBDauuVbLd+9Gcfz0T83EmHzcdVG1yG0HeHCj84sIsOPGM7zl4aQ49N0rqepkXEOf81T6cpprr3rs6MRZvYvzEbm+NvpnhLLOc+oUOHiLXN7A7z6GF/1hCvRIcrk10hF5fQL9z/pM+9hw4dVqp3LrIW/u82gm0f7PfS4V9lw5+LK9DL9LdJV+gRdSY9c9hhNfqVL99cRPXpMOrdYuHEjb46pPuFmwEdxp/v0rzEj/6aS/pTgyEd+BNGY10E0RXFXzXJGNPB+nO/q5soOuOy24eb+4l3j9xU7SmBXlXmEU8zocORU7kPfSTR75Rm2249SIfeyFtfbsqi260X5bprSgebe/FP/DejKz/LT+kxo0Nc1hI9eAu6/bSnlOZhom6YZEbc24Yu22ob9tCcqBtVzz48UkMXGbzYNXSEiAeHb47xmuhxk/dF9h6lw8WHzg+StdEfJ7bsjrekg2/YXpWMPejPU6T3/7SiA/3F2f15+uhD+cG6+4/T4aNia3epMfrO27MbUk7Q4fv5u2OVB9HnPlwenLemg1Z8uFfjYfQdkkNxh23osIGry4d2FD3S0m5Hhi0dYNFntuc4+nF+WjHLaaKevDw7MWKD7symK3PsDB1iDsSfmT2Dbt7+xCfXjg60jetNl9mjKxn3F688R4fz1hOFvI7oxX+Fv9qcJ+5/K0+M+GV0q8ytE4X2dJBtvja12Q2dY0FukPMike/n1Wo1vNAvJi3W2TkQfWqDjrDBNfQ3+hlRpY508N4U/c3CF73+yWYjPmc6ZCXt2nTOH32DmU+f/SU6XMtR7ncPQidxRTmUX6aDv/uV9YGhTO9425Mu4EqHAq5lpKgI9ObjosqOV+hwMPr7vxeR6I57rl+qcKNDj6zAy+IYdJa+mGghDzqYUB7W18Uz7XP0QpqzJx0qC05d6HyKnrhyOKnSiw5llBu+Eyno4x0i/iJX6cCuP8S7LB2dLjR54LIPsQ7vi3XCr9BXnXFiqb5GBzPt18mKuUy/PxuUIHqDDg5kjhTdAvRdn3dLutykAxe1UNyyGL1WPTSi2pcOgXtz+J3L0HOsHPtEbxH1R3T2lv8H9DoSQ8rlNh0KLe47xlWhh5i1GVf708Fn1Kv5dS3TPj3NjosG0kGHlp31uQF9esj08OU7dKhavmPFtxamPLJo2FYVRAehi6sZ82R0QeuKP8J36XB/bIusAAOdnLI5yzmEDrV+yaNKnejibWwGH0Pp8HLlOWXDHqb6E2r4WTCcDicveA6f6UPf4/FL1fEeUScDqRtvDqLnbmMLeh9B9H3twLbHo0zr2Lt8XPOADi4utxcLJ9E73qj32z+kQ+N0Y3LbNPpk9ZGpt5F0YHth/3F8Dj1+e2U/TxQd+i1MrbmWmPb/4malXTTRv2gBLgqsRf/7wbLbwW9iiPicX/nXaAV6rnD9Do7HdGgIoa+8uBr9jLV5vU0cUVcP/w4J5kaXlhMyyounwxuR08Hp/OhW6/hzlicQ80aK8L9aQXQWhs6iVSIRV3nrpgZF0asX41VfPaUDY5mzDcd69GF5ycN/k4i5yJJ9n5IU+rGFRqvDyXTIPjP53HQTevSaeIPnKcTvu6RvXVFAp3AFSsym0sH5Rgo1ShmdGhzUafyCqAOTTi9KVNEFJBMDEtKI/jLoN9Gpjh7lWbVmIp0OczzdBaxa6PxSv0P2ZNAhgDvo5yZA76zcMvQokw58od6vDuihD/66qPLjFR3+yOV3uxmikw+lnNqZTdxDsFp4nAk6yYPqFZpDBz9D1sIKM/SqP0uenbl0WGAVtBw8gi53U9hGOY8Oj8xc3fiOoYvHSCjdyqdDy6c1qzVPol/4yvm9rYDoU7MLonan0S/97LotXUSHYx6KL8LOoe+8eJ/d8w0dPtc9yyy6iH7lyzrvmmI6KPpbK/Q4o1/s9m0SLqWDsKy1DOcVdF7eQk6Ht8T/aiQ9VvdEn2Ar3va2jA5btOSC7XzQTQ8HAGc5HXJyf05E3ESff7BW7eR7Otjxs5LLbqO7HrNfk/2BDn+/HFYZusN0n9oe9KUKIg5v9a0SDkXvpWkGmlbSofxqyXH9CPTlpfkiSVVEndzRJOsRib7Xpz1qopoOTySlnFNj0A2ysuaghg7nst4okePR7X7I7HtQS4cw7dALy5LQA8t0vHs+00FNK0F8Ryr6/g+/H6rUE+dlHzU5n47eF6gfdauBDl4rfX7HvELXStrs29pIB73IvaJ1ueifnyWabWwm4nalUfFCAXr+ukR21xbiO/Hd3RblEvTKZOmMD63E/Mm+3M7uHbp9tdI2XhIdtmuXXo6pQM9ZW/jMlkwH+cz03/XV6Ieki2azKXTQTmie+fcZPeWWovoSlQ5Xbba4qTUx+bs1Jw/Q6cCqVnXBqQ19zt7e4QmDmAMv3KcnU9G7eaRsh78Q9U3t4UfGF3QjvT27NDuI+a27VpavG70i8sNScCcdqp+qLjfqRb8R9vglrYsOQTmtJ2/9YIq3stpdsl/poLsveWvpMHpZrlGhew8dLB+l3vg5zpTvv4UEK7/RYX8jTU/pF9P6Yso2fN/pQBbfdcd+Fn1ZZki4bR/x/ZvbqJu8gH5HRTY1q58OStn3vDr/oedpLj7784PIi103Noksf4PxcIgjyGiQDuI+sYcs2NHXs5qYxwzRwTOke/oBFzoLtXRF3zAdqMGHBJr50OmW5s+2jdJhdcToK05B9Pt8fFJ+Y3SYz897byyKXh42Hto4TocSjiSTuxLoCYeH2kUn6XAzrcC8VhKdY2SB/8IUHV5EjZNXbkKP6JFUKfxJ1PMe0xYDBXTTt5ZqrNN02PWIvC9YGV2SJUbS9Dcd1uRf3/FZFf2qZsd0/Azxfapr8HS1BrrLmGTuwCxRH7RV/U200FtSzh/aMU98j6Tr9NwD9JmvyYxbf4g5xNuxpFUPfUGBZNi0QMyfaYUca43Qw1f/TBRdooORnDjd6gA6J+tS+/m/dJgYTZJIOITuFjP+N+8fMc/363T3WKA7mlau/svCgIKlWZFNx9GNst0XjNkY0CRR3+Rkg/5b/S85ehkD1JUKF/POoAu72Dz6tpwBu7mKXsydRx9ghGtuWcmAnU8bPoMjuuVscM3VVQwo/DBzPvgy+siB/buq2RlgbKJ2s8UN/Yd1SxQvBwNyRIJ4RLzRxdLW0E5wMqB0cUD0zHV0gWzevy+4GGBZdzwp0w99ceoj1xQ3AyIOtj+dDkBP/i3DtpuXAcFHL4rAXfQ7O3d0B/ExwDuTjSs0HL1q18izNn4GlKx56UN9gC53Q3+/uAAD3hy2OiMZzZQXN3Ta7dcyYFqOt+pSHPqn0rZDeYIMEDjS/PRtIlNeFPzJXhBiQM29R9OrUtDLBgun9EUYQL5vU300jWmftIV1D0QZIMmjyPM8kylP/9QrtYsx4PnbP20/c9C1yRIyMuIMcNjXwLu3AP1R5wTrZQkGPLB6UvuwGD3+0e6a4vUMME10mP9Whp7i8c+VdSMDJst2vFCtQM9Z2M5mIsmAesuF+oBqdPvnVJ8oKeJdeN45Uj+jiw5/pXdJM4DrlmegXBNTvhuaisvJEu9isEnkWhtTvmiIG7puYoDzfKNsE5Up39X0j5XKEb7lYvbGdvTxkmozts0MsPKYyfHoRt+tHbPFRIEBf096KdT1oqtrFU09UiTO6/5jw/oB9HpFiYROJQZo6urfdx9BfxBcpySrzIBa44dX6ybQK2qKUi9tJc4lUNexYRrd8EwXyxsVBiiKj5R4zaEXNGvt+7uNAea9v3mbF5neK6jxksF2BpR9HeiRZS3+3xv+ht6M2MGAorAPir4r0Edz3NxpasQ7nrg+SVuN3srlZ7ZegwF55aJbVXjQT0S84rffyQBf6biBkDXoghm/SrM1GeA5OyvaJ4S+jWRu9Ps/tusDLsfvAfw+yRYJUcqeZSQz60RklKgQKikjM5HVQFZIyihkJ2VmREgZZZdZyX3dZlYpkl1GPffzfD/P7/T6P4/Xy+v9/X7cct3nOudc5+qtEnoHut3s31j20GXXk/v2VYk360Z8jGwqe3yLQQ1X99Oso9oDQn60lD3N/J5Ten+V8N6iE2vfTvYLLZyX6Vlq+rzTFic6yF4y9UPw+AEq0bqy6ZCaXWS/Ptdn6f6BKjH04JL707uXG4f472NyrTTr/cCOBzctZP8VNb1+p8EqcXnU+uGt+8uudzLtwgJrldj7d6jm3VJ2Q1t9q6QhKvG36HHcG2vZQ/Ktz1QcphnPhZ22WdnIvuuPU/Whw1Ui5MGo4uiRshsXDRocaqMScy37ZGmPln1rr+qeWbYq0bvqx/bTxsneefB+L0M7lXjg5l5yy0X2O2squ0waqRL1V0UONHGX/c2Mbp1jR2n2mdgtlTdOLTf+k9rlFdirxLjS4QOLZsheTXkW1MVRJTolXi129JLdZ8CImotHq4SH9td2F+aXu/5qCxcmj1GJt9WfZxgtlj1v58gbFZ1UYnfR8p8r/GUf76n6bT1OJVY8U23NXS57tLqGfsh4lfArfHd0xGrZj7q/1n80QSUWDIrpc3ad7F+mT/jXwEVz/SX1rRtvlP2ci9edCa6aedi6a9rKzbI/OWzgv2/i//3v/ruVHyH72wtOem/dVGJjFx/huFP2RsUtw9q5q4Ru181myXvLXf8j3y+zPVQi/+OYXa2jZe9/crTF6cma7nlledgh2cv+nJz2Y4pKfDiS/rzkmOxhzdf6WkxTieMJSxKmnJJ9xfrH85Z6avaf4OtVHp6VvfGebSNTpqvErjZxj/okym5/44Ze5Zkq0X+lmf7hS7InzZyYNHSWSkSG22bVT5X9+A/nYSGzNfutfVnNlTdlr3c/MfnBHJVocMT60uc02Xc6+zSoN1cl5q1vluf6oNz1V17tONZbJUqeBYfczSy3jsxzF0XOU4meG1Yd7aOSfeHwHcufzVeJ/UuqDTz2TPbp8VvmNF2gEvFBDR0b58j++OEjS4+Fmv1z64nnG97JPq+mfcnBRZp17Z+e8/eD7JG3am7PXawSvg1mu3kVyu4x85+Bia9KxPQMHfvqa7lxHtd85Ww/lah0tvMth1+yz/w5/8EJf5W4ON7u9I0/snc8/KnilwCVeP89t75FhQtynT4KMei6TCV22v3+clxbdt1sG/2Fy1XiYYdVQ5tXl/1WozbF5wJVwt8hsNE2HdmD/upfKV6huf7ln91r6sl+/43BrN6rNPuP9/1WK/RlTzcz+eu/WiWOvTR0/2Uou9Ngq/mX1mieU6sy9L2ayl66ctK90iDNPlnn2+B3LWX/MXypjuU6lbjS1a/QpZ3sbUrDzVes1zwv9k7VfdxB9tb/DvRNDVaJKr/jj43oIrvF4QOmlUJUYv4nt6s3u8vu4BZWZrVRJRoaz7Sz7C27/sopF1aHqkRTkwdjLvaX/dFc47E3wjTzJD4ku5uV7CFrE1SVN6vEAfv9D08Okf1z23aW1ltUos6+qoNMbWV3PekdErRV8706XzU7NEr2t/7Bl26Ga/aTiFvbWo6RfVCBd2aVbSqRPbHxov3jZX8/oel96+2a+9Uw8b7xRNk/tt0cF7RDJVRD9u7f5SF7s5Mp825GavalhbcLDDxlrzjiuGGVXSrRr0X3UztmyZ7kant48G6VuHQv51NDb9nb99tjuGaPShR+Sz+4fYHsL6x3zru+V3OO0vmS1dBX9jrZ/eMq7decwzfbLduxVPZTg4PuDYxSiX9FOfsNVso+vmhWxooDmvPk7sN9dwXJPsmsIOlqtEq0qLjf3niD7BfdytaXHVSJNWtvvNwXVu77qqL79o9VCett+rktwmX/8DUzM+CQZv/ftMkzdofsHapvGJl0WCWOZpu5m+yR/bDP9ZMlR1Riyo3vmSeiys3/YP/vPY9pnqfnlCtdY2W/GXvMeNFxlbCt+LxV4lHZ3ZuOMj0bpxKPi/9oiZOyt7WdYvz1hOb95VPXCTfOyD589ZtvnU+pxNaOK01sL8ie3OTOiTmnVcJT661PZnK5cZ6va3csXiXcz4zt4Zwi+5ass4/yzqjEqtVP5r25Ibvl7tMWbRJUYt+5yW1mp8me1kQraPI5zXlmbbHjj/uyh52OOrf/vEoEddn6e1mm7DFHNqQ/v6D5vh/NDKuryu0DzknXDS9q3hc+3o/f+kz2ZUYdDjglqURFj5nXm+TI/look8OTVUInoMLIo+9kzzK4XP3RJZUwmhrq0CO/3Hr593irzhWVeDGo7oPUQtlthZHW8Kua/VAEXR/5rdw87xIyOihFJbYtzjd//kv2462bb0hNVQnzGn0MZ/2Vfe/c7JjSa5rzjN5Cv5IKifL8MOnQwd43VMLtSITjusqyW9mErV10UyUOv46MaVhD9iaB6+3ib2nm4cNl3odqy35g1OaST7c18ydwwNme9WTfr3NgXfs0lehS9sL7dkPZY6ue/zMlXXNedRwdO95I9sLQdIf9dzXnw1V7Rxc0k33mN/XGp/c062LTRf+lrWW/vPrVcf0HKvFsSUxjXRPZLbc8OWn/UCU69nLpFt1J9r8zk7aFPNLsVzef3ujRVfZ417XutzJUIsqg+cO0nrI/vtBDVytLJa61aO/o1lf24LTrB/o+1uxjD4vsvlvKHveqg8HibM17UJ2F19YPlj196Eyf0080+9jN+FNNh8tuMmrJ6QKVSox4Fqt/zk72FCuHzNZqlUjpYvfD1lH2Pt7fVG5PNc/T2Bjbt06yFzd3So18plnv9Y8aBbjIXjtmSVjmc818Gztuan132YcMdrTUeakSW0Rcm7ip5e6v3ess61ea81h0zCTrmbLfq9F8RGCOSkwe2b/eKy/Zu92scSTxtUp00F3Q389H9p9pO/O+vlGJR3FWr+svkX3K5Ls1O7xTifWfjpSeDJA9SNmpN/W95ry0OXqrzQrZGy6u+G9Pruac5tQxKneN7CFr/qRl56lE439WbVcHy17dbnVAnXzNc9PibevmYbLPM9hed2iBSny7WmPP5a2yjzbrHBz4UXP+sT4b4rJD9hL1kPcXPqnEAN/n33/vlt3D/VnrL4UqkVtp1ePIqHLrpWbe0PZFKvEnNKqTRazs2s2mjXT/ohnnK90rKEdlT3tvbxH5VbOP9ew73Pek7NNjY6s8+qYSsyJO1zI8W+76Y9zOV/uhEicWbBmSdEH21iZLbCx/as4Dc57+drkk+zK/gtTFvzTnsfrr25SlyG727KzxyWLN+9Sf7WlRN2WPCn/g/L5EJfJOa+cOSpe9KK/HUuM/KhGdku6f90D2r8bvV4z+q7nvZz6sC8kqNx+WqGZs+Kd5T6/pXLuLIvvvPtW7p5aqhJONUa3s57L3j/N5U1ymWY9f2q/0fy376Tr1FnauqIh5voHezXNlT419/WGqliL6TjB6cqtA9vUJzwfsrqSIvdV+J3gVyZ67rCwgQ1sRj3800NH/IbvnYKtd1aoo4nPY7GeXSmR3tDm4u39VRRwZ8LvltFLZj2YYr1hQTRGB85Pe1K508X+9hfGxoUerK+J80PHGF6rKbjZ7yLeXNRQx9OWddPdasn+vUBjYoJYi8pU632vWlX2M0c4vw3UUUf+RX/i5BrLnl1oPDqytiJLGVePcDWWv8OGzf0IdzfXUPt1Pp6nshw03ReTrKpr3tQXWiS1l35HZYktTPUW8bD/y1tR2so9zjJ43up4iuuf3uarXUXY9pVa39fUVYbaiZ5erXWQ/Hz1BudRAEZPM+xt69Sh3nV/Wun/VV4ROf1t/oz6y19LadLdNI0X0yXEdnS5k76rnZehsoIioMXNj/AbJ3nmSsU2YoSLiHwV4mQyTPbR95MRrjRURsW7lSfUI2Tcdezb6l5Ei2h0NmL7BQfbuLd90NG2iiIqTPSP7OpXr9w59mNhUETOf9R9Y6Cz7n3et121ppoipfcs89k+S/eKRcdVvNlfEvpiDfxymym4/us+ckhaKCO5pWqvKTNk9mt8506GVZn7WDgtP9JJ9sO2/Z26tNZ8feDd8jo/sOrqZeVvaKOLbhxe1WiyRPejQ4Cc32iriuP61v9kBsvcbMepwcTvNuD1ZMCVkhexz+xQ6m5ooYnqvIquBQbI3PW741dVUEcMGdNlVHCy7lvJw5qYOihj4q+vMk2Gyr/tT82ZqR0X8c/5+alq47O9sb1X60UkR2XO85jaJlL20cmnLtmaa9dV2b0z2Htn93Y61Gd9FESdXLHcMOyB74ua0mhvMNZ+fW9t36CHZH2aNzUzuqgiHN9b6Wsdl3zPJZmlhN0UU3mllmnxK9mOzo6s366EIg9oHzy9KkH2E2YQl9j0V8WHb1aQuF2UPeT3zzspeiug0dFHPT5dlb3/x4d8zFooYrZVicuRauXX0KUjvXW9FBB3YHTH1tuzWZ9bV0O+rCG+tykta3Cu3ri0fvbXup1lfxT8evXwk+/a7zlGL+ysiwWlW9J5s2XOCW1oeFopw/Dbpo/NT2Z+faZmistTsD0EZxw1fyX5ynlOr6gM196Vx8lvlrexOzS/OsLBSRO7aRuGRH8qNv01qJ+1Birja48C46x/L3ccXtiEzNH3m6rv3xxfK/qB0cUnZcq3A//f/fy/XqvCvgtb/899/yrQq1Kcb1D050b5mVt0rpRV0V1VsUTTc0LfhX82f3+CzupX4oLbmdyXdCv/HryLxfxb6lf+zVP7f3x1l+f9rRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCvY/2dF1MJKqI2VsQpWxWpYHWtgTayFOlgb66Au1kU9rIf1sQHqY0NshAZoiI3RCI2xCTbFZtgcW2BLbIWtsQ22xXbYHk3QFDtgR+yEndEMu6A5dsVu2B17YE/shRbYG/tgX+yH/VGgJQ7AgWiFg3AwWuMQHIrDcDjaoC2OQDsciaPQHh3QEUfjGByLTjgOx+MEdEYXdMWJ6IaT0B09cDJOwak4DT1xOs7AmTgLZ+Mc9MK56I3zcD764AJciItwMS5BX/RDfwzApbgMl2MgrsCVuApX4xoMwrW4DtdjMG7AENyIoRiGm3AzbsGtGI4RuA234w6MxJ24C3fjHtyL+3A/RuEBjMaDGIOxeAgP4xE8isfwOMbhCTyJp/A0xuMZPIsJeA7P4wVMxIuYhMl4CS/jFbyKKZiK1/A63sCbeAtv4x1Mw3S8i/fwPj7Ah/gIMzATs/AxZuMTVKGCanyKz/A5vsCX+Apz8DW+wbf4Dt9jLubhB8zHAvyIn7AQP2MRfsGv+A2/4w/8ib+wGEvwN/7Bv/gPS7EMKzj8Z0XUwkqojZWxClbFalgda2BNrIU6WBvroC7WRT2sh/WxAepjQ2yEBmiIjdEIjbEJNsVm2BxbYEtsha2xDbbFdtgeTdAUO2BH7ISd0Qy7oDl2xW7YHXtgT+yFFtgb+2Bf7If9UaAlDsCBaIWDcDBa4xAcisNwONqgLY5AOxyJo9AeHdARR+MYHItOOA7H4wR0Rhd0xYnohpPQHT1wMk7BqTgNPXE6zsCZOAtn4xz0wrnojfNwPvrgAlyIi3AxLkFf9EN/DMCluAyXYyCuwJW4ClfjGgzCtbgO12MwbsAQ3IihGIabcDNuwa0YjhG4DbfjDozEnbgLd+Me3Iv7cD9G4QGMxoMYg7F4CA/jETyKx/A4xuEJPImn8DTG4xk8iwl4Ds/jBUzEi5iEyXgJL+MVvIopmIrX8DrewJt4C2/jHUzDdLyL9/A+PsCH+AgzMBOz8DFm4xNUoYJqfIrP8Dm+wJf4CnPwNb7Bt/gO32Mu5uEHzMcC/IifsBA/YxF+wa/4Db/jD/yJv7AYS/A3/sG/+A9LsQwrOP5nRdTCSqiNlbEKVsVqWB1rYE2shTpYG+ugLtZFPayH9bEB6mNDbIQGaIiN0QiNsQk2xWbYHFtgS2yFrbENtsV22B5N0BQ7YEfshJ3RDLugOXbFbtgde2BP7IUW2Bv7YF/sh/1RoCUOwIFohYNwMFrjEByKw3A42qAtjkA7HImj0B4d0BFH4xgci044DsfjBHRGF3TFieiGk9AdPXAyTsGpOA09cTrOwJk4C2fjHPTCueiN83A++uACXIiLcDEuQV/0Q38MwKW4DJdjIK7AlbgKV+MaDMK1uA7XYzBuwBDciKEYhptwM27BrRiOEbgNt+MOjMSduAt34x7ci/twP0bhAYzGgxiDsXgID+MRPIrH8DjG4Qk8iafwNMbjGTyLCXgOz+MFTMSLmITJeAkv4xW8iimYitfwOt7Am3gLb+MdTMN0vIv38D4+wIf4CDMwE7PwMWbjE1Shgmp8is/wOb7Al/gKc/A1vsG3+A7fYy7m4QfMxwL8iJ+wED9jEX7Br/gNv+MP/Im/sBhL8Df+wb/4D0uxDCuM/s+KqIWVUBsrYxWsitWwOtbAmlgLdbA21kFdrIt6WA/rYwPUx4bYCA3QEBujERpjE2yKzbA5tsCW2ApbYxtsi+2wPZqgKXbAjtgJO6MZdkFz7IrdsDv2wJ7YCy2wN/bBvtgP+6NASxyAA9EKB+FgtMYhOBSH4XC0QVscgXY4EkehPTqgI47GMTgWnXAcjscJ6Iwu6IoT0Q0noTt64GScglNxGnridJyBM3EWzsY56IVz0Rvn4Xz0wQW4EBfhYlyCvuiH/hiAS3EZLsdAXIErcRWuxjUYhGtxHa7HYNyAIbgRQzEMN+Fm3IJbMRwjcBtuxx0YiTtxF+7GPbgX9+F+jMIDGI0HMQZj8RAexiN4FI/hcYzDE3gST+FpjMczeBYT8ByexwuYiBcxCZPxEl7GK3gVUzAVr+F1vIE38RbexjuYhul4F+/hfXyAD/ERZmAmZuFjzMYnqEIF1fgUn+FzfIEv8RXm4Gt8g2/xHb7HXMzDD5iPBfgRP2EhfsYi/IJf8Rt+xx/4E39hMZbgb/yDf/EflmIZVhjznxVRCyuhNlbGKlgVq2F1rIE1sRbqYG2sg7pYF/WwHtbHBqiPDbERGqAhNkYjNMYm2BSbYXNsgS2xFbbGNtgW22F7NEFT7IAdsRN2RjPsgubYFbthd+yBPbEXWmBv7IN9sR/2R4GWOAAHohUOwsFojUNwKA7D4WiDtjgC7XAkjkJ7dEBHHI1jcCw64TgcjxPQGV3QFSeiG05Cd/TAyTgFp+I09MTpOANn4iycjXPQC+eiN87D+eiDC3AhLsLFuAR90Q/9MQCX4jJcjoG4AlfiKlyNazAI1+I6XI/BuAFDcCOGYhhuws24BbdiOEbgNtyOOzASd+Iu3I17cC/uw/0YhQcwGg9iDMbiITyMR/AoHsPjGIcn8CSewtMYj2fwLCbgOTyPFzARL2ISJuMlvIxX8CqmYCpew+t4A2/iLbyNdzAN0/Eu3sP7+AAf4iPMwEzMwseYjU9QhQqq8Sk+w+f4Al/iK8zB1/gG3+I7fI+5mIcfMB8L8CN+wkL8jEX4Bb/iN/yOP/An/sJiLMHf+Af/4j8sxTKsMPY/K6IWVkJtrIxVsCpWw+pYA2tiLdTB2lgHdbEu6mE9rI8NUB8bYiM0QENsjEZojE2wKTbD5tgCW2IrbI1tsC22w/ZogqbYATtiJ+yMZtgFzbErdsPu2AN7Yi+0wN7YB/tiP+yPAi1xAA5EKxyEg9Eah+BQHIbD0QZtcQTa4UgchfbogI44GsfgWHTCcTgeJ6AzuqArTkQ3nITu6IGTcQpOxWnoidNxBs7EWTgb56AXzkVvnIfz0QcX4EJchItxCfqiH/pjAC7FZbgcA3EFrsRVuBrXYBCuxXW4HoNxA4bgRgzFMNyEm3ELbsVwjMBtuB13YCTuxF24G/fgXtyH+zEKD2A0HsQYjMVDeBiP4FE8hscxDk/gSTyFpzEez+BZTMBzeB4vYCJexCRMxkt4Ga/gVUzBVLyG1/EG3sRbeBvvYBqm4128h/fxAT7ER5iBmZiFjzEbn6AKFVTjU3yGz/EFvsRXmIOv8Q2+xXf4HnMxDz9gPhbgR/yEhfgZi/ALfsVv+B1/4E/8hcVYgr/xD/7Ff1iKZVjB6T8rohZWQm2sjFWwKlbD6lgDa2It1MHaWAd1sS7qYT2sjw1QHxtiIzRAQ2yMRmiMTbApNsPm2AJbYitsjW2wLbbD9miCptgBO2In7Ixm2AXNsSt2w+7YA3tiL7TA3tgH+2I/7I8CLXEADkQrHISD0RqH4FAchsPRBm1xBNrhSByF9uiAjjgax+BYdMJxOB4noDO6oCtORDechO7ogZNxCk7FaeiJ03EGzsRZOBvnoBfORW+ch/PRBxfgQlyEi3EJ+qIf+mMALsVluBwDcQWuxFW4GtdgEK7Fdbgeg3EDhuBGDMUw3ISbcQtuxXCMwG24HXdgJO7EXbgb9+Be3If7MQoPYDQexBiMxUN4GI/gUTyGxzEOT+BJPIWnMR7P4FlMwHN4Hi9gIl7EJEzGS3gZr+BVTMFUvIbX8QbexFt4G+9gGqbjXbyH9/EBPsRHmIGZmIWPMRufoAoVVONTfIbP8QW+xFeYg6/xDb7Fd/geczEPP2A+FuBH/ISF+BmL8At+xW/4HX/gT/yFxViCv/EP/sV/WIplWGHcf1ZELayE2lgZq2BVrIbVsQbWxFqog7WxDupiXdTDelgfG6A+NsRGaICG2BiN0BibYFNshs2xBbbEVtga22BbbIft0QRNsQN2xE7YGc2wC5pjV+yG3bEH9sReaIG9sQ/2xX7YHwVa4gAciFY4CAejNQ7BoTgMh6MN2uIItMOROArt0QEdcTSOwbHohONwPE5AZ3RBV5yIbjgJ3dEDJ+MUnIrT0BOn4wycibNwNs5BL5yL3jgP56MPLsCFuAgX4xL0RT/0xwBcistwOQbiClyJq3A1rsEgXIvrcD0G4wYMwY0YimG4CTfjFtyK4RiB23A77sBI3Im7cDfuwb24D/djFB7AaDyIMRiLh/AwHsGjeAyPYxyewJN4Ck9jPJ7Bs5iA5/A8XsBEvIhJmIyX8DJewauYgql4Da/jDbyJt/A23sE0TMe7eA/v4wN8iI8wAzMxCx9jNj5BFSqoxqf4DJ/jC3yJrzAHX+MbfIvv8D3mYh5+wHwswI/4CQvxMxbhF/yK3/A7/sCf+AuLsQR/4x/8i/+wFMuwwvj/rIhaWAm1sTJWwapYDatjDayJtVAHa2Md1MW6qIf1sD42QH1siI3QAA2xMRqhMTbBptgMm2MLbImtsDW2wbbYDtujCZpiB+yInbAzmmEXNMeu2A27Yw/sib3QAntjH+yL/bA/CrTEATgQrXAQDkZrHIJDcRgORxu0xRFohyNxFNqjAzriaByDY9EJx+F4nIDO6IKuOBHdcBK6owdOxik4FaehJ07HGTgTZ+FsnINeOBe9cR7ORx9cgAtxES7GJeiLfuiPAbgUl+FyDMQVuBJX4Wpcg0G4FtfhegzGDRiCGzEUw3ATbsYtuBXDMQK34XbcgZG4E3fhbtyDe3Ef7scoPIDReBBjMBYP4WE8gkfxGB7HODyBJ/EUnsZ4PINnMQHP4Xm8gIl4EZMwGS/hZbyCVzEFU/EaXscbeBNv4W28g2mYjnfxHt7HB/gQH2EGZmIWPsZsfIIqVFCNT/EZPscX+BJfYQ6+xjf4Ft/he8zFPPyA+ViAH/ETFuJnLMIv+BW/4Xf8gT/xFxZjCf7GP/gX/2EplmGFCf9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwrO/1kRtbASamNlrIJVsRpWxxpYE2uhDtbGOqiLdVEP62F9bID62BAboQEaYmM0QmNsgk2xGTbHFtgSW2FrbINtsR22RxM0xQ7YETthZzTDLmiOXbEbdsce2BN7oQX2xj7YF/thfxRoiQNwIFrhIByM1jgEh+IwHI42aIsj0A5H4ii0Rwd0xNE4BseiE47D8TgBndEFXXEiuuEkdEcPnIxTcCpOQ0+cjjNwJs7C2TgHvXAueuM8nI8+uAAX4iJcjEvQF/3QHwNwKS7D5RiIK3AlrsLVuAaDcC2uw/UYjBswBDdiKIbhJtyMW3ArhmMEbsPtuAMjcSfuwt24B/fiPtyPUXgAo/EgxmAsHsLDeASP4jE8jnF4Ak/iKTyN8XgGz2ICnsPzeAET8SImYTJewst4Ba9iCqbiNbyON/Am3sLbeAfTMB3v4j28jw/wIT7CDMzELHyM2fgEVaigGp/iM3yOL/AlvsIcfI1v8C2+w/eYi3n4AfOxAD/iJyzEz1iEX/ArfsPv+AN/4i8sxhL8jX/wL/7DUizDCi7/WRG1sBJqY2WsglWxGlbHGlgTa6EO1sY6qIt1UQ/rYX1sgPrYEBuhARpiYzRCY2yCTbEZNscW2BJbYWtsg22xHbZHEzTFDtgRO2FnNMMuaI5dsRt2xx7YE3uhBfbGPtgX+2F/FGiJA3AgWuEgHIzWOASH4jAcjjZoiyPQDkfiKLRHB3TE0TgGx6ITjsPxOAGd0QVdcSK64SR0Rw+cjFNwKk5DT5yOM3AmzsLZOAe9cC564zycjz64ABfiIlyMS9AX/dAfA3ApLsPlGIgrcCWuwtW4BoNwLa7D9RiMGzAEN2IohuEm3IxbcCuGYwRuw+24AyNxJ+7C3bgH9+I+3I9ReACj8SDGYCwewsN4BI/iMTyOcXgCT+IpPI3xeAbPYgKew/N4ARPxIiZhMl7Cy3gFr2IKpuI1vI438Cbewtt4B9MwHe/iPbyPD/AhPsIMzMQsfIzZ+ARVqKAan+IzfI4v8CW+whx8jW/wLb7D95iLefgB87EAP+InLMTPWIRf8Ct+w+/4A3/iLyzGEvyNf/Av/sNSLMMKrv9ZEbWwEmpjZayCVbEaVscaWBNroQ7Wxjqoi3VRD+thfWyA+tgQG6EBGmJjNEJjbIJNsRk2xxbYEltha2yDbbEdtkcTNMUO2BE7YWc0wy5ojl2xG3bHHtgTe6EF9sY+2Bf7YX8UaIkDcCBa4SAcjNY4BIfiMByONmiLI9AOR+IotEcHdMTROAbHohOOw/E4AZ3RBV1xIrrhJHRHD5yMU3AqTkNPnI4zcCbOwtk4B71wLnrjPJyPPrgAF+IiXIxL0Bf90B8DcCkuw+UYiCtwJa7C1bgGg3AtrsP1GIwbMAQ3YiiG4SbcjFtwK4ZjBG7D7bgDI3En7sLduAf34j7cj1F4AKPxIMZgLB7Cw3gEj+IxPI5xeAJP4ik8jfF4Bs9iAp7D83gBE/EiJmEyXsLLeAWvYgqm4jW8jjfwJt7C23gH0zAd7+I9vI8P8CE+wgzMxCx8jNn4BFWooBqf4jN8ji/wJb7CHHyNb/AtvsP3mIt5+AHzsQA/4icsxM9YhF/wK37D7/gDf+IvLMYS/I1/8C/+w1IswwoT/7MiamEl1MbKWAWrYjWsjjWwJtZCHayNdVAX66Ie1sP62AD1sSE2QgM0xMZohMbYBJtiM2yOLbAltsLW2AbbYjtsjyZoih2wI3bCzmiGXdAcu2I37I49sCf2QgvsjX2wL/bD/ijQEgfgQLTCQTgYrXEIDsVhOBxt0BZHoB2OxFFojw7oiKNxDI5FJxyH43ECOqMLuuJEdMNJ6I4eOBmn4FSchp44HWfgTJyFs3EOeuFc9MZ5OB99cAEuxEW4GJegL/qhPwbgUlyGyzEQV+BKXIWrcQ0G4Vpch+sxGDdgCG7EUAzDTbgZt+BWDMcI3IbbcQdG4k7chbtxD+7Ffbgfo/AARuNBjMFYPISH8QgexWN4HOPwBJ7EU3ga4/EMnsUEPIfn8QIm4kVMwmS8hJfxCl7FFEzFa3gdb+BNvIW38Q6mYTrexXt4Hx/gQ3yEGZiJWfgYs/EJqlBBNT7FZ/gcX+BLfIU5+Brf4Ft8h+8xF/PwA+ZjAX7ET1iIn7EIv+BX/Ibf8Qf+xF9YjCX4G//gX/yHpViGFdz+syJqYSXUxspYBatiNayONbAm1kIdrI11UBfroh7Ww/rYAPWxITZCAzTExmiExtgEm2IzbI4tsCW2wtbYBttiO2yPJmiKHbAjdsLOaIZd0By7Yjfsjj2wJ/ZCC+yNfbAv9sP+KNASB+BAtMJBOBitcQgOxWE4HG3QFkegHY7EUWiPDuiIo3EMjkUnHIfjcQI6owu64kR0w0nojh44GafgVJyGnjgdZ+BMnIWzcQ564Vz0xnk4H31wAS7ERbgYl6Av+qE/BuBSXIbLMRBX4EpchatxDQbhWlyH6zEYN2AIbsRQDMNNuBm34FYMxwjchttxB0biTtyFu3EP7sV9uB+j8ABG40GMwVg8hIfxCB7FY3gc4/AEnsRTeBrj8QyexQQ8h+fxAibiRUzCZLyEl/EKXsUUTMVreB1v4E28hbfxDqZhOt7Fe3gfH+BDfIQZmIlZ+Biz8QmqUEE1PsVn+Bxf4Et8hTn4Gt/gW3yH7zEX8/AD5mMBfsRPWIifsQi/4Ff8ht/xB/7EX1iMJfgb/+Bf/IelWIYVJv1/rKSr+bovbENmDFLEzNV3748vvCgq8GvU/Ccf7mu6XsbPQZ8/y171RcnOyMGKOOjXcLzhN9krljwMumOtiAEWB7ye/pJ98MT00SVDFLHBbN6f3X9l73AtV7v9MEX4Zc0rm1gx6X+9nknr7eOGKyL63ia/5lVkv71iZc11Noro9Pfi7Lc1ZJ9ypdT9vK0i3pk/f3yojuxuT3bsfD9CEZOGvU2YVV/2mVdGJjQYqYjxDS/VMjOQ/fucFvGDRini4cLR6u/Gslur62z2sVdEWv/tTS62kN3vr77DAQdF2I+YryxvK/uaez1+PHRUxPqlGTWsO8jeYYiXX9loRVw5fjC+VhfZa05Jzuk4VhFGiY8fZnaXPbxpM1MXJ0XUW+kwdVfvcp9ftGNs8DhFVM2r6j1ZyB48pdWUC+MVMf3u6yLTQbJX/JDq+H6CIl7WfZj7fajsnbV8Wtd3UUTxruTRl0fIfuJkV2WAqyJWj4zouc5B9vdfKs2dO1ERVnpDNjk4yd4o7fX73W6KqJF+eaKxi+xjej+wTJukuS/uHw7kTZJ91eDbAb/cFZF+5YzL2amyu36+u7PVZEXk368REjhT9nl9n+20n6KIxX5PzUbMld3Y/EfAsqmKSDqhZ2O4QPYd2foDjk1TRKPxe9S5S2TPNbPMfeKpiLrTp79MWCr7u6Hec7VnKMI0fdL41Stlt2wbq5jNVISJj89Qx7WyL3r8qrXrLEVctt94vEWI7E9dm45eP1sRN8bvWvN1U7n7mD5pSsIczbpYHpyZGlHuOk0Ojs3xUkTX80O2bd0p++m1eSY63pp5+OvKvSn7ZF9a1CGn1zxFOPV65dvjoOzTfbx9p8xXRMt5ETurHZH9bNP4b2E+ikjYdbfz0zjZfSp/GZm0QBH74udbnIiXfX33DqHvFypiz+kF51ecl/1oiseJuosV4RZx5ciY5HLrK3nrqb5LFFHBxVLXJEV2LYvL4Z6+muvUfptfekP2JJucCVv8FHE0dLtFVlq59VL9r9Ylf0V0+Dvk75EHsndap7MxN0ARliNfmwdmye7won5J3WWKWLDB8flYRfZJLesO6btcEeMS1v3p+EL2bXMrLp4WqIgzGV4bK7+RXfvZ23WbVihicv7XLc9zy62jlRcDLq5UhLu2Vq1zH2VXLV3h8HaVItTt1xeHfpF9/odeNWqvUcSPKQvHTf8pe3TOy+ieQYqwSDljOvCP7JtWLWzqvlazfm26zDeqkPy/bvKpOCB4nWbe6j41/aUtu3m/Gcln1iuiY9O94zKqy959643nz4IV0X2dZ3Fcbdm319HJqRyiCOHSqmZwPdmDMvvf7LRREb5xKZumNZK9QsUJG51CFdEvrMN6K2PZn1x07REYprlOfYfvzVrIHt1qWMrhTYqY5dQ0o7SN7FkejTs92qyI3jNXtHhuKnvMzsyAki2KmDht6rskM9mbfvWOax6uiCdTLhju6i670aavV4ZFKKJouWeqX2/ZB+x2OjtvmyK+Zbg9myBkryL2BUduV8RCv9DpfQbJfirq9sCUHYpoHP5qmtEw2e0KM57lRSriZH+rJ/9GyH5t5KVxurs092tndOJLB9kvfwk613O3IpRbhTqpTrInVuj8c+IeRdz9UDfroEu58Tx6tmHQXs3zq+XvmuvcZT/auGHjuH2KyIsMT5g1Tfa9q8dUyNqvCK/59x+OnCV7SP25t35HKaJ1VrhrN2/Zf/zx8G4erQiz3Cxng4Wyt51t9mfIQUXcyfJPL/WVve/2bE+vGEWsvbXo+Ntlsjc+NfpceKwicvLjS9NWye6bf+T9xUOKuD3LOPX0Otmz/R4XvzqsiCZLon/u2Ch74Lbsj1WOKqK+MN8duEX2TT7HUzscU0RJ0bn46dtl/zR0rJ/Dcc3+cKVJb/vdsg+3y6y3JE4RGc/GmveOkr11couwPScUYbvUdlfLWNnT060+pp5UhOrxxwU6x2Qfdb67ad4pzT5j1PrKr5Oy70j8ZaMTr4he61/7vj5b7vO119uZn1FE7dF6MfcSy43zlzxzp7OK+HcuyjLxsux3ovRL/BM06+LTUtuYa7K/dK4btf+cIsaYh9/efFt2XTeVyY3zirC+/ujssnuyVyuYue3DBUV45rSsOztD9q6Wt9/oXFRE4J3Fz8c/kT1z32c98yTNc/DSRYOhz2QvtHnVcmyyItaUKTd65Mg+dm2kvt+l/3u9pOa0fi/74QjDgj2XFeEa4DGnQYHstkkeUSlXFBE0IHZ65SLZffrNs3h3VRF2M/wzf3yX3dBj8JlqqZr72+dB3PuScuvR+0XtDtcUcU8r7NeTUtlvn+hjO/K6IuZUO3zqTqVLch1Nc5k1/4YiTuyoqiRVk/3fKzE74qYiFlXY5X1CR/ZAz3d2F25pxj905OIoPdn/DLKt9/S2Ih5t0vsU3lD2T9d9Ev/dUcTs8Y8erTOSfV9X5wHN0hWRYuHbemlz2Vu9qHhs4F3NvFr9K3deG9nH6Xn+nHJPEaWhFgaeprK/bBLccu19RVyI65DoYiZ7O8eZ5kceKCK15+VbDt1l9yyr0jL9oWa+rXk6aFhv2XctcPvx8ZEisgvnmVkK2Tdq+xypnamIKQ+8gnsOkj294gBhlqUI/5VXHDoPkz3uyu1z9o81564p9uvb2snuuKW6rk+25nySVbdTM0fZD93Xsgl/onm+dym0NBgn+5i0M54JKkWMepqZoucqu/K08bRsRREu3U6dquUh+9wJva1/qRWxfJ+3TlVP2ZvurV2t0TNFNFihpao4W/YLZduP9XquiKX9HXX/ecv+QPXYbPwLRezsP+pc8ULZU1bd2u77UhH9P7y/891P9njn2a8iXyni2iFtmy/LZQ9NvlbjYo5mPr/dZlG4WnbtSvf01a8VMaHmhoiC9bJvDlmr/fuN5n1n/f2JH0Jln3f+a6bBO0X8TbeLyN0q+9HXOmss3mu+r1VJr/c7ZK/hpWo4PlczbpOShr3bI3vzi/YhS/I06z185a23B2S3aef7evsHRRQ69I1/e0j2aEM7w/P5mvWim1393XHZdb8/6JpdoIjggf3uvzste99GpZ1+fFTEoEluZe/Pyb6j4EnN+oWKeJDTfk9ekuxOmS5p5p8189Yy+FD+Vdl9u4fMtC9SROyvOU0+3ZD94pKpH+d+0ZwnV6ZWLEqT/aB23sjQr4owcFto/+2B7MsG1Is4/k3zXllzgc6vLNmdd7xPSvuuGYeqx7v/UWSv6+N+Pe+H5rydVSOt7IXsPfuuOlHll2a9f1+apv1W9g5uNn6tihURlf+1R40PsusPTWw7sETzHOnrVEe3sNy8nXz3nNtvzfz33uGo/032Fs1Wt136RxHvdQ5WMi6W3b3gpe/Ov5rn427Ppq3+yX6328u48/8UcenQw1hTrcv/6xNmr7iWVaqI04l3I7tWlf2W1s2LX8oUMdRtWHGfWrJvnnF8a+2KajGmTbfUQXVlL9PrZmeqpRYle/x+jdCXveF8l/whldRi8dgaO5way37gd6vpU7TVYmfOw2j3ZrJ3ar7xVmBlteiTkWQ4u7XstZ3Dq+2pohbHki/8XWQi++gmvU0Tq6rFxB4Jw1Z2ll2Vs7Tz42pq0SF7b8XQbrKbG7s1+FJdLVp1m9xqp4XsqUOfP6tVUy1SPnw+Hdtf9oPPf61pV0stIjabHz1jJXvSmBO6g3TU4vStRjopQ2U/ZlphqVtttRjRfpP6/gjZ1eqPaX511KLumCC95w6ye7/0+R2hqxZJ+XlnC5xkH38uvObpumqxeUNMym8X2S2f25Wm66nFb+VIrxoeskdkRGW8r6cW13zfGBh6yh7UYOO6ig3UQlvXcqrJbNkrt9FtZqSv6VZxhn3myX5ztUlkj4ZqEXmxUW/bRbL3PfP026hGarG3qfc1V3/Z93RtaTbLQC28jKLOzQ2U/dW6CnZrDNXigEtkvZVrZE/u4TNiX2O1aLvRWh0eLPvRFL9OiUZqYeGyrcbhMNlfn9D/kmGsFk6+iw4mhcvuvto64mMTtZgXkXXoQaTsL29Xb1ylmWZeeeyt/3av7EqlSSubNlcL1/CU/OJo2ddeGpreq4VabHhpalL7iOx5y679sG+pFl1/p2W0PCH72UcPKs5qpRYvd4W8tTgj+0zLOZ9XtVaLnksnuo26ILvV2F2Xd7fRXOe4Tlael2Tvs2/83IS2aqHkfQhblip7rcOHKt5vpxaWBcsGb7tVbt6Wrl74vr1mvhk/nXziruxvO39JKzVRi2DxMf/mI9mN7xZUbNhBLbbU3a9+mS37Vo8Fhp07qsW9MW/NS57KfnVVcP0hnTTz/EHsN72ccuN2tWPRxM5qcdbqsVHH97I/OuYat8hMLVoucT0xpEB21ycGtqFd1MKuW8fDHkWyF2a7340xV4tCS/May37Ifr5/906XuqqFwfQJWZG/y6276K3zsrqpRbOFW6ucK5N9yq6AbQXd1eJxt/T9GdpX/tc9kj/v1uqpFj0Wfj7wubrst/Z8XG3QSy1uVi6spVNH9oAn8+3MLDTz7fzZFyb1ZW+htbLEurdaHHXu0miYgezNzhsEufbRjM9N+0TPJrKHb7L47tNXLS7drZQa1FJ2l/Y5VsH9NOMwqLt5bDvZ6xnrLtzfXy0ytLOq3+woe91qN9eeE2pRM/fe0Pfmss9eqxVw11Itut3Q/Vyll+w/et2wfz1ALd74Bf9t20/2fkk61YsHqsW/t+3mDRsoe1jc0yidQWpxNUexnTVE9q8nOxm1HKwZz1Ebwjbayt5xcpUlvazVok09U4tT9rJfne6RMGKIWtSpeWhY5ljZ8z0GZnkMVQtro09XfzrLHvM9JmvxMLVQmRbsNXQv11NCzoUMV4t2zcLe9J8m+0Svn75RNppxyLkZOnmW7P/2vW5yzlazLzkF7l/nLfusv6Ni0kaoxVSvI41OLJR9hMkAnZd2ajGkrtmvTD/ZtR/Fj/02Ui0WdNTq+3u57Md3xKyoaq8W20/r5DZbI7uRiUFoYwfNuttoWTwkWPZ3nXQCOjtqrvPMurlzw2R3sl9hYzVaLebUz7LdHi77kr4L/44doxYfY3Q3XYmUvebuvNCZYzXPBdcOFnl7y90vo6day5w0+6dZg6F1D8reZ5btuM3jND+nUWJy7yOyV+rRN+zgeLVYU6fK9iknZN9ievTQ+Qlq4V4nPzv0jOwOfyKi0pzV4mt9x4DEC+XW0ZiygOcualFg3Hnt20uy781/Z1Hkqha+7Wf/qnNN9t2zh6m03DTzoVfx3T63ZT+6sf24BpPUIt4mper0e7JnVAhKbOuuFts8Ew6FZ8j+2HfiXwsPtZi2KfV4yhPZO8XFN7OdrBYOd7P1Pz8rt45GrWwzcYpaxLR49c7otezzG93T8Z6qFh677xrY5Jab58lbsldM04ynVXC878dy/XtG4FZPzTmhVdVTh7/IvnHJxlox0zX7/PAueqqfsm+tkOp7bobm/HPzp6rq33L3y9r79q2ZamGU2UJrd4Wr/+vXtXcUq2apxYd/lYd3qyR7p5+9auTPVov3Hxtfv1tZ9mXZDv9+z1GLakedvadWk72Fx7tHNeeqRT3LZLvSGrL3GVu01shbc38vdnPbriP7IW+fph3nafbP1slRZrqyl8z12tFvvlrobhymn6Ynu3+9nK8jfNTicllm8uQGsps3Tu80cYFaTNngEPGvoeyPh3Sw9Vqo2X/6J+/bbij7kwnaNssWqUV++2rPuhjLPknf0TR0sVrccuk4/G5T2R37Nfq0Z4larM5rkT+thewDtzpuivNVi5wXL5Mqti43Ps+0G1zyU4tRDs5XdreVveYLU/+7/mpRNibke08T2aNdb6c+DdCci/7NcM7sIHtic3VB/lK16DWx4JtXZ9kXfpn0s2SZWuwJqXq5hrnsCeEur6sFqsXPvQmJsd1kr51192TDFWpRfOzj+4E9ZU9fcnpim5VqUTU9evBLC9kLbWt87rZKsy/Vz3js31d2k8ZPJlmt1jzH93ttbyRkLzrR8Kz9GrWYvN47OGGA7G5Z6XluQZqf/+H+CYdBso8c9610zlq1WK4O1C6yln1EtdCf/uvUYq7v0g0bh8m+J37Xg/Xr1cLqdZKVqa3s3doYBW8P1swT864d79jJftW8TpuYDZrzapB6iKe97AcOL4iOD9H00sNbK4+W/cs4W62rG9ViUmKE7sGxsi9usG3gvVDNeszefnngeNnPnLKfog5TC/PFsXtynGV/+m+ZZ+4mtfBPvhAXOFH27IfGtt83q8Xu2zcKm7qXmz+lHfUqbtV838vXJ12ZLPtc55OJOuGacU45XsltmuyTL0cNNIzQzIefC56UTi83z/9px7XZphazVtR/tneW7F2/qIrNt6vFr3Ur6wqvcuPpbdxG7NC8v3Q9t/ilt+y5ozO62USqhc+h2NqBPrJHLv7Vymmn5nvp2GQ3WyT7x/iQnx67ND9/4877KUtkf5iz+YjXbrXo7RDyy8Nf9ncvq/T326MWzqsb2msvk33F+oIza/Zq9oGRXZ/GBJbbH5JEzc371KL2i+yIIatkbzC60qDd+zXr3bUk8MMa2bt36THxUJRaNP+9efeGdbK3MVeNjz+gWac52/M6bpA9qceHHpei1aKzldbUhxtlX9R0xo9bB9XCeMTtuj6bZA+95xSREaMWYZ1zChtslT2/RYL+81i1aN140N8LEeX+Xa0VvrmHNPNkQJ6Fyw7ZQ+ySLn05rNlnMq8fKtspe+OPk9/8OaJ5HlV+NDh6T7nxueKXX/mY5rlWQ7v+kP2yNztRllHnuFq46I/RKzgge429X3cbxKnF+IlJlmExsmstchza8oRadGrUaV/Xw7IHGLd43OGkZr37HeyoOir7/oCJVj1OqcXzpAYfA+LKzduAalvFabV4Ut9X3fyU7AWVm10fGq8W6ks3im/Gl5uflWKy7c+oxdiir9azE8rNh0nb0yacVYtx739dr3tB9gvVfu2bnKA576nT55+/KHtE7rWxs89pzqvVp41yvST7kvx/hQvOq4XpiUuula6WG4eyg9OXXlCLJVXSdh5JlT22XuK1NYmafXjkyqqjbsg+pmHvCqEX1cL+zvPon7dkzyxp22RbklpcPJ05d0+a7OuOrTTem6wWfYc5zxp0T/aNxsNLYy6pRdTDWdsKHsgeN2DZ1bjLmnPg+r9FWzJkd63RdErCFc18SND27/1Y9lszO3xIvqoW6Tv8u71+Um5/Gxs78nqKWjRdNM44WC37vdSQ7empajF0y5bu5s9lb3Xw5dWMa5r5Y958qfplufVVtDdduf5/MWHf8Vi97wPAExlFRHYRSRoiSqKP26pIJSRFKZtkryQZESEzpQiZZZUiJURkS0aRc84jo4wQGYXwu3//fK/n3/freR3nXPd1XwN+z6TF6cB+8OHkxpJvH3rQDX7Bh7u+g0tlmQcP1eLnjDo7dQ6Bn1m23jdRh9//woKb7yhd30ntqpmpx3lYmpctOQ6eFFSksNjQg75o+6399At8MXPpNkNTDyo5Y5fk/Ru8dflFBUtzDxLYbX5h6yy4S1hnJ0dLD5riNTvR8ge8X9O8medjDxq/dOGK1wLdOe48nynYiude45OlYkvgGQffXxT91IPST+060LwCbup0d1GiDe/FsT/7PVdX/c8rGtuv7mzvQRFOt8rF1oBv0/HtkunAfV9xuraZBTxvMo5/f2cPmvxvx4rXWnDOMr6DSp/x79tFrbdy0D2/YM0h9KUHiWt9XPzICd7eeGmLZhfeE3/vqrzGTfccHqkfWt24/kvKvpTkBR8PM7lz4msPWqXY3tnODx6qsMir34PnSV+2bX5C4PlCLP5nCFxXj7ek79oM3nHIr8mY7EGt/zbqdYuCi6Zb/DWlcD3/0bU7WBzc7HQRswUN73FmHAfktoHznnWZs+7tQVfq85x6t4Obv3pYd/lbD4pzz/8SsRNc+KrsNce+HiRbxXxFSRr8XZbcetd+PL+xPZcZlgH3Ov74pscAvr+5qWL35MAF3a/3XB3sQTGrP6lp7gffvqOG+/r3HpTtsD/69wHwRq+ru/1+4O/SqWd/rAROXHmwPXAI75uLfiW6/4F/5d3OFDzcg45TBtHLCHzSX+x9yAiuh/rK9/PVwefLQs3CRvEeVy7dfP4wuMvX8/0RP/E84y8uw65Fd14/HmlGjeG+s8RV+fYYONesTmjMOD7Hh5M37E+Ah/HZ5MdN4HtU+tpe+BS42IVfL+N/4XOsuXSrSR88mxhMvD/Zg1pEvn30MQR/kHnU6sEU/r3MnsO7z4JvaeXnSvzdg4ovqo+QxuDrHQyTkqZ7kDz/xrd3LoD33MUtaQbfr3cPS1UugT89L3guZRbXz+qWoV/m4EeJlNupc3iOjchQf2wFvlPqbuLjP7j+hPI16duCe5jMRab97UG64sIBTPbgI3dqLdLne1BO3VPLVw7gi91MQhkLPSj1xxsPW2fwmjOFhRmLuG6MqxcJuYEziTfvzPyH96YTh7a0eIBLnTEMzlzqQbfdH73xuwquynmiKnO5Bx3+fMFfzgec7fJLWuZKD9rb5+7+3Rd88GYolbmKQMNre+IT/Ony7VpzeSYDgb5+CBrUuUl3Xg5+fpmrCbTr1pVLK8HgD30ei2cyEqitMpTtZSj42xq57AwmAoX8/NRrHQ7+yk6eI2MNgSqvHxoQigTvCk8/nc5MoIaf73lao8GFTtz0TWMhUNZzE5ebceCbPrWHPGYl0B7N5cUD98AlFWPdUtkINCKa9nIsga5OPq1STVlLILUKlYTHieDPj5r9erSOQKceNj09kwy+pOjil8ROICZZ1eF1j8Fn0qYmH3Jg/xdnUJVO9555/RoP1hOo1afip2cWeLKP5tX7nARKli55vvsp+NmD/JHxXARyj/ZI688Fr+QwCY7bQCBxianKhAK6+yvGZRrDTaB9dmLsuoXgzSkKAlE8BFrTt3RzTRF4RuHHlxEbCVTKcUOq7BV4fGC3bBgvgQ64Pph3fUP3Piqno0L4CCQTe/TPjjLwExvUW4P4CbTxt59YXwW4u1TaZIAA/j2/0tWEKnDvQvfpG4IE8g9xWMQDA+RPz5suHyECfWvYkMtSRxfPdpdHV4UJ1GMlEvKuAfxvQ5KmxyYCdQ+ERXk1g0/8Umpx2UwgxpaTNTKt4G88jh9wFCGQRq7ZtuE28L6ItsDLogQyZnv7IrUTPNKm8Zn1FgLVuupfOdcFHq14oMJcjEAdbqL63D3gxvICBabiBEp4IGjZRIIzRzj4GW8l0JiLYlpQL/hJrwNyZyQI5Bvuxq7SDx6307NWbxuBijzep/0ZBP9C7Dh0QpJATZWbrAqH6PpOlX6c1nb8nkveBvaj4Ik8U00aUgSyr2hz2DYObsS25ofKDvy98cJFvb/AbxKRfQd3EmiAV1fy4W/wM9WRFft2EQh1WtScngV/ssDkK7ObQPpWepGcf+nO6+3Upp3SBPphyhnUuECXP+qGyRJ7CORmFJ8ZvET3vQ0yDKIyBLrwo+e36qr3/3OOyIDDgrIEyk/vsv+3Gryh+Zg9z14CGUrd5Hq9BtylOtyVQ45AKxyfv7mxgus+1zRhkSfQzl81pMw6cP12j20M+wgkZHOMaYwDnMVOtG0Be/+GC0ZPuMDTitRMZ/YTyCRi5rMlD/jsLNk8roDrnjurvxgfuJfj1KahA7he2UQb0gTA0SW/k98UCeTEHHQmURiccX2I2deDBBKb7Ak8KwIu+pb1TLsSgd59iOjhFQOPymXa3aSM74VUzIWOreATW30Gqg/hfHvbuy5GEvy63ZXrZf8RaLO48/eTO8B533fPFakQKGDl4Cj7bvBD7pX6+Qjn+d99Qk17wLnqtkZnqhLo/cuzHrf30sVzNeOzR2oEyvyStHh0H7iVo+mzeHUClbHO5zEfAD92WiHmjgY+rynL2x8OgmcvhZ0O1iSQonJ3dNAh8NKi8/PXDxOII/JYtQYCv1yT6+d+hECf7r7cwqgOrnT16pD9UfyeC2ufvtcE19lULWuhRaBee63zgUfBLZbCTYy1CTR+10JJ/Rh4n22Hjd4xAsVsPa2x+gRdHuY9MNTSIZBI7Qav97rgFfy9Eug4gahddz8H6oOv/E3/vP8EgSqYOkw1DMEdU4dtdp/EdYOhlpvpLHioaT4hrksgtk7LqRpjcOeg37KCpwjkvCd7IfgCOGXx2oZTD8enJmjP0Uvgsrorfmv0CUTTmo1gtQC3fFDnvYi93GWSt9EKnPPeBsMpAwIdnXFoCLcFd3hAbRg6TaDRW1bZJ+zpzv3vruekIYH6vn18xukILse6JNN+hkD/lT7ub3MGFxfVi6kzIlBn02d01w28LU6qs+wsgQxazevOeIJHlt/8W3iOQNv9VL0FvcGPzJgvZxkT6PE9a0PSBzwguvZ7ogmBGtuaTVJugF/5WVAQfZ5AkeOXI8wDwOtMN50LvkCgR9mKQ9uC6O61Jud3b1Mc5wrpKyO3wP/+DdF3vEgguyk14fzbdPH5cuux+SUCxa5ymHGOoLunB9nbz5gR6Gde1p99UXTx8RMYPGZOIMnXPyTmY+jyiimvS8WCQF8GJa6X36XLc6m6PDlLXCfnzi4F3Acv17psIWmF8/n5tSdHHtLVzw/xi4LWuF59DfBd9whcdUnbg8OGQOn7ra9/SgH/qhfyaZUtgU5EiGbGp4HPbD3JMYP9Q0bmH+NMurr6OXnXkB2B9I5Oum15Aq5S772r5zKB5g79EfyRA/7iYi97iz2BonVfjOTmgx9caW19dwXXGW3BAZfn4KvWHXd/4UAghT9bmRVfgtcPGSxkOBJog0Sj/nIx+PTCkNl9JwJ5P2JsqHkN7pPDmnvbmUA2e+ttw9+CL5x/9dnHhUD3Cjjl9CvAH3lP9Tm4EujBYJuEYBX4ftvS1otueN5IZ1b7Vg0uGbMhRc+dQEHlmbeya8HdL/zR1fDAecWYPevYAF6mcKV/nyeBVmuvjlRoBt8X4nxG0gv3ZbNnussfwZ+9Ycrjv0ogAbEspdo28AcHdwyweuO6dIF2MrITfM6VtjiPvWtMN+JMF7h1u8Tc6DUCDWb+/i3SAy714V8b4YP70aWKwCESfO0b66jm6wRaO5uj/LyXro9ssthT7ovz9r/nm737wW+Z/i7Iv0GgIe5aKfXvdPdrYuOGZD8cf73B8+uGwa/913Q60h/Pt52rSztH6eL2lvfajQAC1VwVVE0ep+uDPTP+joF4fhbe8stmku6+r7OzM71JoMnE9XV7p+nq/3tX+ZNBBFLtJusWZ+l+78Ld+18wgaqfB059+AsucUfrivQtXK+Y/2pEL4Lfuc1LbAoh0LHSfe+Ml8ErCe9d7KEEOv9M1mIbQ/X/3GDe48Ii9pL6AZlJRnDvs2tdRm8TyHH08La3zOBLTgesv4bhOjN/UuMWG7hqydKh+nD8e2Luth47uErWhdlXEQRi8do/v4kTPKTYKCrzDoHuv1wdM7wB/LDp2Nq7kQQy8j6jV7QRXElok21gFIG0CqWU/PnB31kMZTlH4zpz2EXnuBB4bfHJOtMYvF9skQoW2AzeFq7fcDwW/1768NCgKDiz+XSeUhyBZM9VuhSKg/MX73WVuovrW3SMxI1t4Hqr1wvyxeN4vn++ckwK/EFd6GPGezjPSV5GgV3gtjfT1k1hF2t9vee7NHhrkYkR7T6BQsNiAl/Igl8lioKaEgi0ZVXCsp88eIpXQdzrBwRiF69JO6EALrRWOyjzIYF0BjichA/Sne/G4DOxiQR6esDBYkQZXFvAYq1fEq5jPD1+JSrg9xIGUuwf4bxyOF4TrAZuIcDCfzYZz9VKZbKnNcE9hT86aaYQaNZF7IP4UfBtkgdzZFNxnNndA6a0wS+Wa9Vueozr9uo8q8rj4FnWS9WsaQQ6d6LKJUoXnPuJUfoMdtbh3ExTfbr4s561/JZOoIwWC4Y9huDZ61eYmzMIdHrhW9CSEfiI+onwkkwCrbMXlm0xpstDaY2ptCy8j29ex/joAri/UZ9iZDaeA7meLF25BO5wTMrc+wmB2jVGRf+zAHePFnCwfIrzp6TBjsMa3LjoxTndHLxfX1EhKFtwR7U/25VyCaRrqepeYA+eUP2jSyIP51ta3T4/R/CzdQF2nPn4Xuxq3nTKBbz0az05j/3A6iO7xdzBzUPL9g4W4L1mt7TFb0/wcLMLth+fEciv0Luq2pvuXk/n+r9+jue3+1uPxl8HF2x9ci2tkEDm38VnrP3o8jbw9JmIF/jvZjrVKwaCP0l5xuP5EufnN4aatcHgb1+VvrhYhOe01LYfZAh4yTlPee1iAnFNfZF9FgbeJTQQL/eKQDdobGkBd8CnIhh6hEtwnfEwVzodDX5Zo32F6TXug9Xd85Jx4AfaDVkmsEd2WX6bjwcfbImY/PIGn2/l8nhzAnh0k9fbd6U4b6OSxVMTwYcu8ds+eYv75ulDN9ySwfdIXJmLLiOQlPinVUcfgyvkeVp7l+N8W6efI5QBbhN94LVZBa7n4qXXJrLo4mD77Kf2Ozxn+q5yff8U/GULbZVcJT6vvZuj7+WBu56t/SNYhfcmA9bPl5+BZ6ZZf2J4T6CN/96oohd0536kMmwEe7vazg6eYvBJWodkWzXeR/7TixguAT/IkpbxugbXMbbtV8pL6fLQZBdT6gcCeb5Ld40tp6urXs6HQ2oJVHDtXYpNJfibeRdbxzoCaRu5Th+qBi++IetgWI/vi2uRA3ct+HxGnsGhBrynjPiuH66nq2PrhoS3NhLoRU/t5/ImcB69bx/Ymgh03DqkOu4j+Ha+B3qT2FFeSZddG/iaxQ3vvjQTKLdFl1u1k+59UnXWl7cQ6PbYUTe+LvD2J0dQ+kf8XbsSFsa+gt8sZtS/3Yr3tQLFJ9UkndvdPOL0Cfffh2LXH/aCC9jWbjJsI1AOj46nSz/4ZsOWTqV2AvGp5d/T+g7+tzPBcUsHzmdtVUp0GDw9Ysfomk4CbTX8p/1nFDxNzP/oT+zeEV/Jj+Pg65Qe3fr0mUAygp/isybp6t71gOziL3jv2NbtfmMa/Ei0dM7DLgKFUSPeZ+bAOTenRfp1Eyj5ylLGnnnwvU29py2/Eohn1bo55n9090hj6J9WD54rPqx16F2mq28yb25JEwQ6OTbD9pqhBvrRwTO/N5AEskivao5mAt+77h2aw24kbFdsxwJue2rGsYfC5xU8UK2+Fvxh0ZxfBY1Ayzw7/gpzgM8P1Lqm9RKocn6v/iwnuG641dFb3wj08PJc20du8F9GHUt2fQTSTHT0esILXvSH696JfjxXVMWqBwqA8wqKcu0dINAwt4n8eWHwNfbL9hsHCXSr7p22ggjd7x89e/pn8P//3/gmmEsM3OiifEPPdwL1KKGh0a3gLuZhjeU/8P5y5ZjjB0nwOKPi/NQhAin/aBdK3QHuM1nkenOYQKKDn8au7Qb37L0taD2C55a0Q4OGMuDGXfvStEZxHTNdz7BXDvxO+Cv2XT8JdNdQRYN9P/jKM85zHGM4H+pqcoYOgO+ZVw35hX1l+sGBaiXwbZt07reNE8he+NVI8n/g3h/33H45QSBTvw1V11TBj9eOnY//hfcp84zyMxp051UazO01SSAJFpteuSPgpWYLT89O4bx6oSfJqQ1u6K6zVek3rmNPzsf+1AF3y/G+ITyN67CM/9b6k+ATZcFv/2EPiSz6mqEHLm/l3EPN4Pxk/10UcBp8/wUlomKWQIVTssWmRuAeFwfLU+YIlBdi16NsDL4s6RTo/wfvEQJ3JQQvgFs6EVJmf3E9n3gSN3cR/OPMjkK1eQJNnUnd3mkO3u9mIiy+gOPwyPVboRU48dTZZvUirv+cAhVRtnRxPn05vh+78GJopYM9OJucdub7f7jPPi8f0nEEN2dYfz9tCfd9vwL5nS7gPwLeXA5cJlD+a4MMVndwX7fjW8xXCHS4IPPgkCf443t1JWqrSPTpRdL0B2/wE3m79ooxkKhfcG97xnVwTk/viFWrSTR0wOTzTT/wP8WFDb3Yt5rzLJkHgmfu+TxcwUiiqgk9bfVg8P/SB0ceMZHozT7OUrFQunvU9a35+hoSzYRr6DKE092XqMYYE2YSSZ0YYu27A74pOk1RiYVEY22/f1RGg6cl21UJsJLorbvpSGoc+Df/Lbv/YB+NFucKuAeuuFR39TMbiR4FHjAxewAe1XMp++VaEk1lxTeqJYEbfPtZErOORLUm+03FU8ADvtjlOLGT6PvKej7GNPB7wcSNExwk+vdb6PdABnjyK7X9u9aTKCRe73dNNvgu+UctrJz4PbVy+bJy6O7Lh4mjP7BbOm25GJIPXnXgQEY1F4k4rjxtsn0Oft/Qqz91A4lG0lTOH3sJHj76bPUNbhI1XO3m2v0KvPt9H5MJD4kuGjiNcLwBV8nlGDmwkURHHyx+//UWnNVl37ONvCSaLvRgbq+gq6v9Z4ymsOet+XKsqIouns0efS18JEpf2vjyXg14yErMiRx+/J6Mu5B3HfipY3mJtwRIZHaT65dJIzh5/UOTuSCJaEPl71Va6OJpQ6NUhEg0/2hXqdgn8LvEnzYhYRJp8eh/Zuqg+64c7idz2De/2rFx+DN4VqbMpfZNJPo4m+PZ1A1+PlV3IX8ziezUP/4rIMC9HNw8b4uQaJk9IiuWRlf/vyV2WoqSyLSOdPPsA+9sadiouoVE+oOvLY0H6eoG27KCsBiJ7LsEvFWGwMftDirPYd/DO/tcfBQ8t/q6WJs4zhPuI+ws43R5Ml4/krsV398jTOE/f4Hnl4vcvSWB75GUlPSn3+B/1/ltMdtGohd7cn4XzdKd4/PRSGVJEhl1BBIP/oKLBZr38m4nUXtUztCNRXAJk6ENk9hzaIL8lsvg9huvSTZK4TgoN9hpM3z4n3eFCG/O2EGig+KFvXuYwFuimmd9d5LIg6vx6kYW8AMskc+NdpFIKIh9/wIb+K2GSyf27ibRtn/OG7+xgxe8ONy8VppExn9/8dVygm9P+U96ELvzfMChPG7wCXtt5/I9OH/8RYNjeemeP2cXf08G5+GGqsmrAuAzm1KTnGRJ9Ev6ot9FYfDq8rFgrb0k+mH8W/aICDjj61N6YnIkUt/stkZaDFz1Z/PyPPa/C1//8UiA3ztgHtkuTyLymij/oiR4ku+GVbn7SHRP4tDp/h3gzsmEwc39JHrlL1XUsBu80KfqtokCiXIFKIVCGfDQP9WP5Q+QqMZTn0yQA0+YGUhcp0iivZIBGf77wdefEb86gJ3hpVmUrSL4gxU/hbcHSSSZM5Z0Shnc9vPSl1glEl1+INSiqAK+pyzp3GVlEgVxDoqKqdGdy4MLFWqHSLSSqBbPpgnOrK+2RvA/Ep1q3SX9+wg4e4vWnknstUqJQz3a4LOT7gfrVEiU4BxaU32cLv6ZtZLJiERdjGPVebrgfz+pzLmrksgttOJ7vD648AVato4aiQ7H/d3hZwi+Ty5LWVydRKtKY6Ntz4JHHLxf+Bf7obhgQX0T8LHzL9haNfDzXzXUKJuCZ976q5GpSaLJt0ax28zAgx5fvuRzmESLh6QCOS3BexLYLuodIdHTDvm789bg3me/oO1HcR0WcqsfsAMvam5bvYT9RQFN5OMV8Iv9/7LbtXA+7HK6/9oJvPXWWZkn2iRyl9ksl+4K3pv9PcH3GInun+2buOMB3i+fOaivQ6IrR4parl4FfyGYwC11nESKDyI/WviA52i9E1/CLvLbdurkDfDHz4V520+QSGJaWUEpAHxOrWAk6ySJ9qFVj7YFgfuPe6X66JKI61rBtg0hdPciw/vgqVMkstJCn/7dBt96rqhIQo9E73Vzk4YjwD2XpLjnsUcr/AzrjAK3D+rWa9HHdSbjz8PKWHCzvmq3xwY4DqoNzXnx4HKsY14ep0nEU3x2y4ME8IPjeqbahiQKz02OD04E1w+ek9x8BveXj3G7XZPBuz/0tE1iv98o+930MXhaxoppjRGJfHUc3+lkgK8VsP54/yyJlpY13ypmg4/wcW6xP0eiq3H53dty6OpJwqKBijGJdr9O5efJBx++u/vyBhN8Xpv5r656TvddTOnmg9ifuLEtjL8A1+m9+F/JeVxXHZwfEcV0eStquXD7AolEyzXNG16D51c8f3DelESJfH5aJW/B+UuOCMtcxPPMHoFTmRXgsYzb/Rgu4f7+htU7rgrcLkX/Qwd2Wyft6oAacJtbjeOZZiSSZu7Y41wH3lYU9dfLnEQnFJLfmjaCe2xP/65tgefD1+l2J1ro/i6xpljYEve7o6TioU/gPz++th7H3pekumNXB3jVStlChRWOv3uDktAX8PYrPC7R1jifI5wc2L6CG/OWN5jZkKgjZVfVX4Kurs6XMsnb4rrhOLd/mEZXDwXWizPZ4XnpVX1TVx+4kVuJ2GfsTAcTA+sG6frmuteMWZfx/PbK2rhkCFxhgKve055Etya3GmSPgpcvvnc8eoVEMjlNV+6Pg7Odbf3D74DrfPaZ7JBJcKVFBYth7Pa55auvToP/Hl54/tqRRN+uz9+wnQM/uW1TX6gTiR72rd50bh78R1Hi9Fln3HdS279q/wNvTro2LOWC60mg2WulFfD4/jfv/mL3131Ssmt17f/8eISxd70riT63pXRtWgPunXqBN8ENz3WdqgLrWcElJGvibNxxnRQL8l5ZC94oETWj4EGi7hDzxUkOcNuMdweYPfE5dnQ+6ucC98w/c+EzdrH2jkudPOAjWoZWGV4kmjU4q1nLBy7tX6brdpVE+VImWq8F6fzCnU3q3ri+iX2+krMJ/MRofRPXNTxvcL4rTBIFd5RzvtCLvffDBv4ocfBR1aC2fB8SnReoTQrYBn5fjFnq+nUSqRKd6u5S4DXf5i4d8yXRwoACm80ucBRudF3gBu6nrN9/ndsDrrNnx7Uf2Mkt3XPH94LndF0xLvLD78/EJqK6D/xu/NbNgf44z8OdreQPgFd4nnyvG0CiwBiWFkklcOOwCe3NgbifTtaeFvoPnOMbU9Eo9u+B2f84VMEXQmJXvb5JohLJtBoGDfB3sQkywUEkIl4/y5s9DO66QUBNP5hEcfwNRSNa4Gm83PtFb5GIT3yIpHTAjQpD1o1h93y9elv7SXDBP941r0NIlPp2451aPXByfuRicCiuzxx8vG9Pg29u6ab0bpOoInql7JkReH3QURWRMLyv7WgMyjAGV99/IGAU+2yp45UHF+jOffpJ1qtwHP9dP9wiL4Gndz4qCIwg0UbzHYk3LcBfTfA9OHmHRF819/ZftQafNOK1ForEdb5sTsvRDnzj9oe8P7BrFLq2WlwBv+CWlV0Yhfd3jmSPc07gfqeVN/lG4z5V5qKs6wqe3X/OTSsGz/lPf2w57EF3HxUY83liSVRQObtN+So4l51iAw370q/7x/b6gDPcXah7Gofr3rbayO036PKk7dhT97skGj7l/XtzAHiS8k4HFI/rs1mOx8Yg8PfjD3jW3sP9S1tfYF0IuCpjYlIndpEFux6GMLq/m7CHNeU+7l/Wo2//RoBb1xuesUvA9yuguexXFPiRwg0h8g9IdE2VjfoRCz7tZPFwCftUwoNNtHjwfeLHo+sekkguwNPncwLdc34028Yk4vo2mTDfnAje2/Njq0kSiQR65+/VJIPvFE2sknhEojVHYg3KHoPXto+qTWDXETWRKcoAb+PtyihJJlGj1YmdedngX1jNRv1T8D7Ca66ZkQNONd/mPpaK56idsb5J+eAXb+pv5nmM8yHty+e7z8FPnSxbS2L/eF3qxJ2X4AKn6nsy0vAeWuI/EPwKPDbX645DOom0T3cn3HgDzhPUJK6Qgc/FQMrBq4wu/ks1D5exe7yyu+T8DrxO2Wq2NpNEygHxrnbvwScs8uWisvDzSzLSzT+Ar05M1jfKJtHZC9HTJvV094hZyVD0CYk4vfXMDZvAvzf7Kw1h/83V9+vkR/DTG91XP3uK98fdiklabeA/GXnzPXPwPe3QtVHvBBertlRSySWRA5eY3qEuujh7W+asycP3bizjnEIP+PVTvEvN2M1cO/1lKbpzdLoqdzefRIUFT2p3fqN7PkPUMZMCnA8FQru2DYDv2GN8WPwZidhvbC0Q/QHOJ0aIj2C/LF2mKzQCHsnEM/DsOYmSmyhO3jHwLEbGW56FJGK1C5jg/EXXd7Tz1v33Au9rfKk/1/6mqxuMXO6ML0n0fEiOhXkW3Om8zLsG7DITcmoMf8FZA9eNRxWR6LbKgwf/FsCDHmcuGRbj+WHclOvvEnjh8PKk8Cs8x27wzZxeVfc/7wgWqOvDPv1u7OwvRvBH2dN+2SX4+Ruyd/5kBlfwjRF2eI3nSZFMoSE2cFWF6Qdyb/BzVnqlBtjBq1cLLf7B7vnplGEvJ/hhHhZUXorzNncyheAGL0t4axX4Fp9L3mvWbl7wiBpFp6NlJNo++TiqUwA8ut7PhL2cRBbxmfvahMEFumJ2tmG/XVr2p0UE/Ju4Mxlfge+v37fuRjFw4V5hF+N3JNrBtLa7TgLcAd0bFqkk0avLcrM128HHvL6pD2DX+awv+34n+NbyRb/sKtwvbCxvv5MGZ9UcSbF/T6IMzUurymXB16rnpMlU4zknFsWXyoOzjKPQaezHvRaPvlYAP+GTe6qkhkSXBO8IvDoInrp1YvHaBxKVpY4zFx0Cl9vMFqZSSyIWBT6eFwg8O2VpgaGORNTqVf89VwfnHWg++QH7m70ZQQWHwVdvuRocWk+i1ROLI3la4LZRq1J0GrBbrnLI1QEvuGyTuL6RREOVORw5J8Gf/8y/1oa9VW6m6YkeeMnxz4fuNuF7Ovw5O/s0eEA9re9MM4m8ubUfZxmBKz5sshNsIdHMtyOvM43BfZaSOgnsncH1YxkXwA32nBZP/kiiPPk6lYxL4Bp2v/UvteL7LnKoIN2CLs9/XrUW/4T3IO8tyunW4GFTw+cHsX+45vA9zQ6co1RDIauNRFlnN+WnXQFfDgz7bdOO9+5jkrFpTuDrwitidnSQiDkk6G6aK/ipDX08P7E7askWpXmAmxpOX83rxPelXnwq7Sr4nvtzlQ6fcTxVDXXSfcBl+Md+7vmC9/GJyvfpN8CV+D7P/8J+m/2iUUYAePLnF6PPu0gU81WKLTMInPv+rQqXbhJdj+PvzgwBf5+k5yH3lUQR3hI1WWF093oHL+c0dqpJqyX7Dni6X3v4yx4SBTX5Tj+JpvvegbCfbgS+v6VlCjlx4PsS0J59JM5zYvle7j3wx/1TBjPY97v+tzH/AbgJS/r5Igrva9UuBQVJ4JE6p7XcaSQa3Rhv9TwFnJph5t/XS6K6vNSDL9LA9bXL6qexh7bf2VmUCW4X5XHh5Te8x300VHz1hO7c1+/77NqH6+3IlPnrXPA49nkZuX4SSTqa5JQW0MWt/YPDFPb12eHrywvBm58kRj4fINHebz5R74ro4tPlE+s0iPdr623S70vAz2fbeO/5TiLZkIChmlJwR/NLGuPY9WJuV9SVg9vr20zm/iDRf50KLxor6e5pla//5SH8/NTA9y3V4H8WMqalhkn084j1r0+14B7aNO0h7PuFCMXOBvCGvztvZo7geujQk9zVDP7vdESKxSjed+5eECNawW/mMKaI/STRl4ELlbR2cM0jsQG92Ne/6PTp/0x3jh4Hjz4aI1GU4VuDH93gorcWfhmP4366bZ3WKAG+pfaLj8AEnqN8ys9O0MAlg1pHP2Mvft4U/LsPXJ7zx6G4X3i/FpFpnRukq0uvhF1PTZLonFjfvsUh8NBGlzCOKRI92Ei8WhkFn3w4EtyIPc6Qz5BpAjzlapBlyG8SqalHcLJNgRcWaUhqTuM59qDCD44Z8JepUk2rZkgkmMjxlfsPeELkPoNy7G/q1g3zL4BXfLKt8J4l0Z8tO3k2L4HPvKllV5gjkT6bubH4qnrIk0e6Kr+xyw3mlW9nBP/0kcmg4A/el3mZ/pNmBpdKGzp2+S/+Xkazbjk28An7+W2S87he8ZRHKbKDrw5QHuzD7pW3wUKFE7xY4VnwowV8jgpn9TW5wSv6DdeeW8T1RyjswjFecA1C1nXjPxKpvE8NOiUA/tFTrbwV+4GE+LozwuBn2W//DFvCdZXVXPKCCPiRadalw8skkrqxkmohBm518/3UqhUS/bKxOXBZAnxoY0nDW+xZ8nEjztvB3VYNB3muopDXqeslXjvBN6Sc2bqXgUJuezY9viENvu8YU+ZP7CkqV7KCZem+1+Q3W9ZqCn3+bVUXIQ8+Ky2uf4mRQiPlq5nuKoBHCMf7CjFRKIjn0PnEg+ApfscjOrHr2a77lHYIvLBY+0bkGgrV7718MQeBvxCMNNBiptD5H3prX6iD/2ERZl/NQiHjpbef3hwGV6emst9iZ/n1+EWVFnjZHM92D1YKBexbetagQ/ecwsDbe9go9OVoXX3bSfBfV1DrEPZ/6fP/vuqBs9zS+Zu6lkItNXeO958GZz//hMl4HYXYt/uWjBqB7z1pNMPNTiEbrar/po3BBcrO1TVh98g26F28AF69ptA3iINChdXSSUxm4Onhpvz/rafQzc3a7hyWdHEusLg7i11OIcWGzwa8vLVqJp+TQrNROzxFL4P3nrqmaM1Foen8vhQpB/B/cZEXRTZQaPPGqsG9zuCRiyt2X7B7Ha3SVHYDdx1tNYrkplBDC/FO0xP8Z/WK1BEenCfSa8+c9AbP+RlNLWHX+HWY5ex18MoPQR7FGymU+jC0w8wPPPcVOXmFF8ftTVOpfSD4ia0PdSX4KPTzM2u5RzD4b+eKGAJ7oM/BHr9Q8KNrdEpi+SlkoGDEHRYOfvmIWqW2AIWuxZlY3Y0E//IwLW+VIIV+b1HtSI6hu0d2ztdLsGc5LJs8vUsXf8E8GUchCtmxRa+8vE/3HG6jWglhCk0GTZRXPAS3L3dVJbB/c+G53/AIvD5gVXLMJgqVmv8N60wF76pn6D26mUILo/ce9KaDDyx6MS5j/5s8/H40i+5+BVmuKxKh0ATPEPPcU3Dxlvo5O1EKcX8Lt2LIB59EWR9Et1DI+eEnGvtz8JGjy16fsbMSBa4CL8FNTrVzhItR6I3SFjGJV3Txr9kaoiqO42wgMirzBrx2w8zALPagd2ktymXgp9M1JXK34jwUym46+g782g8+rUsSFBJdvW3Q4D24n9YVXd5tFHLi5uO/9AGc88ARpUbsWqNullfqwQ9uyWL1k6QQTUqx+WoT3Tm63imV306hc47nTwZ/BL+ftKQ7jL3epGc0pg18kONvfZIUhbbF5T5O7gRf3n9jm94OCumWNLjmdtH1l6AYqzU7KbTuyh7T1z3gYvbyt99g5zrTYfGBArc9ZxXtsItC40IvbrZ/A1+slPIR200hebOa8t4BcBceP+3P2A9+YuQe/wHe/N5uMVSaQlZcl/0XRsCvqI1GH9qD861xkpV1HFxo9eq1k9i7n8bk8k7SfZfXC+t0GQoZnj1iu3Ua/CnfUtYZWQrpBLKivXPga/UHGtn2Uiips00GzYP7JFu3l2FftZSodOIf+Evn0HInOQrtz7l00WQFvPW/YxHi8hSqChdMtlvdAPOkT77KZ+xy+pVzXmvABVNedobsw+dbcNLuFiu4i6jpSaX9FJI8XTF7dx34areC3DHsMrOsSenrwXu4ssaSFSgkfUTq/IsN4DbORzboHaAQ/z9ehaqN4NfZYgQZFXG/a27a8YkfXP90yJpi7F5OGgd6hcB9GnZ+tj5IoVuJnqYTm8H/9l0PFVCi0Du2iylLW8DF+P1EG7G/cpubZ5cAL+2Xe+ijTKHhOAXHTdvBv1U8+Lv7EIWKtwn+27UTXESyWImG3fH7/XRlaXCDuFuXov6jEIrOs9SRBW8K4LysqoL78uApZCIPvtdBz2gKe0bqDXl7BfCothNSaYhCu4Jl1HwO0j1/FzOlr0qh5/oXbMMPgZ/44+PBqEYhhiaGp4kI/NmL51MvsZc952PMUwdfR2TqWapTyKcu3rPsMN3zJ87Hb9SgUEHHVcYWLfDey11lNdjfPHzzlNIBt2zlq3fXxHHr17ObOAk+/3BTicRhXLfdlNVX9Ojy6sTo7U7sJhud93EZgidaBagGHcHnFTmCxM7SnYvlQI/8UQr55j22lDMB52nacG4Au5NibJqGKXiq4Pq3sVo4zstF86fNwN+1fV2lro3rTyPjZWtL8F0enjunsJvYX532sqHL51vfD6Qeo1B4Afu925fBq29J7dDVoVCuRaleogP4sQXV5SXsHCY+kvnO4N0WsiV5x3EdsNLe+M4NnOXoXwOTE/genRERbvOk+/32h51sJym0uDytNOAN/jSM/+Br7Mr7atxmr4Pvn3EJsNalUHlj6AcWf/BHIzn5G09RSDZBWVboJvj5yery99g13b683H0L/GRkRaGzHs4HeYNT6DZ4oXbSbRF9XP8Lc9foR9Dl/1PTw83YOWq/dlhGgcfJs3z3NqDQ2uNdpV6xdHnifN92+2kK2Yskl4bFg+sOcX3qxI4EpToeJYBf3uIhHGhIoWhBJ6bCRLrzyvhwTOYMhVSWrpysSQa3W2Q0JbFzpwsXdj0GP/tsr+FtI3zuo+67f2aAh2qfklU4i+tnsWvlcjb4uIHZr37s/w2sd+DOBf9y1jo26hyeB4w05CQLwH/3XxI8ZEyhG3NsXEqF4Md99YOGsW9MP898soiu3r481HHXhEKD6vt5zUvAa7jEmNXO4/tbdueQZyl4uxjD5nHsZrMXr4eVgy+50vgfXKDQjy+ZncmV4DtiSuc0TSlkrn3u8MtqunNhu/9mEruPgvvHulq6+mzncSnpIoXI0EknsgH8HzL6efQShZZ21e+YaqY7LyEV42nsp9hnF9d8Ag8P2ZWfbIbzmd/lh1AHeBWf2KC2Oe47SgojMl/ArYy2rMxgP2StwnT4K7j6153LKRYUenb75gFjEvzWbvW+Y5a4799bCXTqBS/us3kyi13WN+9HUD94ye1HBqlWFOrdG2T+8Dt4S/Fg/zFrCrVm+889GwaP/6NyZhZ7bEdi2oef4Kx9+fkpNhTKyWm1JibAbzDJj2jb4nhu5dOYmgLPn2llncF+dr/dAZZZ8Meat9iT7fA83P1eY/Nfur4QYjRz9DLeg9ZstpVfBJ/SO1w5hX2sxCVDexlc8YCec6I9hdRHSv9eZGj8n4s2X2c6fAXHOf63pScT+M3MhusT2DVKuUciWMCTzx78et8BzzOneYPT14Kv9mkRVHOk0FvzGcVSDvDUtBCVUewVg0+Z2rjAq6zsjsY5UaitR2Z4iAd8vYn7vkPO+O8e8R9Y5gMPFcxZ8x272o74OV4h8AhF9rd3XPBcfctWTHozeIdu0mkFV1wfLGYsNLeAO/8xaadhl6mWqzDZCv6p7vi+EDcKheZtlnWTBK8853xNxp1CbJLP3oTtADc7Up/Rhd3wQJ9x2m7w/dvPvPTzwPvdcD5PqQw4zz3hrO2eFLLQ5BxskwOXkxbybcX+z2ClaWQ/+JYQA0UvL7xfiF9tYjgI/kGloUvkKoViyt36BQ+BW/+6blKLvUd2jEsO0cV/n3O1gzeFasKIM8fUwa/kZHDyXsP50KNcZH4YfNO4sGoZdgEZlh0+WuDnH3SdtvCh0MqDA8VxOuB7j389sfY6hSJ3153NOwm+mCa+qxD7qflnPB/0wD2Vi8eMfClUxDP2nToN/uJlbOwyduZoj9Y5I/DNOWWbMm9QKOzmkU+cJuC+5fvCdfwodInp3LCUKfh0xD9qCvu9Hdn86mbgsyW8vAn+uM6s22VqYgl+jhYgqxKA55Aq2lt3G/Ajqeqyg9hTbMpkIy+DaySf2xgWiM+Fr6Is2wF8t3c9KXMTx+EndbHKGVyxPfr2Z+zdDHxChBvd+xwrEvIJopCS16WfM57gOsH7orcE4zjblXSsvwZ+bSvP6AfsZvMbO6R8wYXr9aTsb1HI47DbiLo/uAjf72NcIRQ67NTMd+EmeOvzWb1i7G8ShEy8boG3KJv+ZxxKocxBo1cxt+ny1kSaYwV7tecNqbwI8KkXllXpt/Fz3EILa6PAeYfXGGuFUYiTwVmvL5buvFK4u8awKx+WYf0XDx5yI0IxJpxCcTaVn/kegPft9LixP4JC56M3l+5NAo8/9vHJV+zvhlWLj6eAMwU9KPG9Q6FPDyXqbNLAh3y7c8QiKXSz7f2vwEzwE70RgR+wv3vNK5P8hK6+6b5WsYuikLYvf/CbXPAEz/O97NEU6jj+fqqzAPzkv2uWz7FPGXJ5TBaC77nN+9EgBudb/eJ69mLw5Q/Sm/5gJztuvNv+GvyLyYeTD2MpZJoTd0vjLfi2GcrqvzgK9fvus7xYAf5a0dvsG/awAJOzPlXgOR0Jajfv4j4ystrifg24m5MKs2Q8hRRHJYJe1oETr+yf1WNnLn37trURnNlQ/D/7exRyjqpiG2sBd5y1eMZxH+8XabKOrG3gvRpyzM+xl+xkHJHoBPcbi1TTT6DQHXP5a2pd4HWJPmYz2BmC3oqZ9oCHL89b3XtAoTON8b3XKLp8q1qnq/iQQqUuZS/vfwN3jXuxqQe7csmO5KIB8MEtkx99EnG/7u5KbvtB9/4CtVabkyh0mreqeGKEro9IKfRVYI/P6+1fNw6+YZW62qVHuO/0SkvumATffvJnMEMyrhsTmX5HpsG138s/S8POIqL+y2KOLk/YN5drpFCI9fk/94B5uvpDPnk2iF12pJUr5R/4z/7uW8GpFCpc/+p92Qp4+6cCdcnHFMqzfhrWs7oJ6ozR7oFa7JsUM2z/rgF/sN3A1iaNQqONqef52MCrpiXaWdIp9NPmgfU+dvAeh/QtT7A3ng29pc8Jbqz1yUArA/fNYZsyZ25wboV8+2HsSWZyrFG84GKjyrahmRTy39Bvly8AziBwQ1sqi0JbD7v0NQmDe7t5cNZj/3Ssx3FUBDzv+dZSm2wKJbrwc7OJg68LCtNmeYLnLratTdu3gZum5ZZnYX9i8efBESnw8spQviNP8f7VFnnDahd44t2tp79jP581cDVoD/jrDl/PoBwK2eyfDE3fC75z3wPfrbkUOt5RUPB+H118rnjZvcce9FlwtO8AOKu8kJJZHoUux+5SZlAGV0M3f61gVzSjPd6iAm6vVXQ7OZ9CQg93i6iqgaswP2P9r4BCIve4nl/UBK+U9bhCYD/wLMjI7yi4gT9rsfczCh1Rvbkx5Rh4ev7lfv7n+N5lMg9VnAB/5fJophi7iBJbK+0U+LfgtJ8GhRTacyG4edkAvDHdp24K+8MrHr0iRuAuwTtDo15QqL2ugwUZg4t+fy4t/RLvfa0PD1+8QHfuvlyvG7H7DtQk+F0Cd2TT2W5bRKG9NscZUi3ANTXNfdYU4/wp3+VXaQ0eN2JUlIZ9r/YF7j47ut8XS7ejV/j3zkQpgwN4rMX3ThJ76v3Uq+LO4GyF/mXeJbhvSmbraLiBhxsz3OZ7jfP55oi8pSf40c12Si+xl/Ob7w32Bn//6s0n3TcUUji+TjPrOnjr4IzOGHax8F77Oj/wu1ab8kJLcT6jr0+GA8HD/uydkniL4/P59wLbLXCvcweEq7A3vpE033Ub/OqxPTsvlOG5wtiJdjwC/M9tAZF57L7b6pwco8Bfdv2Zu1tOIalwKb7oWLr8n24pkq2gUP7inbbCeHCr5CSjZuy+w1OPOxLALydY9dq8o1BT9cmQ2UTw+rSdxxkrKfRlVUoAfwr4xxvjj5KxZ/FQ0QfT6OrGxLPOg1UU2u/CWGySCf7ihdtkJ/bLUewTvk/AP0QqTTm9x/n8/bdyai74hCZz19pqPGeOPE9+XwC+PqH7cSZ2Fj41vu+F4Od1Xuqp1uA9a+BRGksx+AXxhB892O2bqzR2vgbv+xZ6yeMDhYSPZ88ffwu+QSfkHWct7lM0rRqnCnDzbfGMOdhPMzxOj62iy9t9Rbs16/A+vjfnfnENeMV/P5Ro2A//Mk3trgPXYJbec7Ue1403b8oXG8G7DMKYuRtwveIq/iXyEdxnbKU6F7uZp46Ceht48L0o68ONeL518Iqx6qTLQwHlCRp2F295httddH3kIJPJ1SYKiYtcC87rAe+uHMvb0Iznom+HRT5R4ITH3EAO9oijMU3T38Bvbdm6SrMFf9fXM3f4B8FX33ZnoLB3bI6xUB6iyxOvsSGPjxT6/Ujp5MVR8OLiiJfrW/GcNnDixM1xuvu1zsgyG7vJ1Q+XsifBQzROLKBPuI8MJ4Y2TdN9r6SLRzd2k8qmml9z4As3aj47t+G8jdDl3bhAlz/82sJs7XiuI8WuKS6Bu79ZdeQxdsP//ps+v6r5fy60d9zwYAeFjqom+Qcwgqtrc+m0Ye/2OCiexQzu1WK/za4T9y8nzu5GNvC42wzfV32mkEOlQNovdvBK7Y7bCdjvLOr6b+Sie05PP4/sFzz3Fj9zPcgD7s0qd7MO+62bct6mfOA9qe+7TLvw+yy2x90UBP/nfG/DHHbf4vD3TzaBhx55Jnunm0KBWkZrPoqC+/5av1/iK4Ven5A9Py0OLqpUIvIW+6TphjoBSfC1s0/H9Xoo1MA3e1hlB13cfg0/Hsb+letLt8Vu8Jt/PJT9CArdHynwuy0DXkXpl/KSFDJWuab0TA78kUuASB5283w5ts/7wffeZLRVp/C88bn954IiOK2/51439tdGhv1bDoGfNmPLdaThPb2jaOwIAo9tjc5g6qWQ09jPtQ7q4APLrjcfYv+iMXso7jBdnCsLj8p+w/uUb1PgGy1w46GTUx+wl6nYkb064Hc1j/ub9FFo2+4GbWZdcMbc3JlJ7AZj3xt364M7jjuevNVPIUfJ0osGhuBDtPt3hAdwngSqsl47C96mL/XiOfbnT91qUk3Av2wSLzs8iOfMwyfv1pmCj3OF5PZgP8XQ5DVhBn6O8Zy/03cKqYQOOvJagefVP1Bi+kEhppB470O24OX7dXoSsPPldt+3sAd/Kep0UXoI95G0Jw1hjuCrz7M0VmE32ryK84ULuFUlr9CZYQoNNn61+eoO/kM8SXcUu8t52c5VV8G7ziVdvjGCf39z2UDKB/yrsoA99yiFNsyoDOneAO9I2aCXhT3t0tgdrwDwlfNhm5R+4jp8g0ErJYju+ceCWlqwq6725q0LAd+pxmBpNobnkPQTcxNh4OsEGL/NYBcXuDbKF0mXh9nhaqHjFLokOD+lEgN+rCEpVHiCQr8ufmC3uQt+xFCxuAD7m8yvSlH3wXm2XapT+0WhB5my10segitz873rxI6EP3zqfQQeM2eSZDOJz7c6RpH1MbhCnvzFBeyHTWJeymbQ/Z4jheXOFK4njyvUzmWDn51NiRf9jfdZw40DATngt1QU2V5gn1O4cz8nH9yyxs5ccxr3KRaJix3Pwf3NFR5/wR4f2nHw30vwNzMpH2xnKGTne2/7thJwGaMnrQvY457aSJ0sBde31nsXMUuhyja1Q17l4ORy0l2ROZwnb0UtUivBG5YidJ9jZ5T+l9RQDW6runVS7Q+eb8fbRn7Xgh/PMPPswL6qNlF7UyO4Hsuxfsu/eI66cbrscAt48lGa/Bz26r45NadP4KkaW+xD5nF/KfXtSeigO8eeDaECC/i7OgaC338Bnx0pCnuKPXNhq+bYV7p+ob/OTWmRQhP/FHn5KLr6PM2n1oS98cnmefQNPDrv64zJPwqFtzT/shsAn7xgGDmG3UpZbT7uB13dHg7n8F2ikGW1B2/FCN3f3eXnyrGM+84BK83hMbp+wba3/BH25Mtrb3FPgstapI9Lr1DIWfZSz6FpcEGhbsYK7HcvmKnZzNE5V9vKiVU0lFzH+jZmHvzk9ug+Cnuvpt7Rsn90fUed/6kDAw0V5+3/8WMF/KCG7Zkl7Ie7nt/fwNjyP4/nCB6JWE1DKY/KTQ4xgzsGOZlvYqSh8q9n5GzYwHXCd1TlYney9hKOZQdfWFO8RpkJu6gQfzkneFQ3j2wjdrO+g9uGucGth46qnltDQxW32w7z8IFL8BsoDGOfmCOuqgiCFx8/wO3FTEN7WU9X2G0CP+ow17GGhYZKHu3jixcFP2sa63MXe0jCVf9KcfCsNRxsW1lpKLpHaOnnNnAlbdvrhdgfH+GL4N8BbsGZ9Rmx0ZBbpZW0xm7wVyr1Gz9iv7ubqc9RBnx9xaeD59fiv+s8lvVQji4O7lWao9jTXQX9aveDp2kn7b+6joakhG7Z/VYE/ythwc7MTkMyutLWIofAQyf4G+KwNy6weRxDdM+PLLMX46ChDmb+e57q4NHj+jMF2Dea6jakHQY/PUOaH1pPQ6pj+etbtcDHw8+XNGD/+kjaelEH/NmjjqkznDRkfKmhdbsu+AEeTe5B7Czi13VO64PbfXkm4MJFQxLtql/9DcFt2wTWLGMvu8TtnX8WPHvCvytsA/6uip87e0zAvwiMRvFz09BOWt0E80Xw30pn9mRgTyp8XCNvDr5fte6FLA8Nvd3tnnfJClxqI9pcjp1RUynrji14TNo7B+2NNPR9bKKw1B7cv+tYxmfsiZvvtA45gh9P6a8046Uh3RbOlY2u4Hd+hFaPY2eZcVFV9wAXfYjyvPnwfQwriHO6Ci6dzeqzhh/HJ7zyb5IPOP/id5kY7Mu/0pwab4DH3vzauEmAhrqKTv39EwAeuee7zhPsm77UxG4LBlcbXftSXpCGJPUWVAxCwXdmHl/1DvtOibF//uHgLCfz5I8J0RA6Gd9cEAne17HrxGfsxq2T+WQM+PK2luOXhGno3JP51LXx4L/kY+V+Yp/tyclUTAAPGr++7LGJhj7arby1TgTvVo96vmozDV08+3vgbjLd+0s0aYVj58i9sbn6MfilQLk6XhEa4rVJsZ3KABc6WbcrFfvDWN0Pok/A714N99wpiu/dvjD5k7l0933aP7sIO7fhsZfXC8BLnz2tUNlCQ4X/wjRzC8FZU1nK6rFL7D869LUI/NyrpBR9MRqaYb2WyPoaXPL7ZTsSe+RNEbMDb8FlRd0FrcVp6FChjKJ1BbiHUemzX9h3pDzZEl9Fd78C0G7vrTRkahIkVFMDzhi9Jmq1BA21z5Rvm64DT/Va3x2O/bjPKXXxJvDNu8+z8G6jIf8VBWe9j+ANjyc3JWNfjL3yzL8N/FBLi8B2SRrapzW28qwTXDt9duEZdne5QrPeLnB2wcvVittpaN7qVed6Arx/q7RrFfaWP3NnVWh0deCNKssxKRr6seQw4dAHHtCaFdiOfXMUX/yjQXCD82aDxjtw/Kt/Hm8ZAtc447p7AHvUi2HepVG6fvSSMLbfieuYJ+vk7glwmyspTtPYT+88Qpyfousvnu8u++yiIeXhpK6IGXDDxv+OM+7GfaGZ5XvZH7rnm27aGI49cCaAcXwBPGH3hffc0vi++zLLb16m63e7Vhs9xP77VrTbCYaPMI8ZcLSL7aGhTzLCH3yZwIuS/eWfYq9PeLy9gAV8lMnUR1aGhg4MiCTS1oKX+WU/LcF+Ym+kKOd68BzWixUqsjivskaL0AZw9we33nzA/sFKxsR540e6PNmSeHwvDf25a8T9mB98qFTaogO7xznTnjYh8HOqhRuM5Wio76vKy9Ui4MoleVnfsD/5byZJXgw8Rkhc3EYe15987/uWEuCZVjxB49gf6TWmxW8HZ7wb2Oy2j4b4DPsqaneCuz12WZzHHtX/5ucfaXCGsH4u//009G2b7o4de8EXtLvYmRVwX9BJ8jLeBz5O6f0K/38PSPoSfoDufdRPv95wAOfJ3LEj5Urgch7fbO5j/9qdVjvxH/h3179LmxRpyO9citEWNXCdg8nX0rBfeKo8r6cJvq+2g9p+kIYsF1xzbx4Ff8mfuD0fu5WfqmPxMXDe3XNGcko0xHMlRW3oBN37Mww5lmBnmg3bJqgHvj7B6cohZdy/dJcFdU6DB4/HnKrCrvBiRsTXiO57GU4JHzmE76+B3b5nxuCrOnObG7EvXDEy7rsAbmmZban7Hw0JK5RG85jRxeGF5kAHdpmRiK7DluCf3gVr4QKAqMrGPVdtwF+FX7lLYi/863gv5zK4Lf9i7SVEQ1wt7uspB/ApC/lvg9g1fLrucbqAZ7jyf7NVpSF7tVgZdXdw9sNPa8ewx5imdrt7gf8hR+Oc1WjoHvdSTPY1cOdDtKMz2A8mp5v0+IJXWwX3e6nTkJhG1H6OAPBrJv0Wi9irNd6KqgaBX9zyp+mGBg3dHBAXcgsB9y75ILRaE/cp6yqJrDDwDRKnTgVjF+GORV/vgOfZJVxhPUxDG3ZHX2aPoTvfiFSncOxo8VUmuguuFHX53PojOH/qGKZc74O7ev3dEYN93Vf741kPwQ9qH+/jOUpDz7wnS74+Atdms/W7hz1+Okye4zF4WtkJJkEtGvobo/BONQPcz3bFKRH7p9QJY/dscGNuv/ebtWmI36GA+UkO+Ni7j4sp/8ekfYdj9b4BALdChESolC0aJGVkHNlp2EUSki0ZGSWr0EAkI0WyiZCsiIhCEVmRvK+yIopCyeh3f//53effz3Wu8z7nee71XIBHaXq8HHiMvt13ZouwHoXo8957i+MJ+kHVMeFM8GCDaSeNUtL+bClZL34Y8lE0xdS3Ap2H5/hoDri0pophfhX6+X3dDyWPUIgkmpZT1Br0zwFSGvngHI+V/Ljq0XsW7Vt3HaUQbikxGTqNpDgsClIuBLcTb6D4N6Hz5V66I30M+n7KO8niN+huk+bvi8GNzAtDR9rQ9YMEFmT0IX+fWP7ge0+qq+fbaJ+Cty5/cDrajW7XYDcna0AhSuL55kI+oN8MnWwrBU/t2Xyr/CP65ueWt/YbUghT3o/y3wbRs73q95eDe5cbzgp8Rl8p5W2UM6IQFzkCqkxG0HfcPKNYAf4y6MSdG+PoHisZ8fLG0AftPvnXTpLOfROlrwK8XYDpwq9p9IyvG+gVTGD/2bv8JWZJddJHk7sS/Gms0h3LOfSItgvrFEyhD7IpV8X+Rv+4mPWtAtziS/tM01/0b4wfn8gfpxADXj/lVlZIcULDZVUBHiKeGrmXth1/95fRL7kTFMLd6v2sAwO61Lf7buXg6aGh9ilM6H/nfnTsN6MQv5afTnayoEduNdxcBr5hj0UgMzs6vWe93j5zChEb7i2kyole8U/9zFPwEafVLi9udMXuD9Z7T8L8pjkbn8eLfmolRPsJ+ELwIQfqZnTJGxpceyyg/0bQ6W7chj4etq2pEPzHe16Fw0LoW+g2ntl9CvKlLlQ+RBQ9eJ3kSD64cpOmdsV2dI7SU0d3WML5mhifnd6BTstckpILztiff1tECr2Bd2eP+GkKMf7q0DtzGdLzv1p+ZYIfiJLYHLMPPT0vZlHYCs4rTcP7tTz6m8MhYw/Bb/omUJcPoL+fSKnaZg1z4xV+c1lVdOO4r97J4LaK7z87HUQXPmXLt9mGQhznLL74UBP9kNH69ETwqZBSwQ866FzXZzdsPANzL/3HXrbD6Awca11iwTnZ+ZM1j6H3/jF7xGFLIbT5fdz9DdHDTgx3RIKfyx02LjFBP6jyiLL2LOS7lLX2xAl0/+dFXeHgFpLjOoIWpPePzxfR21GILN4LZidOk+KkM9ArGHzCh87vlg169a0j21bAOV5HZb86S4q3PTbFF+1hn0M5R5Yd0J+9rZVcAB+XvbFnnwt6jJfDTU8HCpFjMhPh4oauomzZ+R3c20l9Id2DdL4H0mldHCnEpflL5z9eIJ1LiALfOHjD5fjfnH7oI+LCPLZOFEImNOrWIX9SPBA2SxTw4Nun94UEopcM/W466UwhjHcyTFSGoHsIfPXvBefov1gwE4p+kXMfr5EL5KNIdaDEdfT7rYNJbeBBsQ1W1hHow/bj9Idc4T775Jb+3Vvo8QtGpo3gV1j4jnXcRpeJFb5FnIN6JWlhwRyP7mxgVlgFfvm+sa/aXXRZ3YWy/W6w/unlNL/76KUxq5nF4P6PjQaKH6AbHvTy33meQmxyMRCZSENP8ziumA0uUT57USiLFD+KjyiC7jBvCOylmueiTxe7u9wHH1BgM47NR1eYyadu9KAQz+ICe94Uog9ynFaKAb/5OsSevoQUDxI3Alk8KUTYmQ2MymXoGsbSeaHgrSs7Sy9Uom/LM6peBTeQeuP+uBo9UGO+1M8L6s/Nr0pjtaS6qrQp4Sc4f/6VjQIv0R0L6k67XoA5YXvcyolX6G8Lp9nHwKOT+OZimknPW6ZnW3lDvt9nXWx5S9rnziGxfvCpJsd19O3otpL5kUY+FOJg9U4p5U5Svb1MP/AWnGODwWnvHvTasW/rtXwpxLzT++TCPvTRq/ZSteD2NvkT4wPo1ue9ZeX9KMTjxH5NISr6XONmwWLwpYIThSe/oGc8NJuTuEghtNSFxONGSb5NpjgN/NyiTEHbV3Qbi2zjzZdgLvUOU2OaQg/3qqLEgn834x1W+4E+dfW8Ias/3HMPDd+59BM9N68p/yq42rcRo9J59DV0r6aXwLeM8gp+/4N+7ZET74XLED+Dvkvbl9HH6iokpsA/X6YZtfmHzm37ROhsANxHyo5/P0rbgXFYZEb3CXyTpMrsJB16cUPRG+NACrHRTWbpGgM614vKS2/BhU7KrBNjRN9Z571BIwjqcMMB0ZdM6MujX29XgU8GHdawWoteq8+9KBMM+2Nv47TMgj7C/1cnDzxe/1JC0jp0znPJgYIhFOIOZ9wbOXZ0YeuV5ERwlrCCNd0c6Lt4BDLYr1CIwCv1Oh6c6BeL6G+HgX//0hHDzoUeduSx/TL4s6C+oXxu9LXs20S9rsL9aG+v/CEe9B/cZi0T4By9TfFjvOgnr1getw6F+qOZ//fqJvQM3z1ve8FZzQPthbagH+fp2n40DPryD9X+Wn50+WAd1wbw318mjU5tQ1f7EH1XMZxCJK4P7loUQE9XKSwoAh8yWT6ZKETa557MXLFrFGI50nJinwj6npfekffBbyakBXaKoreIiZhxXqcQMfqvN7uLo0eJFLFeAw9IaKlhk0CvpGzJWQaX1ctzyJdEr77kssPzBtxnD9nyHdpJirctD+PHwUO959vHdqGvG6n+euom3GsKLG+FSqFrLdaJdIIPdiQZC+8hxVvQE22dCOhfL3ME6mTQ99+LNnwObnwm7KelLDr3eUtNmUgKwX1nT+vSPvQc4a0C2eBFcjkFSXLobB87Pm+OohAt0uN35BXQY6ouRUaDe9t8D+lRRH8ywS/AcItC7Cmq8vFSQpeIepbkBz68fMiTUwX98xuj5SnwIal7F4pU0f80T2rbRMM8IJkXcFQNvenx1Ys94GJdF6K+HUTvSBWIOxRDIXauX8q4oYHe86ouoQacpkmxfrsWeoO2U4jMbYhDitToK22SH9pikgUuodzHcVYXfcdCH/umWIi3ZtmDdHroEV6ZTyLBGV2Iiw8Pk+J8IkiZ5g70BdbFCtWj6M7B54q8wMtjT698OobObH2eZRzcaeLcIX8D9P7ia0dPxsGctiiavMkI3f1+pV8buF5+yHyFMfptXYZItXgKcX4yxPS4KbrsZ9drT8HXpok8nzuOfvXWnLN4AoUQrjoreceMdC4XU+SSwCWFNFJkTqIPtjpNsiZSiL/1z3k7LNBVnliEB4IPXm+/62aJvmrgzTILfvXMRUE2K/TDvZU+tncpBJNyZWG+NfoVF4m3PeCzdDc19M6gKyq9ZtJNgjjPmqJ8tUXf6x63qwpcgpMSfM0O3WV/vOKuexTi7v5TkuIO6Kzlb6QegJfT2vU1OqJ7bZVft/4+hdhqtxBl64wul/jpfQh4tz67Hp0rOp9+TdAv8CMlj9alnUNn9xjYaJdMIc4GtPQQ59E1JRXjesEt0x2zKO7oGzP7/uqkwP1oQ7h/gCf6evbnh56BS9cLmPFfQF+4Mxq84wGFyE2VVar2Rq85c+LhfXDttBeiJ33Rr+dw5a5LpRB2z+q5F/3Qn0bz3w0Abx2QZ717Cb1R94L7d/DcZQFm+cukfkGzVcbqIfSd9X6svQHoL0f4PraDx65T3egdhF4n4uyilgb3lLHzYtwhpPd/2zBaDP41llX56RV0Y5eNOkLpFOLUWg5zo1B0sfdet2+D86j5XZ4NQxc6sqeRNoNCSElpZcdcQ7diPUr1ABd/69UrfQNdWrX1y2fwMXY6tvab6Czcxe8MMylE4+z0IbdI9IfP/6bXgwe67o9iu4Xe7VBoJZNFIQi/3t6CaPQSrTaGNPB49nbxI7fRQ8LNY9dnwz1CcmvAt1j0spOmzMHgZxtq+2/Gof/8+dL+B/iGD0+UdySQ4io48/HpHFin1VxWSyJpDpFd/tQGvtU8dKNTEilfVFrnlHMpxI4XVhHM99En2nnm88HtboUy5SaT+iM/ZXBzHoXIb5i5ofMAPdRUtOgGuM6p9A3jqaS8KPjm+Af8u2liWngaOr2xHKvDIwpRU9gmJ56BrnuZMaEHnLDT6HyViR578vRazXzIC78FL7ts0v4LqtmVgPuNj2xZk4tuT1uYJ1gA83zJujeZeegr0o96b4Hz9LsEauajP6PKTS2DnzxFozhSgL5V8/ik82OoeyrNi1cLSf0ihuV9H3j35fo6kWJS3C6aPtQupBCaWyejGp6Q5rqSA2al4IWCaja2T0n7OVP1R6iIQlTeqD9AX4buP94XEg3uZuG6OaMcvfNtwq9l8ENJqjQalehJnQtHnYvhHHXkpr48Q3+3ZynmA7i5kyHlSjVp/tmS/VzzCYW4xXCrV7gG3ad5seMJ+NDWye6XtaT+4vqnbVsJheipsu0/U4d+SzXzaQS45ec/w3Qv0YO9/oX8AW9PzJlLbyCt/+A6RbunFOLbyDlWjVfo7dTWvvfg/e2HJIZfk+rYVQ0b1VIKscta8fDVZvS5s56dj8ApKQcuiLxBz35msYu3jEKY3j6c0fAWnecZ7fmr4BYazn22baR13rO/9wN8e00cF0M7ul58ZKFFOYU4wdxiktlByqPP3vlN4DNSa5I1O9GTy0Rvy1ZQCFslnYmRLnSq3n2rVPAbClHKYT3otP0DPKyVFCJNpide7ANpvr37tdwH/MTerfOv+tCt6xuIL+BV2rYn7T+iv488/+ToM6jn/lmvGD+h35D9zvoM/NOnz3I5g+gJ3w/qi1ZBPffjKdShkubn367+0eCvTx3c+XUIvTfcI+Yv+NcE68LrX0h15oPhLbtqClG631NecgQ9S2i9dwc4v+6F1y2j6HEPCzWVnlMI98GzFs7jpL4fJb2SBX5hjfoCywRp7hWNf7C+hkLodqxNzJ9Ef5HyWcIfPOBYlcqRKdLcu583eRR87W3Dyalp9FwxhT/6tTD/5LUlR/1An87TVqkCZ87bZSo1i26youki+gLWme7K1f4TXdVi/5Vb4Py5ER/Oz6Gr/9t05Q84Y9u1tPUL6AJi885n6ijEPVErjye/SXMpc4tyK3jGSw4do0V007HE3/vrIT6rE4V//SXF7V/b+6ngViLz9HHLpLgNlpZY+xL2n0P8275V0r6VL6d4grfFS/T1/EPf0Ne2PAB++e3fNz6073FuF8nS1GqgELRN9xp46dFNu0O9C8HpUhlfVjKg60qej+ZtpBARzsqvzRnRnazsY4PBeQ8e6PjLhO5W6ho4AX7xwCr1/lr0A/ahxkavYN4+Hz6vzIreX1LEWQ1u8LtjPWUd+rW+mUqR1xTiytSATBA7ev5GvUOR4ByOWWaC69E/5ta8nAPvv7ozrJ4T/UPHUTHLJpgHTrpWnOFCj2lddn8FXrPG/gf9RvRtA61Zu5spxIM0nt1ZPOhNSnUN8eCmhy67a/Oh00r1v1kBf8UX/2x8E7rL7KZquxboC7usmG9sQe98FRrXBn7lYd+pHVvRpb9tObH/DdSH2H/lb7ehZ6V9pksBFxHs5DkniB4m2ZfI8Bbuv/bHLrMLox9roOVxBT8X5jleJIL+qMg6oAtc456ymaEYuqv077YDrTAPNz5691McPeFqE1M6+IJItV6cBClOprt2rG2D+bbPpXX/DnS6wm3y7uAztNXGH3aiCzE92vUB/GF99pDfbnS7A36squ9gHxR2e22WRs+5EdGVCS5w/Qjr8z3oP+XGQlnbKYRzJ12e5V5079CbAp7gNYrHjvyTRY8rvZTRB943tGv+4X70nrXP1hMdFOLzZHKGujz6j9c6Dlngdv7JJ0YU0BukJHNY38OcUC7JGX4A/XSoVYcHOG+desd2ZfQ/LNNfPoCfqRmNa1EhrX9NN0Wlk0JYd623ciHQByp5GjPAH25/KcV2EN3ZoSJ2bReF2DT0m75InXTuppV658FFRYopBproik1bprrBr/FO1P7UQq+nGfE50A3fNfIwM04H/Yo217dUcMMnPdFyh9BZBvN11/RQiIPZYcF9euhca4ujncFvfSv0uXQEPYRDuK4dfDlP35P/GLrDfoaP+3opxFMWe69affTFF2aDSeBq8jMXrQ3RH84JvVkFv2c+FUZnjD7Jd+ah7QcKsSXZLDHTBP2W5xbrZvAwSdlC7ePoHjoGa3f3UYiVXZfefD1Bev8gXfJt8A2dO6dumpPi2X8/3wL4M01trt0W6DP2kwEn+6HPPmki2k+h/xsTaasFD9Ys9PA4ja6gPrJG5CPs/84/uVzW6Jde7Ja4Bj5+J2O0zAa9I4tu3zfw2/mF281sSfVT2U5Sf4BCUB/ynv97Fr3kzQnmp+A30z9VJ9uji9391MHziUJUUJfYCEd0v6n5K5fAv1/zsvvshB7Okb2NAs7/9uDLqy7oRod+ZBwchHtK/1lR8XPo7F+6NmSBc418jGh2Q+cQPu7CTIH78pb0P87u6H2Gfo9dwGlKKp3ZPEnxU6Xc/w6c0sf/pcgL/U5G1ncZKtTbl62njbzRzU+UTceBL6S9HprzQb++za33NzjtI2bHRD90T/XO3JNDFEKV/fac4iX06HUjZ2vAb9OdDv/kjx70OotF8DPMG9XntgYFkNe56d4V8A3nap8JBZHyS0adaxSc/ugxi8Zg0j74CPnofIH6GbOFzuEKOrXz2cs88OJzooVrQ9G5Y9kWWYcpRMxmB6uCMHTN1W2b3MA/t33eqH8NXfbMjHAHeHlt7PvZ6+jNzKE8e0fgHirqFxt3k7R+lU+/7oDzyceYyUeiG+gtVc2DP5fqF/kYRVqn/7DLiVEKsVHTcO5yNPqRrYmMz8DFixdaBG6jH77EF7F5DOb/gqbMl7Ho5RSnRX/waM+XoXZx6LEJUYaD4LPKo07MCehrv4fdUR2HOq8tZZKfSMpfGdMXqeCbWu5rHEtC13680k3zFfKRdpfC7D30HYUh3Tbg53cMysQlo08FD9e8BG8MfrxH/gHp3D3FbotMUIhetfv7PqaS8rr90LFQ8LScTJWANFLejRnNj4AH/Gw6LJhBep5eI1xrkkJIW9FbNWSiB3jz02aD9+809bXPRh+//tmO8RuFYEmsjlubiy4YGVdqD15A3VdRkIcu0yY//RqcW+sFRT8f/ei9No7tUxRikdGc9VcBeutBM/5r4H52NCoJheh7NnzcMA7OkfbUS7GY9LsnTX9pT8Nc+te96NMT9HOOrTXZ4AFP5WaCnpLmxsiDnozf4b7PRi8nUoa+lbtivT04j1538Oty9C/60kmvwE8V5HY4VaK/uVXAKvaDQvzyCRRjq0J3FJRxDAXfNG0cVFyNfsHkReEwuJvRdopxDfr7S+ZU9RmYfyYXDv6uJdW3Ydq/aeDbluoe3asj9XFK1SrNLORj01U+1Zfog8/Dp63AP8WrRHxuIOXLO4fXteAK+VN0Ya/Q62ytb2z9SSFqj0YHSTShL7R5yl0Gb2kQoW1tRh+2TGv7CM5nknvt/Bv0lLPfjyn+ohCdWlu4uFrRz8ieqkoE9x+6lFHehh6/ZZpjAZzG9ZXCyXZSf3fL0DeZoxBFexY7VzpI81tgyMUScGVfbs+0TvRvyTei1s/DvfL6Rh6tbvTnW2oj3MAzCv/Wfu1B33VU6EIreO/el66RH0j7fLVMe8cChYi1chbY048uzxlAfx3cP2i2t+sjae7SvfRoFDxh0PSO7yd0/oAiJY3fMP+/ijfZQiHlL41AxUNwnytFm19QSfPt9rf8q+ByNmmjZz6T5m2NcleLPxRiR6FTGeMw+r3cL9mV4JrljDcfjaDrPzJ6u3GRQgy99rE9Noa+M5n5oyf4892VB3+Ok+aB94xd7eCLCi2iCRPo11L1y3f9hflEPnfdgW+k+mA2evUGOKOv8eLgFHqE0RulMXBm3ZbJkO+kuW6IhqK+RCHeLDJ9FpshzecnIpxTwS0/sX1qmUUfZXX9vAQuq9Y/cO4XqQ4bZambLVMIYR/HIc559PZgxVul4Gfan02ULaBrfdvRuH6FQkSmvP1t/ocU/+P+I67gaXuTWVYXSfXnjdSPZvB/Q5LC6UvoNRNaI6KrFMJxyVNVewVd735DQzA4fY+31eQqKW73PYr6BG5WvyfsFk3n/51z3fJBhX8QD9zpRXvp0A18q4fugCsLN1N66dGft046/QB/TaRt8F+DXnImclCPhkowvtx5WIAJvSw6XSkb/Nyq3fUGZnSPR9KhtLRUolPv2BsHFvTitXIVp8DdVr6sX7cO3Z6hsrsCnOoqfKqYDT1vtuLTBjoqITTDUmDCQVqPhEL7OfA4yj2axfXoQzRKBc3gf6I7zFM2oD97/9JLhJ5K+J56VHGQG536871YIHhcsvjmsY3oos+dX/aBy+VphNzkRfcKiz4ky0AlCgb+TUltQv+crV4dBZ4SZW7ZtRk9xy+c9ys4/yb9Tl9+9G3GlqfV11CJpD7KYf5t6M23WqKTwUfEmd7UCaAfCm3LXwDfZ/X6iJ0QukOkS4kBI5UQGNzcvVYEnY0mO+MR+L1lOutCUfSjCkFBDExUgmFzwIyROPrxW4tap8G5Yq+F/d6OHmDB+7sCfLxeUCBZEl1t8WMsJzOVoGHSqVHbia5Ur73JBVzxxR+r0V3oUmyWNxvBB3T3Md2UQl+RExzbupZKhNH9KZHaQzrfu7G7fMFVD6vbdsmge0eWW3aAu1zh5POTRY93vXVRkoVK9DKdfc+/Hz3sDn/wFfAsJYXoejn0fgtbjwFwx8BIQ3sF0j4L2h3dxwpxLmPFx3oAvUhJlDsK/F1p4XCREjrL2oxXo+AeLhefmqigXxoetlFdRyWWymuuLaqia4hPfE0ApyxetH6ght62q+zkD/AfCQUqGuroaUZ6FTpsVOL0rLHAVw10l1+PVlPB613d1kRpoS859+/5A8567u8PGR3S727sO2rATiUSji9QenVJ534szzQXnPeWdae/Hrqrp74uDQeVyPaTfyN4hJQvg61iZuA1/hdfvzqKvmta5HsRuOKKaJOzPvrM8vE0pvVU4pitQiuHIfq0kyNhBZ7MXdJTaoTOdPtkczm4oF/MsLkJ+sF2aWV2Tiqxf/79/KopelPI5D078Lu/LqzLPEFa55qokefgTgO+2w+Zo/+t3LSJewOVkNjYr/39JHrGn1gFF/CStYnOd06hRwovqb8EPyRcHKtwGv16nInCJi4qEdks/GLQCv1mQRqfO/hl++kfV2xIdax5ZPg1uL89u5iELakO6Aje28pNJQ7Lhp5uO4uuHn5c6QI4u8LRZE979LiRG01vwLWGHCi8jqT4rHuuKrSRSnQndorWOKEbX5x96Au++ibi/BkXdJtzO763gduP3a5lOoc+sOQkLspDJdhODHM+dkMfu1py6BK42c1AJyN39JazjGYd/z3/3ebVbw/0iRUHQ3Fe2LeZCLEUL/T2wv79l8Hj/v29oe5NqrcfLNd0gnfdfPxz3Ae9vHfhxXY+KqFJm24V5Yd+ni3HLgA8prO3Y+8l9NMD7gud4GVuetp9/uhPHh73lNhEJfi0l14EBKBX1pzsDwC/3DKuIhKEPhobtLMLfI0ze11zMCnegpscJTZTCZmkc9puV9B5vu67HQA+2kz/nisU/aHkm8xOcBuXdqtnYehW2Tcytm+hEjq/3v08fY3UB194R10Gj++iuclwA32qJ+bMe/CiIFuxRzdJ9erwoLA4P5Uwdplv1I9E/xls+e4SeApLmeN8FHpoH5ddOzhH58P196PRnz6lGxfZSiXC5Sqeq90m7eeFXSZ+4CqPF1zHYkn17fKdglbw7nxLocg4dDGpAzOC2+C8cif7ZRLQ734TFvAG/8qXnPAhEV2G10CxBfzyBfcTAUnojlyNqlsFqATPXnt+kfvog+oh0h7gMi3+o83J6HrMN1lfgWc+KSpxe4Ae8Xqok0+QSmTY0oRyPySdy9C1MFfw1ydczavSSP4sRKQOnJbp517rDPQ3pR0FXEJQDyej1zNmkfrjfl8hB3CHy5o/87PRZVN9Q6rAT8ix9xnmkuqDaXcrmzDESey3+t956MrPo+ltwD+tGyhKyUffLl8gVgp+XmAgTeMxuu6OXbJMIlRCTHsycaKQFM+LnLtOgk8tM8ZGF6OXrrVe/xictU46Zn8J6Vxq+Yb+ge9cZxs78JRUBy6r3jcSpRJGp1PvhpShb8rrOpgFPio7nL69gjRv5H7s+g2ezbL7SVsl+i2KqaGeGJWotPZv8Koi9esnOlXJ4PdKW/s3PUdXDC9h/wG+M0xg7kUNKT7r7x47KE4l8gw9N9i/QD/RsnzxDvjjpIZ96+rRk+k+x4yCywxyWpS8ROft0rkjv51KRCRbhJk1ovs/lA25Ae5tlvp09RV6Ukf2yQHw5dsDo5lNpDxtyRDYLQF95w07/+EWUt7N7OoIBOcOlT8++4bUTx9runaAp6uZxCW2oovYTf8SkqQSb67Y9qq8Qw8PlHTwAvdts+UfaUcXsl561Qj+M8PY/uZ79BR3u/U8O6jE0A2Z0j1d6K94nLUdwNXpl9d86Ea/+ozVsRLcP+6JRUAv6dxfHPFeuxPq9kuDMpE+9PkYabeT4M2cfRve9JPqXly5UT74BWbtC+4DpLllz4jwMrjorqR+nkH0je+qKEd2UQkW+g71Ggr6hm7l8BTwF1wTRbZDpPN95LrpO/ju0S+CLF/Q6yqP3FXdDfG2Wh1fPEzKCwcqXTR417gn+4lR0lyxbbs5FfyFBGPEyhgpT7XE70tLwVx36AJr5ldSHdOiNgeBN3RVR+tNoh8ON/nSDv5Cf4B39hv6AY/r4wLSVOKgzvuMxGn0VLeAvvPggprJsqo/SHV7fH/ZC/B7HQeaRmZIfVCzNIBjD5VQ880/HfETff/3vzJW4GsaphZl5tCzj63rLAQ/QKzc7ZtHr3o3abkKfs13QCnoN3r3h7s9R2Ugnn+HfRFbRL/QxaeYAv73yFJk6190+Z3nrk+Ba9EfUPJaRv+oe7dBaS+V+JejNr1pFX1fQvLkTfD0ZraMun/oKgGXV/rBWX6lnnKg7cJzcTywLCFLJVzL5jex06O/qusb8wU3f8A2UMqA3jhrXvMa/JXyWKoFI7q7XV3Qxn1UYlEg0JGOGd04nF3qLPiDD1378taic7/Qbi4Br/o1ymDAiu5zyeUY7X4qUczwtG9hHbq5SFCdPviB+4rFKezoNaKh2x6A++r6RWiuJ/nEZccp8E8p55y/caJHD7o8OCBHJZR38x2N5UK/7mJcdx285bqPrOJG9K3/9r/rBWfTuLZ1iAe9n56nWVSeSsx812W9xofuOjr/2BO8QqBqefdm9GSOvqA6cDqn/tnuLegG32tV2BUg/k9nTfpvRb8xXTBuAe4Vzz8uLIBudzEzIA88O01lvEUQXWg1598CuB8f0zd3YXSer8/OaSpSCdNo35+8ouhlGZ+aboOvSY5aqRVDj0vZwE4FL+zWWWe/Hd1S/bTargOwzvbMbWyS6AOr9acvgmuIZuwr3YE+R6g5vQZXdzp4zGIXer7ngBWXEpU4IxfoQieFLsiQoG4NHi1iFpknTTovG0/Ox+C8LW3FBjLoR/94ti6C338x2Pd7L3rH/nte2spUQvhhOEPqPvSca5OMd8CZGJpkteXQAyzsw6ngdGEp9tPy6PwC63/uVKESO2qYU+IU0e3VJg/5gU9pM31QUiLtz+7fUY3g3DWJ3MPKpPgxUaxdrwpxVVVpelMV/aPw04+nwCMHHO/JqKFPMTkM54IrVGd/6TuIXudxom8OnHnBXSpYA/3Lu/BnagSVuCXxOmC7FvrfqN/hkeAVPzI73mmjN28tUOsDf/eVdbuPLvqu6ewxETUq4fNkMXirHulcXCb9zoM/GXelNB5Gr2C8+LsKvFfyLOF6FF1U2vQM40G4V/JQMrj00UuMQ54ZgnMd7WetNkBvGf63nAye6Wrie8YI/fuxrl1fwTdtPDa21gS9mmFVV1Yd4mSs0eyJKfr0hSuGgeBXQiremZ1AN+Ow1W4Bbw4X1aUxJ71fI307twaViE1keZVzEr38ivr8aXAXU0ct/VOk81LSLsoDlz+j3LJgiZ5ELTKdA1e0DjN4YIVuSAn5qqoJ9fbnwQEtG3T/3FqHG+APqtydps+gZxU6dnWB61quX4o7i37F5srObVqQjwECMcr26L0y7O6O4B9eJEuMOKCHxrCnlYALNYc3RjihR34Pq10G11D6ZCvrQqr/NT7N2tpUwqD2PuOAK7r4ueHaGPDKhYaCK27oiu7v0j6Cq940Pr7DnZRf8gc8RHUgvwQO0Xd6kOrAPsndbuBRFhlPL3qR6nN/Sk8FeMaYtYOQN8kT7znT6sJc5BC8rcUHvWFIaEoPPCWMpt/dD/2FuNzJOPDpr9QEvkuk+BzoLx0Ez1bcalbnj/7Wg2NZ/BDcBwUr+B0D0JUs+qXdwVm1C0Y4gtBPsRwweAb+03ipqCIY/cGsrCWdHuzPr/RAqyukfb7acvwwuFl7mgFTKHrr3hXlOHCp2wtiRWGkOuP5nmMQfGw4dfX4NXTTUt12scNQHzyTP65eR3d2tfN3Aw/9Ovks+ya6I9sO7grwm7M3ko9FovuxJCX9Ay9V9LuyEIXe11vKqnsE5sZzpS4PotFHR4OcY8BjFFXMtG+jb8hfLusD332YU/d7LCmPknZ/FzxKJRr1pZUS4tCFxTdyOYHvnI+XUU1Ad2soE30CHjOhsXMsEb1wlFNkEdxvQF7iVhJpnTS72A8eoxJNF90l5O6T6tt1xrHr4CVeUzspyaRz/JnxqAP8nd+jveEP0CnFjKf49KkEvWKestRDdFVFmb9W4Alnxw/1ppH6yD+xsBxw8QLbk4EZpD57cXz5O3h2Hb+beBZpnZv8bOQMqISdMWfYu2xSPTn+sSQAnIVHLdUnFz0+c/1sI3hcVc7zbY9I/cVvK/86Qypx+pf24Ot8dHkd+n3G4Dxe/LTnH6NLhTcq3ANvnhKX4C0izTOPbHd8Bu/msjN6UYyeIjnMLGFEJebv9wQ5lKAP+ml1u4EfVPQt5igl7QNbVGQZuOBD3ZGKMlLcnn4uswx+Ikx3i3UF+kVqT4O6MezzA29T5mekvGb6pH4DPCH1XWxxFXr3kfeF7eCfCaMus+foL0UrmXhMoJ7s/8dDW4v+aM2do6fAr+zvtsx7gV5rdzY4HXzXn/Ycw3rS/Fkt9fAruMy+2bnFl+htl+cKpEyhH6XJaaU3kuJQsDL7Anj5woO7eq/Rb2+9HFUFfmha4sfPJvTtk+o2NMepxCmVLt37LejKK+zC2uDdqclZGm/Ri9u+tEeA/2i7umaqlVTnO+uc34OrhVxzjHtH2ocr+T95TkD+emW/U+5ATzXNcjgFHmNFlR99j27xsrglDfz8vz2ZUV2keqLWwTcOrs1+j0uuB/2fNqPpLjMqYaWzKZzSiz5x1DTQA/yU/eOl8D700tYXceXgB7abXpD+iC6gpHt3CVxXm2PmwwA6LefsdTVzKrEn+KNb8CC65uvn9mHgc7fLZiSo6LOdj2XegE8opHq/HyLlXdHrCfaTVKJ+b8LKxS/oLF1ro43Bg1WSrguPoC+WXxS6Cx7Om8PzdhTdpIsv7RP4taDaHK9x0tz7cIJNyALmqH0UJf4J0nye+N3BDnxlnqGrcRJ9354dRXngsVdlzp2bIn3vyIPhafCTKWdYeL6T3r9Tf83eU7B++sRHtT9IdSlIhdsHPNS37ajDLPo3c9f1VeCVzxjmOH6hf9pLWVwBb41QSqmcI53X1fiOg5ZU4mqR+yGbBXTb13FxYeDzY+l/1v4hnaMXRasF/O5cx6OSRfSTa7xH1p2GOn9/0cpiCX1y7qS7AXhfyhY+hhV0ruexE3fA19Xt7ypYRb/fvc3gA3jCK+3bpjTd/3erStrMzVZUIt7zqNEqLbrBZ5VRS/DQCF2eHHp0/5YerjRw2R65Qf016DTf3kqPgDdw8+b8YUTfXCesuN2aSpRxfPVKY0bnafgk7QzeF5GroceCbum2zPUY3ET/BM8vVvRzyqGjP8BzBX99u8+G3pfjk7nXhkrkv77UqMmBfmRnr4E3eDjzdOr0evSIg1mTFeCVj3UDEzaQ3m835vEXnD8w0orgRh/mTB5TPkMlBg9WaHzdiP6rvlk3CDygvmnHbV705zNud+vB+1495z6wCd190+0eelsqwccXTzu8Gd28QoZGG7wpRH82gh99QMuY7zr489bJ4X3b0F3U/mx9Ay7ZYNc/KICeJCzCue4s9C/pF+/DhdCZHXtnj4L3fppvlRZB947krosGF01gftsnil7EOuT/Hpxh+8LbEHH0NBslMS47KqFvUdO+QwJdm0XyuQm46r9TvV2S6KUh+WoJ4IbULurlnegbNV+VfAB3bhacEtuNnt/mt2GTPdT5a+pL76TQ395rtjoJ3jApz+a3B31ke8W9++DOL/4JCe1Fvzir3fAJnNJ1V/GNLLrwhUv9Wx0gfhZoTbz2o0fvMhk8Df5wQdGDXx79WmLvu1Tw1XTi9isFUjzIMBQOgWu+5Sx1O4Ae50e9JOQI+0MU9fMqo2d+dd5/BtyonYeuXgV917/cwXTw9sM6u50J9DOKyV7D4FlhhAXXQVLccuv8FnGCe/Gx1Yjn6ugs7AWOZ8Gdfa68sNNEP5bR1pQJXtbxZp5dm7RvhoXco+Dc0r1SlTqkuEo00BdzphKMZzOcbQ6hx8+W+9qBO6jL5LEcRpeiDEdlgVunBE4+PULK64H+26Pgnro3pSyPoavb378q5kIlvHmNvRkN0GtXdtjagUdRPtQWGaLnCkTsyQJX8+RlNTdGV9Cr/TYCbpaz/iSdKXr50us4UVcqQWv8Mj//OHpYSc7Os+DlejtpTM3QN02fKc4A1zqrd2LVHH1Vckl4GLzHe9uTHAv0znHPq8LnqMRH02w2Q0v0w1mt723ARQeGXP+eRt/3mYU9Dbz9U+u7DGvSPm/eozAEbrLXSfboGdK5tKsaCLjBvP209N6CLSkvghWPnwa3UChkeGiH/ilfWC8F3DHJxOOQA+n5juWdn8CdirKHfjqS6rzbm6XN56mEh3GGUbIzuinDrWfm4LOnDzVpuaLTb9CzuwuenZ+o+uMc+hQP7b9e8CyuqMq759ELYsvCN7pDnHtI7Ff3QJ9ncF42BndJdSz95ol+c1rQOhZ81e+IXPwFdM3WT086wM/1d1ap+qBzCz2cZfegEq7Jfw9+9UVfcjkncBSc8cHLt7cvonPu1lGKAE+okjRT8ke/MiKt1QLe9k5qfOQyetSGHSpMnlSiuKLD71YgaZ3yCiJa4DFG7GwKweifu079vgK+LWAs43MIOofjvWd14EYbzVQirqJnXfjltAoeuGjTvy8M/eglZ2ZlL4hDZno/Sjh63SJt/EXwFMEDm65fJ9VDr+ccFeCdQow1MjfRTZyS/ebAA77Z2Q5EoBtaZLbLXIC5yNJsXVgU+rs3vdznwQ3MPlVIRaNPKsjpFoAffT5j1xdD6kfir5wmwD2c43iuxKKPbQy/KO5NJf5ovG7ZGYduf83f1xbcfUdYUE88evtyju1D8Mp/7fJBiegZv9lUB8HXZGf9lEhC910sYtzsQyUG/jEUd94jnfvVmJrj4NwzU+cvJ5PWz1dy5g54v/mpveIPSPl+gHehHTxP0Oh3eyqpLzu99F3nSyVMJdpqL6aR3iNRPq4LvmTSel0kAz3275xWGDh3xDHTtkz0W9YhsfXg9kVGor7Z6BsGLdtWwNfmfJgXzEV3+Bm5oOgHeXriU8ubPNLvCnOy+4BrZls9vJCPvm52iqsEPP+i9cVtj0nnSxVm/g6+UjFo0lxImt/cyyYlL0Je6/Tu9Swm9WXxnGo78Kj1h7j4S9CVw/5eSgOXWNy38OopeiV7icQguMvE3YHzZejrtTsa+S5BHWvxathUga5YeELfBHxPSOPjhkr0g2/0mqPBHyzeuHeuCl1ra4H0W/CYLQ03eJ+j++0IDGP0h/tLh5t/fQ36Nu+GloPgp2gjz7u8QL8dHLh8Gbz07ib7jfXoKh1PtlaChwbzWL14iZ46brX7F7hZRshJp0b0Q3oRO6UuUwm2KXMzrtfoFH85PifwVq0HZjVNpLiiOfsrA5w7+aiFQwspf0/y1FDASz/aW3O+RS/jMPDeFAB9YfqrQ3Ur+mg6F78JeHd9p4fdO/Tjd22f3AK/oSESyNGBvuWC+v4WcBrr/shn70l1vqokhz4Q5hmGuRTbLvRTP8qZVcG3Cng+YetBt040NPMDD00xaqroRW+VC0soAd/hFke16SPNb0YmDVPgVUFyf1k/otefq6eIB1EJqXp53vIBUh1gb/9qHfRfvUqUsx5Ef1oZ9PkeuOZtYzMWKmn+me1p7g76777scrl0CF1HpfsBezCVuHOKmn76C7qaUICtLrhKUsFb5hHS88JdPFfAj2V3LpSMotu86qusBl+4YCBqOU6aN6JjDs2DVyyImjBNkOKBcaVZKgTu41v1w59MkvpIoaC8IzjXQFuVxRSpjrGt3kkD1xR+OLvmO6kf5SVSP4KXjTbuKP6Brso4s4n7yn9/J1KyPzlLytNHazWOgv98TJvJ8AudlX/8ZDj4hyTekcI59BnqTZsX4Ds6/MXNF9AFLv8+/gec0NrtQv8H3dlHWknmKpWont5R8ngRvdhkP7szeFyt19KJJVKdT2btSAdnecyoQ7dC+q6e0uAB8IrCL3EFq6R9uyoryB1KJS4/Yxw9TtPzf3+2+2bhEfDoBg95Wjr0uyerd4aB+zQIR+bTo8vFtCTWgNMV8w2brkH/aVLxcx7cPNhImYYJXUn6mrJUGJWY2dme+IgZPS5Lydse/NqjqHkTFvRo1Q/JD8Dl5yJN/7Gi9wafetoLbknbWpHHhi7wq62SPZxKFL05xG/CgS7FL/VYG1zq0Jqrq+vRh68ExQSC7/ZZ+Za7AV2isPFMOfjhwzInjLnRl0VpRL+DX3qZ2riyEd3ZbV+32DUq8bdHZ18uL3o851kvy2v/7YNEttEm9ML427Tx4D7P1TavbEb/E/IisBU8OCw6JocfvcVyZpL+OpX41cu11mgbemixuLYS+L2C1qvLAugZtHYxnuB36J7R5AihF/Q9bskD1+r5EGQoQjqXGvqfQ+CuQhK0y6Lov+Wc1vLdoBLsI7mh2eLoqW1DHPrg4ZvNWQwl0FeZz60JB/d+KR+7JIk+575+8jl4d78Gf/ZO9HNRbTW/wMdPX8412I3uNpYdvOMm1A2DIbklKXQGhtS9NuDPC9yasvagG7lVdiWCR3uJnzTYix75eN72HbhiJuOPv7Lo84fMhxkioK6qsodn7SfFw9tRQyXwW+rKAgby6M+rU4o8wF8UR1f9VSB9V9rV5RzwzhtMZlkH0HmY7ilQIv6bY9N/6yujV3gN23JHwjwcYp30VwU9xP1MoB64YDqhkkWQ4jZ80/VgcPZ9xLD+QfRwFdaQcvD1iqcj/qqjOwgccJoCf/r0/v4sTfSq0lw14Sgq0Zu98FlfGz0g3JzJDDx9o1vMXx3S81v1a6LA79DTHsw6hB5DH3mmAdz5QuEv/cPou+o3/P4Dru7qnfv3CHobdfSS1C3Ilx8mVlnH0Ou/Mn23BW+gO8JnYIBuZ+dvkAS+Nd+8668h+g6qevo78K7pyzFZxqT6QLUepo+mEkEdpfoGpugiMx+4FMFZzGk4l46j37j3SNYNPCfqdHeWGSkOHQfUM8AHLrxLMjhJqkvDrgf7wP026tssWaC3xttIs8XA/cWHuiPbkpS/zM/XqYPnpgYuGFihMzYF9vuA297d2bhkjb5kXhCfD97mOHon+wz6yGGdg0Pgypvy7QzPoo+JG33ivk0l9Ev8FZft0GW82+0PgS8oH+fIcSDlS339UAC460vFcUMn9NK4nXol4ApHxOqXndEfXuLIGAPfO8KbkuOKrrhy/tvmWLgfxa33N3JDp83RF9EHv+7AbrFyHv063RO9q+CcjutVcj1IeX0vwaYCXDBto5CxF/rZRTrHb+Bs27YyrV4gnfujP5YCd+B3J8V+5PqQ4lD+koYx+OkN0v3Gfug+u27yXQOfSZN/tXoRvZlr52AVeHWW6tM8f/Sbfla3v4Mn7NDIMAlAfzUquV84Du7XKprx/wLR741FNpuCm02p3XgUjL6fMeLwDXBXTYUg0yvo3e3itc/Bx40lfWlC0RvfnRGcAReR5PLID0O3vnXQUySeStR0zrkev4bOfe/V0+PgOVZtzrQ30M0DZkdugPNT7zsX3ESvbmhaUwP+0NrK9UQkaT1/9HhmwJnmeNzpbqHr5QbwiCTA/TGv3vtxNPoHyzOMx8H1bp8OMLuNfjBrafT6f/58Kpz+DroNy5Gy6v/eo+QSWxiHvmXT8QvfwbkE+1PNE9BtLflFhBKpRIv//iKGu+hqtmn1xuD+1kF1RUnoDeXj+uHgp4fKuk7eR2cfmW2rBJ9h6/u6JgXd2Pel0jfwpaWRf8UP0LuWLZK23qUSSTUDfKceog/Q1I/pg0vaV8sypZPynWNO5Aq4xdqrBiUZ6Jzlvw1KwXdUy5y3zEKXDH53bgz8Y/TraOYc9OS/ly7xJVGJ5ftqJU9z0ZlK/vnogbvMPeg9/Qh9vayV7WVww8Kh5bUF6OdZkolCcCEqg1jZY/SpxkrWIfCkZBZ96yJ0ix8VTZz3qMTL5ZlLrE/QH/Ake2mA/9xYkVtegp7f5MDhDf521aLPphQ9KHrr/WxwuXeUtWzl6NJLL3j6wF3uq6pUVpDmtETDK2vvU4nJgEuets9IdeZn9+AB8KtRt/PYq9Hf3j0i6Qp++MuVL8+ek57nrT6bAp4dd3SrXS2637JwzDvwgzUz5uvrSHNsd3j+P3Bub5e71fXoH3dPlO9JphJnep732TegW8YfKbEBr/k9vHnDK9L67z5NiQX/M089XfOaNCe8ErzYAK40WZTp2Iwu/yhBcy75v/9zM5rieoMe0cVLI5YC/Wtb8/4Xb0lzYHt2vin4WBx7iHMbuu8ubZ1wcG9XsXcb29Hf+/7pLAfnr2fdWt+BXkTUHRsHryqsO+faic634WEV7wOon4YadbzdpHwMuMejC055Fcvd0INOYS854weeLFHo7PaBVCdNJx7kgjckxL3c1I9+hqr+tg88b7cW/6uP6I8O1I8zp8I+sLzwdf+EXjdvP6cAHnSEtmcLhRT/qXKzjuCR61n3NVHRFxr3Uu6CJ3oPxHl+JuXFgmV1M7jtPY/fW4fRR+uqrv8BZ37QatEygs5Velhb4iGV+JT6rf7CGLrWaa65E+ARL9okBb+SzvEYd+w18FV+zztvJ9BLNhgKVoB79X1Y9flGmisOtD4YA3fasOoiPE2KW5PrbDxpVKLk2/DHtu/okz+uuWqBW4ddP3xxhtQH77dVXwDvovlWI/oTfdOYxVIGeFkQy96OX+jiVvt3doEviozl+M+jP4k/dZguHeoPR4DA9t/oM3zdFjLgFLt3dzv/oIv5PThlDd6j288V+Bc9Xb32aPR/PpAcI7lMqsNMctK14GrqfBw9K6R5+Dgz7TR4fapedPA/9Mcv5Bu2ZEC/4JPl3EXb+3+/8P61tx745o6OuA906ENbKvkugpd9E958lQE9Soq9IAf8W7REmhQj+q6kt9K94J2fhyQ/MqH7ffuZwZAJ8xXj4dKwtehKZeHMsuChovZqMqzoeuE3LG3AJ61l3n1ahx7+fSU9GlzxS77ldXb00YCxvhrwhXfd32XXo1s3av37Bj59ND+Eyom+xmgbz+YsKrEvXIonggt9stxzqy64RKplgdxG9H1XtTb6gLvXyWt+4UHn1UlayQBf4nw+GMWH3hHr3vsefLV6wk9xM3rhQlvqP/DlsRcbR7egs9CXmu/OhrpRrVIasxVdV1eMwQL8iO0ZE2UB9E/HRVOvgzMz7V4YF0TXefF0Rzl4TEdy0h1h0jo39GYPg7dNFKsSoujD1CguzhwqMXvZcXRSDP34s0F3VfALpS+jErajC0g317qA81XXyqtLotN26q/cBR+rthie3oH+Zq/vrtfge7/cjUnahW70Re3IL/BYc29CSwr9ikfRKcFciKujMz9mpEnx4PHK8ii4zTfm9GQZ9ALPMP1L4E6na011ZdHLGH/K5IA/6+JgnduHHljLtqYb3NRvuT5VDn33zoFmmjwqEXLx6qXDCui/Bk8F7AZvZ8jc91sRndMxXvgk+EZdy5l0JfSuk9cqw8E9PAofH1NBj9bZTzwF1ytKcP2riv7oRVo5Ffzono27s9XQE0zat617RCXOi0j+MFRH70ys81UAn654X7KiQTrHzX71Z8H1trL75Wmh25z/sxQDbnB1UNVUB31WXHN7DfiGzQQT7SF0ostSYwL8K+fe9wV66MyMugYb8+G77pclmx0h7YPhmmMHwRPHm50YjqHv0b6rfA78+nYXhWJ9dC1fev4k8MrI+8ynDNEP+ByaagQf1jX/yGSMvrbH9fEMOOutjMdPTdDLxdyt+AuoxOVbF69YHUfX/2tKpwv++vJHM1Yz9LkRwQQv8LqIV3sqzNHbfLs2p4Jf/67IYmuBzq7lHvMGPKRPbpTdEn2RsrgwD24eUF1fdRq9/4PnMaHHVIKGsynV3hqd6eVgwhHw4iazoA1n0L9Kq3T4go/2nLeutUWffnrnbzq4ozurhrMdeuzQ8MZ34OqtO7bzOJDqm+4e4UXwxm1t6146on8L8BcQLaQSN1Jmf51zJsUnVzObPrhrYOKnTa7oDcl80xfB7/yuef3qHKkv5J+vyfzveeJsicd59LzO9sB28IzIG6lbPdBls5Rk/oLL8Oy+1eKJPlFW1i1aRCWMuI4Fel8g5WmimpM+eET1t/NCPqQ6P0j5fhE8TXuNbZsvuuXmO3aZ4DlTSScuXkRX/2zV9g58ZjT3qJg/qW680hFfBOdykdF6fxk90fyou0gxlfhVulc1IBDdRMYr/yh42XK+gmQweiW1+oMveKN/8r6eEFJe/JGcTwPvdKHfG3IV/TZbHX0reDfj0J7dYehFT4PpF8AZr8nI9IejvwpwmxN4Av1O/PfesOvo2v8ieg+BawvtkZO5SXrP24E8L/DtTwYODEagh/lYu6WAUzgX1W5EoZ+6wy/aBE4XdE13fzR6T9mGtzPgbvvCDT/HkOqPh5bt5hIqoek2ZxEVi256smJKA3zC8b2DYhypLtG7OJwDZ7Xh9x6NR/9Ia9uVAH73TvfV24mk8/qatqcOvEll8Y5KEvqU3o6gCXCOlBtZE/fQG2tWazc8pRKyP0Ir45NJ3i00owS+33Oy9eADUh6JJGywA7c+++zLdCr6MeK0+C1wgmF2MSmN1L+qL++sAM+KidmgnYEuuXNOaAg8Xzdx189M9HmRprVrS2HedmHQfZCN/lDxzxcZcA3FD2f1ctHP09x8fBLccpb96kIe+tN1QU5XwQW6H6Wn55Pi4Wc/TwH4b6FHDcceo7PqpJR1gydsWTf2txD9T8pbrRXwBdqOtTnFpDkn0qFJrIxK6PPMSxmXoD/P8jpwDFzw3iXTf09J/Sjo5wMfcOl2q4D8MnS3wrG5B+BBvzOyT1SgP35tpNwEbmWq/Z7+GfoWS0XvH+CWO7VXiqrQPRhTUnnLqcSx5+k7Tj1H9zkRXE2AHzpsYc5ci/5vZLTZATx3y/kbpS/QxzQ6mqLB13kMVlnXk/rRWvXKCnDz6KzpdQ2kOtaico8KXlr1WuhZI6k+b359jqmCStyUVzth95qUF9GDe6XBr+tx3uJsJsXVi/CJ4+BpCoqva1rQnYjG24HgrDoV/5zekr434+7ObHDV6psHeNrQ5UIYK9rA/3ws8Xn5Dn3m3Pp98+BKU1Klbh2k+rlamc5fSSV09q/+3NyJ7tpCR68JnrMsINvUhd53ZsbEBVzkxp0LXj3okdahd2PB3wiZVQh8QF86Ud/2DHya7dzS2z70B5S8uSFwwfj3an4f0X/fUGNjfgbr/Bd6TfQT+p0f13ilwU/Ehbd3DJLm26wrXMfBu5N7+AKopLxTk6UNADew8bCV/IwudDx5KAO8eId5Uc8XdJGAuidvwPnVI5dDRkj5opd+YRb878zaw1JjpHM00ZTkq4J9Dn5/7+M4uphMXrsq+BrlL9/CJ0h9wbvLwQ7cyFVJVfYbOkflq9kI8OOnPt2mTpH61K0r50rAG483jkV8R1+4tW6gD/xu9k9lhRl0e337A//A2RPt40ZmSedrFxshVg31x0tgOuYX+l3HO+8Og2+7zq+jMo+eNO1C7wnuL2iZPrGAzh+xbcdd8DU3hlbj/6CbfXisXgt+kD37lPpf0lzqyH90BHxluaD6+xIpj3pcD7E8h+fT57bcX0GXfpomvwfc5vDlAJ1/6AZJNbzHwSe1NIZ+0XzAONzaMOEPXkLV1XxIh678ofRxGnibfWTeEQb0FYt42ybwWEm29Ytr0FPVHVinwe/7vPHNYkIvFdqdtaGGSrxMbhgyXIveEz2xRwFc9NtvvVUW9ByR1EJLcOEn9uWP1qF/9DLYdhXcTJVD5AQ7uggvTXAu+OMvMzH069E1M4u72sAPfmehKeZEZyw5u+kXeMCTU+6nuNCJD9sM+WqpBH3A6Gfmjejtjz5fUgF/mZZpUsaDfrehKOEMONU9qdmGD/1WZUTmNfBmpQYV9s3o+YJ+mQXgEiZCpVVb0OdifRPeg8+wPt3psBXdIzvy0gL44TLfTC4BdNWfzwy2vIC8S3fbVieIfpGNbpMaeJt4YpKrMLpetEPXWfD4uJmNm0TRR9mng26AqxKX7rwSQw8Tid9WCK50SXaD53bSes6eKeoE10raErtNEn3B8cTe3+DGMzJcb3eguzT75Gypg3jo8o733YUuu7mBXQ08MXGMT1QKvWJe1fEsOP3tqykd0qT3/Jx6eh28n/uISIAMeltO+2wBuIEf8UhSFt3q8YTQe/Cp9ZZ7e/ehl9xT0ZwHt92XWX1FDv000zuzTfVUolyBW1taAZ0pIsVKBVz4QsH7AUV0w5pCMxvw7Squp68roc/vZ9AMAw+ZNJrap4JeEPlQKA98b5eV/2dVdBXz8NlWcL9jsay31NB9ZSufzoB3PZ1IPqCOLvVUwZH7JdQNCzvpcQ10LXcWDgVw9mSGhjta6Fl0e3ItwHe3vz6hpkOKc7oC2SDwsSP501O66BxMIU/SwRfOPQlN0kPfnPdE6DW4TUQfv/YRdKdgtdAJcPtVgfKfR9F5xPb0r2uAe43gNYNUfdL3Sl8V3POfH2abOmyIziCvfNIY3K7/yfU/RugPui3DfcCtRS+IZ5mgqz+czEwCXww3fmV4HH3v3tGy5+AzFvp2qyfQK4UNnlHBtVbtGfPN0bezSBXRNVIJ+Zak3BMW6J+CQxLFwLX4xg8zWKIrCBz11AWX1jk2U3wa/VHAHcIFfObJu3hLa1Id23fiXxT4/5i672iq//8B4CUrM2VFSUgZkZVRNoVQSKGyKZERyY5EKqsQWUlFSIREiYxEWYkk4yJFRIps+T3f33N+n+f738e5531f47muc+71tuT0fgZb9Ce9yU8Liec85h4utSPdI4vNsY/gIzMDkXYO6Ms2jyf+go+OV+3dcBr9tPuli9xv4HPfZMlgxRl08fbeaSXwCfOqKKez6H+2vbU9Bb4zsl+J04X0nD9qdZfAWb+y/ag5h64zpM+dCd5bYZbk5oZ+PGLCsg6cxqdIZ4sHKe8CdyR9B1fz5FtsOI++x2Kulr4e5lLm1McXvEjn9txhSBR8/qGotYA36XwkPKf1wblSG9lbL6LvMhOYcwW/ddjnnb8vOnPzhYlY8KP8e0N2+aNbCLt/KgKPdqVS7AxAZ1/ZVNQBnp/c+zskiLTfMbvgWXBzmro8iWB0pqu26txvKaoBrGWOPSHogS4b/yqCq/GUCUSEotfJeKecAGe6WkuRDUNn9I6VDQS/8rw7bTAc/UaT3et08GvMiyejI9CvtP1ReQ2uMS64dd91dEVetcJBcIbiY/0jN9CXtA3Z1zVQVIPf3syIj0LfPrbNWQg89EaHnXoMOv295yXa4GK2fLsmY9G3UHP/dgRvf+I6kXwLvf6xJn8EOHNnXfHBePTLssoaOeBPFfj9ZxJI9VmW7vg78I/KwZr3EtElDz6wHAev1BlmMryDvpeGy5ypET53Vx7qWkxG96O3PbAb3IuqNDM7Ff3O2FVhQ3A2fwG3o+no+7RvLLiC74yK3b82A31DkWtVDLhC+irDk3voTe9kfQrBGdjdvljcJ8WtyIDgB/CUo/25dA/R1572rPkNLlKvH1CSRYpDvt8mG99RVKVayw1tHqGLjZ74LA1+9pOQAEsuurxV6WET8EaNqNkXeaR6u3XdC0/wK/5/3p/OR698qcUVD844apLJXoDO2xl4uoTwqULf6kJSHVj3NLcD3H2J3ti1iNSvKQMDM+A250+I8ZaQ+j7NBgaO9xRVrVfZNA3P0MeZ1YXlwF9oTQx4PUc/GOctZwqe7SH2ans5+kvJYvkL4NvzbZJbXqC7By6IJ4CHW8f4+FegJ3PqczwDP/u3+PiuSvTzCflTHeB3O1vkO6vQleL5q2bA9zpTuC9Xk+49PzuYvYmi6sf/bVGilpSPftpysuBzVpS+njpSHCYu95qAe8Q3V0fUo3entl70BB/dVZAl10A6T+FqmjjwuxGhkUON6PHNH8OLwJm36XnGvEeP2M2w9AH853GqE/ubSXk94Gj7G3zP3TzNHy2k+An5WbGhmaK63kZ79+029MKcNIY94EPrW7k029FXZwIOHQY/Tauzbuoj+u2VyEuu4AG1Bb9SO9E5LNuyosA1ntD06Xah73iqW/0YfJOs7vvZz6R58uZSy3vwmBrfF/e/oDfcGW0dA494ezv3SC96u/2muvUt0Eee3k1Z6UM3jwrK2wXuMREXlUshnf8T8fCD4Irj54OPD5L6si3/UUdw0c37vai/om/VOskRBq7zffLM02H06cmhxvvg76qvW1p+R09YKfWoAZfgZTVlHCXN2ww9TIPgQrb++mU/SPWwyChlFTyVtlXLYZw0/0dt3crXSlGt9VmvsnGCNAcqqt/aD/5vl6hC1SR62uGqRQvwyat7ZFym0N84Jx/zBT9Pu0Vy8x/0kV2dDxPB73H8FKufRhcSOD/6DPyDcIaI51/SXPHHk68DPCZPfhf/HHqmXN/BP+BZHEU7m+fRdcML7Te0UVS3drHs8ltE77k05SUBLmNrILJzmfScV3d99MHtRM6Jdaygf//y2u0suOPdcxIhq6S+c/6YRQS4uLyhtMTaz5iP2+0UssCH7Vjke6jQGUJ+rK8Dn07K3x9Bjd68+2fLIPiSrpimHC36n5pzV1fBe8bC9YboSN7jLrP1A0U171eVccx69APs8+1KH4jvG3ae2M+Ifp6O1tEMPG32rcMPJvS1Rmk/L4CzDyW432ZBD4587RgHLkitGqC5AT3S9HxHIThje03EFBt65cFnci3gKtX8t9M2oVf8u3F9HNzjoNkDPQ50Gc6Fdvp2uMcvZ4rnONE/iqyyCINXThnVPuBGP9aZoaIJbr1mU4cRD7pvyYCNNThzcN63f7zoNHbVPoHg6d955vO2or8J0A5NBt+WZ81ovg39RppbyHPwL1oB22i3o0vbaHh2gJuKnZMtFkC/Y/fa7De47idpPWsh9EdqP6VYPlJUC141WTMLo+vFN/wTBX9uruTzYie69+LxqoPgrQL+sadF0AVY0zztwe/cjM5hF0M/4prMGwI+zedVWy2Ovr7E+Hka+IKmWL+rBLpFQMOBF+BzvsULvHvQTe3+NX4CD1Ri4myUQmenmVObBjdYlZXxlkF/sVKSx9pBUT2jsdtIUA7d5YcSgzg4ddCMW9tedHP7Gyd1wOPEr8cEKqAXM+Rk2oO/bpgoEFUiuc/t3mDwc818H7r2oafrHWNIAy9/tmX6ijL6sy3jYuXgy8vfOaRV0XVuHFfvBK/lC1SkqKHnSqfr/Qbvvt1/KlKDFIcF1QeZOyFuBxlCFbXQtdLqFETAd/utzfmuja56J2erNjhPf3Vr3EH026qes9bgJdcOzanpoj8XF6oNAO9bSNs2qYfOs1IZmgRemlemk6KPrmJwQKEEPHFLynkdQ/S88oqBVnDWd1ppfw+jf+8XChwH/yb1rCHTCP2yeQgz3SeKKl/7+MxhE3Tu+o6bAuC/d41uXzmKrl69nUEF/GNJzuHcY+iZI2e9zcFdZySDjpuhf+ss+uQFnu3ol09tQdrvrmXRWPCk6xF9T0+gNwXoeuaBJ1DMWaxOoX91TSuo/0T8Dt6EKpMVennKImUQXIhX63y5NTpnhh31CrjP2pMPHW3RG7h7tnB3UVRPcct1b7JHz8i0E5EBVxtoYa52IOXdl1URQ/DG7l2arqfRd58q4nMC/xim4cvrhP7gbSDdFXBvB97ChrPob0vth9PBVxeKRi64oF976/SsHHy6jp5f0BW953aMXwc4i84W8zY3Up2s/izzC1yXZuJWoAdpPd8ODq7/TFFtCfJrFvVEl0+nXBYCXytfR//Zi3Se1zK5VcFDChu1wrxJfUE7LtMcnN/1eoi0D7rfuRJ+L/DRPzRVFF/01Lv0cdHg22r2rUT6o7f63Fp4BK5iJbZfKZCUF7ePHq0FnzXo8B8JQudNMLrfBy6zcW9FfDB6wsbI73PgG/ccWVG/jP4zj5ZvYzd8fhcTUP0Vim75r1ZXHNzkel5IahipPmfXOx0AX982Xqd7lVRPNNmCrMFZLg/Rz0WQ8t0jK9wPPGFHjMGD6+h0zRGh8eAMar9vGUWix8y88HoCznacvvtfFPquMFWLBvCQqY/bHsegK2/ZLDsE7nzL5LT5TXTF43pUy+CcteEFtHHosR876zi+wD2uPzdfHE+qtxKV/pLgQ2M0Gja3Seunpd2pC57x60gkSxL6pbmCeltw23SDrpd30IUzKi0CwAODlgScUkj1M032awJ4KJeFG2caek0Uu3UBuPzvMxW16ehDzDYfGsDvxO1k8MggPeflFvkh8O7wBDO+THSKrN7NJXArk6Ls9/fRabl+Uth7oN+FBM75PETvXaUWlABfTJ49KJyNzhaVaHEQfHLn1jsfH6Fbn8wKtwafeDo1FpyLHsYom+0L7lbjrizxGF1bQbPiFrjA19TYnnx0x+BPb/LAx9K8hiMK0F+GTNXWgQ8HzCnsfUpaz5e40j7wUww7or8WkfJrZ23aLHhf2/LX2BJ0WboQX9ZeqMMngpRUSknzEleb7i5wLtmcm+PPSXPgbBGLOvjo94AfSeXohhriDebgs//m1Q+8JD0/ScX7PHgz3daU6Qp0r9s/uW+AK0eNzmRUojP3KBTeJ5z3xGHD16Q5kFp4fwU4rYpX7lI1aU4oKK3oAP8XIkObU4vO4T8hNQFe55lke+wNuglNcwpNH9TzjMyqdW/Rd/w8vrgVXDPeaOvTBvSHzbEGe8HV+x74W75Dnz3ol2AIfpc+9QtjE7rSAme7Izj1g71K5c2kenXJad0lcENlr2THVnQDXy+RRPAY26NLmz6Q8uWKklYB+KbMTyer29HPqVaavAU/en2x0rUD3ViHyoxCvG9u1fYtn0jnrLzeaA6cMXZHWGMXqe696lRh7aeoXn0v9sO7Gz3e4ez2neBvxj8YCPWgS3Q2zquAGwRzFX/oRdfMna07Bt7Nvcx9qR9dLHQ6zBX8uPalS+ID6If+1ewLBx9PyPjePYhO/eL09zTwiWQrw6tfSfPw0eGwZ+Cjwy9LZb+hz7ns42kGv0v9bNvQd/SN99zuD4PT3dC7FjOKHhUTun0ZXHd9wPT+MdJ88sk3fhMF9rtB13JsHP0uh+myKDijzNPGxAnS/DPGZa4B/nVtiZz2L/TD03W55uC6rEaZf6bQbVstf7uDn524yprxB51l66h4BHiOhFmgwQz6uJ/dqbvgaQ7V44t/0ROvfrxcCr5pR63FoznSPDOolNYMTr/m1DvTBfQ/O1MfD4MXXotWWreEPjO/ULgE7mF6PK9wmRRX08dyNw5QVL/Plm6x/IfOVfosSQS8f21+NOOa7v88m8IdoAZ+gkFxbfladApL6NHj4DcfWHg5rkMPHprd7go+bs82uokG/fiC9/AVcOqBkyeradHF/tCkpoA/yd3/wZUevc05S6dogPj7eeGBLQzoW2hOjDWAz11+XtHIiD56UjiEMkD8rqaRzEVmdPaNjMyz4PpJQblCrOihtYzRTINQZwqVBdo3oG/dIEYtCH42KTr50kb0ptvOborgT0bcN+1mJz1ntrX1MLi67HDkFw50+RaLHY7gL9lHaSO40AcqWNwDwKe3BYTIbUYPspksuAU++vPu8hAP+sYTy8OPwNs3mvjEbkG/r7OPtQp8i0jCjDIfunJjvkQnuN1bB4/xbegT/sc0x8EvhNVNJm1Hf78qb7B2iKJqvFTockAQ/ef0UX0ucJlq0fFpIXTXuQK13eABblJn7wmje+QcEtUEb0yv+2G4C503R3S9OfjIyFenZRH02wmH+1zBP36NHssRQ2dmeZV1Bfy12Bvn47vRnz294JAMvsk8fIJaEr12W8DmQnArmna3oj3oXnPtNW/A3d9l/7GSRl/3OcCmB1xVg86bWRa9xDrg7xT4Eu3Uwgs5Uhzu6Qii/UpRXVdsE3RGHv3eSPgKL/jwwIl1nIroPkKJHlLgTmL9EbVK6FnhdD0HwC/vHmXx2I9+Nf+L4klw88u+CXwq6J4Km6I9wA++ubmlSRW9pb64Kxy86+aeB77q6ItzlZyp4PWhpuI7NdGtnOUPPQWnkV/zrEML3eX1tgv14EUH96hcPoAee9svvgd8u/G3t5I66KpRejlT4J/+8Bn36aLPaN4qphmG/lLf23v9ECmvLY4W84Bzn+U7o2CAbu8W90gS/JHf1+lvhuhCgsZxWuABCWLBcUfQZ9njPM3BN5nNMqkbozsMm+m6gnNaayZPmqBTSWWxh4KfPrRxV6opul1yYGci8Zwy21Ld4+j8rwdvQAFVtdKS1Z4zQ/+s3ilfDV4WHd7xwAJdpMqiuxO8Vs7c3vgk+osuL/cxcNPPeTOrp9ClxIRX/oF7cASF5Vuhq5h7XNr0jaJ6JLKV84QNesxa87md4Md67z6it0PvrqXY7wfnezipVGqP3qFK33AE3C38ZbOdI6kOcHTyO4Br8NPasJ1B7/yq4+YLXruxZabSCd3ykGNxFLjBv43XXJzRM8YlJ+6Bnw3t2MpzDv20/aMtpeBdGhuL37qih5i2q78Dv9z3XueCOylPLQtP9oOHz6yhCJwn5SO/9rk/4NIiTy+0eZLqvGKcJ+13qM9be5mCLqCP66a58YA/8Qh5IHYR3fSPg40EOH1jxv5uH9I5t//S0QDf8UaxEz5w4TlfUxY+Bq5Fr+8qG4CuUGa04ATeKdtFNxSILvxPoiYQ3Hviy72YS+jGS13BN8HnOo7tVw5BLz58WO4huFm0XtfYZXStlERKGXhjxbPzSVfQ6YKKLzWB56xLYjkQjv4v8SHHAHgE7e/c6avoe66535sGF3J6ffDeNfRHvzkF6UYoqq6tNN8Mb5DqoUdKMg94aN/ry8uRpNc/WkMvAV4o/5s/NxrdTF7XWR384uXbVcdj0dNeXaw7Cn7ZttCS5hZ6XE/0pjPgRQEq/4ri0C2kbpr5g2/wVku3TkDnsQqJiwb/Mv1MhSURfY7atu4euH9KOuVlEqmP1MqNl4BHbVwMdkpGL1VcpWsA7/n3VoArlVQP6at5esBtaOnf1KWR+vuHQMFJcM3W8tPn75LmE2kFgbWjFNXe1V4G/nvo35r+cLKDF6p4PGnORKdVL1y7E9xH2tvY/wH6qoTnkCI41+Xx2V1ZpDlEXqVcH/xeR1vKp2z0Wwubwq3AT37YoX4lB72ec07nPHjJtrHvUnnoayTH1oaBG57eGkV5jJ4w9KswEXz2cJVM1BPSnPaB4VgueH5I6xelQvS9acq/K8DTHxhcHn2KvjB8/XIr+A4bRdHbxeiRun/XD4G/t7rVrvkM3cT50tUZcD1dM//fpehlY2JLtD+IvnBd6G4Z+o4zK/abwe8Ei7Tov0BnuDJbJwZezS/rs/gS/Uv/Zl4VcK8juQKPXqEzbT57+gi4cfmNZtMqdO6PP3JswXfRfPZZV43um58y5AU+3Rct9LQG/anOZbar4JSJgjbLOnRN7Yy9d8C1KEqBTPWkOURz3igPPO+kpOiLt6S+ORxp9+oH8fkiqut0I7pNg7VzK7hvlkkYx3vS+cR4Ow2Cf264LFPbhL6rp+3UNPhWQZ4h9xb0g4fO69CMEf/nZfNNvjbS+oNPiXCBa+wOVmv6QIpD3oQ1IuBXZA2nfD+if3jF26IE7iEQmrGzkzRX0M7c1Affc5/PqPMTenIiv74lOKsdP1XoZ1JcbXiw7AYewxJRvOcLaZ2bQu6HgFsYmzr095DmZNUXanHguj1XuSL7SK/fa9zxANzh2LZ3ihSSJx2yLAUfdOcNHBkgzSG0Of1vwbd89t+TMETKU/5zpt3gjxTVhjWG0VcikmvGwFU0zyRNfUPXocgIL4O/y5zWTx9Bv1G3L5h5nKJqSTu0Vv8HelR3SRsfuNoWmecLY6S6VHWPaw845dZ3l+yf6Gs5aUzVwbu4lwVMJ9E3XRqMMAafOenZTTWFLpiiWGwHLs6iH1v4m5QXjBs6vMAzesIOWk6j33U7PR4Gft+Lf5XxL3q1k8bCbfCnEbzPy2fRjZLvr2SDe731djs9jy6TGTVfBl49ILWLY5F0PgLrxhrBU67oD9YsoV96Sdv+BVzGrj7ZfQX9NUtK4Tj4sPjdo3yr6EsVNWHL4HK3PrE0rfmCc9fpYCPmn1D/NV0afanQhZ982sQH/vyP1ZWd1OjUMg1NEuCdh5+qdtKgF98+HqAK7s5kvXSZDl3K76rAEfCJbufne9ajBwVZVFmD9zl1ePYzoKdpfTT2AP937s6eSCb0uHMzvSHgSkkvJhRZ0M8kvz51Czw7WT5vhBVd1EWpMxM8fOcGpwQ29O+h9prF4Jq/NXdqbkLPuaz+qBbcP7f92xQ7etT6jnUd4FM0FQ/SOdGzyvmODYPHla7a6XOjM8kK3Z0BD3VLE1zcjN67eaSfegLmqOH4r9m86DJMZzk4wGPffrtvuhV97+MCjR3gtc0x9uu2oa9PeeEoB+6Ye2vHU370Nt+oEG1wD7bJ75YC6KU/RONMwWme33vEJIT+40ZCigPx+sP5Z1/sQE9c25Z8AVw8ZsPuMzvRf4/3xoaBd4u+/8Uhgi7+szIwAVynq7eoVhT90n0fm4fg53W1vT3E0XcUM+1/Bh60l1ppmwS6RUUg8xvwcpPN/5ok0U9Zt3R2gN87dqXGTwrdTW1twjB4z4zW1V0y6J0r3IdmwBWGLfQ/yZJckXt+3STxu21v2K7sRX+ZsDZ1E7h3dFiXlAJ6e1HXXkHwtmd30iiK6Kel0xqkwZXpqOyj9qE3PztqpAHuoFgpuk8Z3bx/zQcjcJ51Lb9HVdCtDR4ctAE/zitVflsNXfmB+jN3cC3FkWAtDXTdKz2bg8Gl2Kd0/miif432uhADfsfuEFuGNrqLA2tDOrggZb7b4CD6gZwnbE/A76nMZy7poHcvHTV+Bc6opOuSo4ce+Y/6ehP41Wvjcsf10d8bV5f1gNt/61+lNkRfmxzZPwa+hVbwXdFh9PQLTksL4EYPnsdbG6FzXLVgXf+LovrRJ9WKxYSUL262PNzgCfs/iFYcJZ3/h9AtO8ErHpnOOh1Dlzao5tgLfstbpIbLDL3sylZabfAoK/3oN+bo3ptTJkzAD22ttPA8gT71eH+TLfG+TkE7t58i5fsAdaYHuOW/yJkWS1L9PDbrGgxenfCjOsAaffjJJpkY8HVjcTGituiBkVaTaeC3n9049dkO3Se2N+MxOFtxm1i4A7rjySi9l+DyabaLMqfRP930Gm8En5ZQbxw8g36yPT70M7iFoEtSzFn06KqpjSPgeXJfTyu7oNMuXb/zF9xwe5b8+DlS3gk7clFPwb3cK6G740Y6569XIjeC/z3P8vmAB7rQxx/z/OCJR4ofzZxH/5iYeFIS/M1spm+mF/q39tjnyuDPtvfpHfEmxY/w5/X6xOujbLb8u0jKL2l3EwvwgDnJyTxf9NnkE/FnwK/z6rw290fftSatyRu8sTTnFl0g+kZq+eUr4PvCjzo8C0J30hEXjANff1BHwS4Yvcf1kvo98IjSK4xsl0n73SxzvABc9tZ6SmUo+sKorv0r8MLET0UuYehcwfVn3oO/uzIeznMVXSE4z74b3IdL50RDBDrvjaXjI+BdzD8lva+jh2qUa/wFlxTuohaKJPURnRGhdb8pqpN86798iCLFs3LEvw3geaUhBZdi0EPepLfyge98rBa2+yZ6UfDuJHHwg5XaJ3puoeuzyZspgW99HCt1LZ4U/5srWXXAh2S308vfRl9RfFNpCv6ba65/OBH9GcdhB7vfxPcXNpbeuoO+xdBynQe41rhHlFoKOkPY36QgcOYTnA6TqehmJ7mEI8FlhVb3p6ajUy7U594Bp9CKc+hlkOYNT5qd2eBWtakTc/fQN819Si4BF+cxqn94n/T6TGXaGmJf73XumjxEv8+136kVXO9OqM/abNIcMt9R2wturLnWuOAResl3Bs4xcJYb1WKnctFdrwxYzYFXSNXRMD5GD/M0u0f9h6JaM08/UJZPqvOmF76wgefei3nhWIDu36zIuA181+TxBPan6EoBj2TEwbkzbNxrikhxSF1nogju7/v4kHsJqQ7QxTgfAPfdr7CTr5R0j8JM/ibgdnnU65qeo8/TqFy2Bi+KYKP4lpPmBO2dIefAqRItX+58Scr3iHcX/cB57owndlagd7iLOl4F/25U5hVaiV51V1c/HtzvSp2R1Gv0R89FRe+Bs86wSlKq0W9btK3mg9PZJzNF1aLHiCo3vwD/kWg3pvSGNGc2et56+4f4PzLODaP16A3d3oc7wA9bPM263UCK8xUd6kHwTHe5MK13pLm382fhBPhlizm7P+/Rb9I4mC6CK/TOamQ0k+qYRMlv2mmKqvQLGQHDVnS/6d6wTeB05flrl9vQC/8OsvGDe6XZD+a0o4d3vUkQBzcTN6s+3kHqp/tusCmCvxaNuEfzidR3amTDtMG7T82EFHeR+gjrmykj8MXrqbY23aQ54Y3KUUvw1IvBmqw96CNXHhScBbf5cVfoVS/64NQ81UXwjVmLNM79pPknT8UwlHiOZ+wI9wC65zGfmzHgbNw2jfWDpP4V/6gpBTzf3CXP6yupTtK1r2aDt/57GiXwDV3RaE60BHyhWcq97TtpbmHnNXxN7Ddq3DholNTXplWdmsBVaChy4mOk9cecCfgMvm2JcfOXcVLdi0y8Ogx+e+/55asT6B+ut16fAh8NYhuQ+0WaE3ZvCl8G90n5Uft1Cp2ay8GXfoai+slkMfvmH3SRH2/t2cEL3TQjVWfQDQ6o6PCD95fWuU/8RX/S9k5QHNzqd6Bpyhx6lKj7nDy48Yirku4CuujsnlpN8LU2idvmFklx3sl69TB4h/Ac9cNl9HxnVs0T4NZro8eM/6HzWUjPOYKblZ9og674n9tp+t8/D57MZV36ZC36m8afB4PAhb4lp55chx4bc234Gvi2ccZQBhr0jfJHfRPA2/8UOZXRoifZHqa9B/74TcwRR3p0z5LAG4/B1XdnyrMzoE+3DNKXgRtM/+CrYUR3OxoUVAv+aNCR1p0ZXWnE9GcL+LEa7smtrOi5Is7GX8CDrFY7329A31z5uvAbuEsoT6XvRvShA+Z0v8Ej552ydrKjn3KUP7YMfvHaRHQnB/pY5ak0ur/Qp9Y8vBjKhf7jT0vvRvAskVhrqc3ozx9EsfOBv295okvhIbl3qpYIuOfLNTJRW9APM/5zkQUffRG2ZR8f+gD1syhV8MQkZdof29A7aeqy9MA38u+aur0d/Vbh7jJTcJat2l+0BNGvZM9UW4M7nYiv+yOEzhHFW+cMzpvNUZAhjP503cNKb3CdpoY7hrvQG/LjnoaAKyTmX1kWQX+/eyw1Etyoo9YtVwx9l3BecCL49iOMJ8x2ox9V7D6ZCW7RFXqAVhK9bv1FqXzwtr27pUv2oI8rXv33HNx/Hx2frTS6tgtTXQ34xSI2hg2y6Ac1119uBl/rpD/7Sg7d1SZY4TN4sPjzIWd5dBknr5EhcJ93Rq2bFdE5V0aiJ8BvbdhS8VYJPaGqT2IePKWJI+fCfvQ9JmZvqWYpqleaVG4LqqA7WViYMYPb9t8O/aCKXn3x+yAX+Om2rR6X1ElusGonAD7t/tFytybpHIKy+8XBA6Of6/doke9l0EgePGeuUenaAVL8BBS+UgdX8GcQkddBfx3NKaAPvmHUh+ubLvqfMM5Lx8CVmDlo4w6hU9EUd1iDD5f3z6gZoAc9mRRwBjd71fl10hB9UajJ6QI4w8hCe+oR0nMYDXMugUfRHqrRM0bfve7i4DXwpPGGp/Mm6EyFuhvjwdc5et7LMkXfW9KwLx28RVvv5tHj6JpFs6cegbOdMAihMkev1//kU0S4d4BHoQW6pfDZyApwqdNdNpYn0e8PliTVE+f/75QxkyW69PbytDZiPSwbNF9YoT+66pvyBVzEYULmjA36w+fzN4fBjTv/CnHaob81UQyZBL8hKcJZZ0/Ku3/KTvPgtNpX6c47otOeWK9HNUdR5RhhXdh2hhRXjOmCTOCSIzVjzU7owUX//nKAj3Bm9Po7k+73z+7qbeALB7NbRM6h27tJhImAK+t/ft3lSqob76g0ZMCf/pUuDnNHn8/Kn9sP7sH5/KHMeVLdzpbKOgBeHWyfNOhJyhfXmwZHwP/R7rsRcwGd+27rhDn4E3+lIOWLpPPsmQy3A7/w1NZj3Af9b/1v7nPgm/2L7e/4ketVz31v8Ct54mYHA9BvyubvDAZ/ydFy6G8gqT4sn31wDXwiMlH1/iX0qBVOnjhw++EIGaMQdPae4ohU8Ohf93auXib1O3mtqYfgcyFDvPlX0D88e3ekANzETW/DiXD0gHnd3DLi3G50U6+PQDfJrFuuBtfMjVkovUbqs8eUdd7PEb9n6DJpfwPdt7Q0sgP8vJr7141R6AccZd71gR+3Tv78Ohp9H33pmhHwdR1jza6xpPNXVd8zBc7sblO75RYp/vO7zBbAd6//V/YuDj1l1t+Pap6iquj1+olPAvq7ij0JjOC7wx89EE5En8mcf8QOLshemtyRROq/hz492wpuPD0aezkZ/aRF00thcO4Ftat7UtHFPPpeSIL/XnwV2J+GziPDVKwA7tti5RV5F31O48QDdfCzusLOSvdI96vZHK0H/lCdzXY0E/1xl/15E/DtUfzmtx+gb88UOnwSfB3V0SNaWaT6qc26wwH8infewT/Z6OYOO2fOEa+vFlbNyEGvvO9W4Q2++vzNXsM80tx1fyzwEji7dITE8mN0VfoUhQjiObSuwrlPSHXAK/RnLPgjhot8ZoXov69l3bkDTs11n5O2CL3jJ61aJrgU1R+WkmLSOahmU3LB3e/b0dk+I+WX0HWf4nniewdzq6zP0YdVixgqwJ87PJl/VYauLCNwuw68V+7qb+cX6J/u9fI0g2vzXB7bXEGqAxLDSZ3g7WPpX9++Is0DAfs29IMHXurrvVBFip/d34K/g9sXKn8SrEa3+P51bBK80rSq9UMNuqOOkuEc+NhB28ZLdegrs2O5q+CnrIRrd9ejr0uYX0O/QFF95sX4quctqS+8cTiyATzLmu35tUbSekTl7nCDMy7LP5V/j55/xqmHH7x726W8b02kuXc7DZcIuNDD7w/jWtAl5xn0pcCFHVwz1NtIeRQT6KcILqHImfLrA6nv3LDKVAd/utiXkPaRVDeiimt1wdVC38Qe6kTnVQzoNwKPftx0Y+ET+kWpij/m4GeOTIdnf0Y/vtl7jS34Kx3Fy6Zf0J/EPaY7C57qlh64rhf9rKYt/XlinXcFfJ/2oYe8v0PlB1719I2XFYUUPy2msyHgZSFX3ZkH0SOmkr5eA8/4cdrl5RC69UeHdzfBt9Y5nnEaRj/NU5V7B3xmPNSe6zt67JnsK/fA6fZXWb8ZIcWh9XaznAXi95q4T3n+IM1pWZI7noLTV8eYbx9HT+zpGC8DN34sdKz1J/r6B5sev14gvg/VZRw4SeqzmZMODeDaW7MPi02hL/ie2dwGvtYiXr/7N7p7c2h9F3hgZbru1Wn0b6qa5yjgUcL1B+T+opt55TCPgAu4Mmh9nSXND8zl2ZPgRzyc1W/Oo8sWeO2bJeKB6YeK6iJ65lJ/wwq4Jm/o/oklUn+5vXiYZhHyyE9RKWUF/cb2d21M4PvomBR0V9GZ1Y8cYge3TFuUm1vT+59nJMZU8YKPbaaRfUiFrtdwfbcgeJW5mLQJNfomb60EUfAexXN71tKir9GqmpUCN098J1FAh87XuWKkCO55WHP3qfXonk1U2WrggapdYoyM6EzNbX8Pgo9rhYuWM6H/9T2rchj8kPIRkdMs6Hu924OPgRvRyu3i2IBOsWd8dQq8NlB2Zy0b+soo17Q9+LUQQ2GPTaRzeLgo4AL++NflHds40D8pl+p7Eu+b9UGomRO94KiBux94VqiSkD83ukpUTVQIOK/jK0ERHvRb17kfRoBvF7cQ7OJFr/plVBoDblCyQTBsK3qXlUf1bXDTvgEBmW3o04G+9WngNOHvBAb50QUnXN48ANePahaIEUAPPGJYmQcu0/5DQFkInfcQ/9Mi8F6ZbYLjO9DZgr+llYNH3TwneGcnuu+tjCuvwTPfdQgeFEF33nHU4S347cqjQn9FSfHQS6XWAk5lMCF0Xxz9qHkBeyd4kmn6DiMJ9GC1k197wEXKTguvSqJnyjI9HiLe96juznwp9M7P1a4/wNczau46IUOKh7ZLYlPgYS+PiqyXQ//+SmdoljjPA0Giz/eS1qm9LW5lkfg/qlViDgroD+lpVaiX4Dku3Ls3KaHP5a0OMYD/aYiQqN6HztHOcpltifh+zYY9bsro/Hx7ebnBRy8WSG1VRVeW8XnCBy4c6SDzXg09qqRr3w7wmLvScr4a6HLax2vFwDXiOOV3aqGbRSxoSYP76rApdmqT8m579WsF8KgMgX2hB9EfFRXuVQWfCtBTltIlxc/AuyxtcKmqCFWKHnqh/kY2ffB5nT71KH30gJRrF4zBmZcPau0zRM93k+kwAzd+0XDgx2F0F5eNu63AXzlY6SYaoQ/LigQ7gDsPMOprm6Cru/g1O4NHMrUYTh9Ff/yMnuM8uFvTQ6N7x9CNSj4d8wEPoIo7etgM3Ypx5FYQ+N6bCcdXzNHXWu5vvAKudiLfIu8EuuPh7oXr4IaaX06Zn0J/efm10E3wfeJbbOis0KVTZnQTwWfmz9s/s0Zf3OfjlEbET2T/aTtbdE16w9D74BvfWTqz2aPvv++TmAPeEz/tWuWAvqVw8WEBuEpb6vlzp0l52v7pyTPwJ1YW3rxO6IaPWYteglcIi/s1nkVnGMouqCbed/3GoIsu6Bc5M7PfgvuMMV7e4Yr+7uea5Gbwpiebwz+6oSvQvw3/CL5ead/1EA/0Bca5c93gmu7u0ZKepP2mxB2mgOfIld/q80I3ML8r9g083JUj8YY3yX9soRpf+t/vB6Yo+qAHTbJ8nAI/2ESXMeKLzsPkkz5L3OOLtAcJ/ujHv1nYL4P35h/I0QxE99j6QohqmaI6dIPqye8g9KzjSRQ68H2KH4ruBqOLyc/HM4OPJBc9N7iMrmHVq7UJ/F9CVsVSKPoOz4O/uMGLWfOrc8JI98W5P54P/NjEm/rjV9G1xytkhMD12X+/p7mGvpzQ1CwCznVW4kPxdXSf8nO2kuBHOgI/2USSzn8+87cs+GMFSg9rNClu51z9lcDnAowHX8WgU5l3rKqC81zt+u58E53ldWeQNjinsuvPzXHo29ouzOuBrwvj/PM2Ht1P/LnLEXB27ba5C7dJeeeT2mMKnmiXsiKYRJofju/SPgE+VX9xXfsd9G7nUznW4JmmDuuDU0h931yF3hFcbdaOVSKNVGfqmm2cwQNjPDl609G1DrOUuoPvoI/nvZ5B2m8aFY03OO/BN9sVMkn3a5Rv6A9uJkO36/t9dDpWtrhg8Nlic4n4h+j9vnvaw8D5CytkNbLR52VZmG6A87Hu2Tf1CD3l62O1WHCDsmL19Fz0jSKs7gngInEHdfQfk+LwkXxyMrjm1XHDxXzSfEIjUnWX8IC7po8K0PW/fut/AD5mbnfy2FP0mWH3hRziHunl7aiL0Qfzm1gKwJ+78pwtKkG3GVziKwHvu8DsYV2KXi2wVrQcPItmgw9LGel9OSiSleAmtAKXKsrRD59M2lMLrmCtGX72JWneSJEUbwCvWfKM4n5FqpNe2QLN4J7VxfH1laR6GEXF3g7+8w5VqtdrdMmrmmu6wAfPWd8XqEEXpj030kPci3Bzblst+rn8kMYB8Mg8naKgN+jm/FeyvoELj7SXi79Fl6e6GDQGvqbGufpLA6nPzp40+gWus2NTY8Q7dNYMhW0z4BqLDW17m0h9M5NpdB7cUDTq83AzeuS9nrwV8J50q4FbraQ4V310lmoF+ri62qjaB1If3H5BiA78/ZLE1GQ7es2oVjcjeNRzsfnUDvRmRZ5rG8AjLfeuOfQJ/fnzORkO8PIvhvQLXaQ5imagezM4G+eFDdndpP7+ttOPD7xw8RG3aQ86TUYPpyB4zfkx/nV96HXSM/k7wePPKIo87SfVE0EBNXHw4PoEKasB0pzMfqZ5D/g/71VF5iFSf89pMJUDT7L31nj5leThB7oVV4jf01jUc/pGyi/D4eMq4O33bphwjaC3PHjwQQN8pV7k5JtR9Hvi1w8cBLfq6LD3HEN3u5ZYegh8sSTy3Paf6NGWrduPgH81MfJunUA/cVg24ii4TqrApcBfpHlgteGHGbiL75oIsd+k+Yct9sAp8LxPY7Hdf0jzhkhkug24z93BO1dn0P3Hqn47gJtVDWfKzaKvn9+tdhZ8bPtM3tc50vP/fr7mCj5cxPrs5gKp7oXXtpwn7tdSvlJ1iZQvBlMsF8FNWJ3fTiyT+vukjZ4/+IOi3LaUf+i3mXhDLoFvkJ3t1l3T95+nH+IrDgV/ecng69xa9CJD14GrxLmFFP58uA59dznz+kjwLuFtsyY06OclVsVjwVct7qyupUMfMNLWjwf/zLBtfSE9+qf6Icck8BmBwo2WDOjP93wJSCXiKkZ/CxMT+pC0RHQGeInKzI4XzOgV7oPJD8AneLMlz7CiP4iazXwEHsvuoMjJhr4s7p71eIX4f3wSmnUb0Xf9OfKwEFyOicrgPDv69eCUuyXE/X4bOMbPiR7ub5xQBp4b/c66hQs9MNwnvAJc6G/l2YDNpP1qbfB8vUJ8zq30EuVFnzbfcqKO2FfB26DPW9D3Od1VaQD/3t8TEc6HzsaZurUJ/GbI4i1ZfvTudRzzrcQ6wwTThrajL3YytXwE9/p8LDtWEL1HMvxuF7j7mfinKjvQKSWhLj2EC/a+/CmM7k5PL0cBvzq3uz55F/pUM8fCEBEn7dfadETR3z8qKPsOXn//15dZMXTH/Z89x8DDzay+PdhNOn/xW6KTRD2kfP5lLInuzzvQ+xv81M6Ti2uk0N/k113/S6yH7wd1gTRpneEasgvgZcWXWE/Jon/VOdm9TORv5zYexr3o15LY/db8g88Xno1C5fLoTdyunNTgKv4BkqcV0Tedc35CB17Tq6DEsQ+9UYFVgxG8LfyfVu1+dIttJz+wgMecaT7soYK+p+7oyY3gCh4PLbapoZe8WxriAOeODXdoVkc3/mTisBk8ocTd3V8T/cJ1q69bwPlb7PxFtNFvXN9+ih9ct8kqvOsA+j/f1HZB8Px0+5thOuhKy+2aO8HXyJ1PldFDzyt5WygKTn8pInvwEPrrA4GbJcAzXbKLYgxI52w6GygF/mqi5ZXyYfSwMLl+WXDLP/8axo+Q4tlXWUkBPOmsfMcdY/SZjxtu7QNPOeBDOXiUVK8Ui76pgD/wrh77a4oeYCAkpwFOO75x9v5x0n6LnIK1wXfFu6w1Nke/yRz2Vgc81LaFac0J9Kw1vgz64NkHFLifnETPldTRPQwuI5UreNISnVXlb6gxeN9GIUkGa3St1ssvTMFdex8qldmgl4VP/zQDrwqSPOBoR8pHOj3ek+B1Y6+N2B3Qt89GaFuBB7JZnKpxRJ+bKXK2Je5rePGM+xn0lux3UQ7g3ib3vfjOom8uas87A85jZBLc5Iyu97z5jTO4cgtDpN859DaLyh5XcPWKxsRdbuj8atkTHuDpTLH3P7mj5zDcWPIC7yo8VXDlPPrgKRcaH/DIZOmX0l7o8n0GjP7gzi9Z3g5cID1fXJo5CFya5k979EXSOU/yMoaAlzv19u/3RfeuZ6a5Aj78pXlszA/9nRnDUjh4oV79bFIAKU502CeugQvlvaE6GIROpSjREwluO/me5e8l9A/NFm9iwO/QdvPcD0E/kZuadwuc7ftPYaNQdO7zs1EJ4Fsv0cmsXkH3aTjrkkS8b90u1fxwUpwfWT6QQsRz9pFDJyLQV57kb00HF9ty6fj66+jM4SFTGeCm7CV2z2+gJ/r6Vd0nzv/yLzeHKFJ+7U65ngV+3kIqYFMM+i/N70Y5RPxE+0ZUx5Ly3caS4zG444aGeLdb6OUitJ1PwO92bLm3NR49VnUg9in48+aL+e8T0LMP/NIpAW+e/Fzum4juNSS3UgrOIqZWv/MOultpaX45+OsL+e2dyegsjl4WFeCyNfyU0FRSf4n3WFcF3roueVwqnRTn3wsfVYMzSGyep9wlxcmKrF4d+FnZdOroe+imQWtG68GjGETY9t8n1WcmzsuNxD0+KN869gA9WM+Huwn808xh0aQs9Fe9Inkt4NemxvceeIRu6bhb6QM4+40ozZkc9P7rYW8+Euspkz2SmYdeOiFr8InIF5fBk0fy0U9Jq3z4TPSRlDinf0/QDy/fN+oBT1Q85P24EJ3m15mWPvBeJfpQiyL0+fyYgwNEvMW9i6EvQb/Xy/NqCPyAwq3U0mekeYaPWfIbuMRWqxz75+jruJzSRohz2CtVurEcvcBJin4MvMGXvvb1C9IcUn7G7Sd4xpfhVtcKdLs8to+T4IyG9b1bKtGtByVkfhPPaXj8410VustqTcw0+H3VpFmfanTanLbRv+BB2RHrdtaiPwyxUJkn9vU3cENnHXqDuF3sIvjKVp+tofXoPwwm+pfBn3JeFJVqIPWviCWRVfCIDj95SiM6e3Csx9pViuoT/VCtqPfoXJ+fPFsH7uQVa7SvGZ1e1nyWBny9eqbljxZ0G/lbMvTgv7PLnBPb0DPDTp5jAE9I/+ij3Y5+sObFfSbwizzTYdMfSXUvtuATC7gIG1fcvU70/HhlWrbV//3ufcbhLvQzHqelN4Gna7vkr3xG93sneYID/JNr2ou8L6R70bwTzLVK/L+59rfmvaT6cykrczO4/WOmTrp+9LsCFtW84DGP9YaeUUh1r7W0dyu44UDkL7tBUr0Sq5rZBl6q/HGZ7StpPV0X1guA/3ixleH1MPojnz4eIXBuQxcu1+/oPEXzu4TBr0xUCm0ZRT+y853MrlXi704c0u9+kOLB/+g+UXAHUXdVn3H0tSbJquLgj0ta9IUn0C8eSVeTAG8TkrLomCTVTy47lT3glh6Jpy9PofPqjytIg8/Grr2w5w/pHm8q7pEF1/Jzu9w/Tbqv60eE9oLTCA3GRP5Fb+6R5lBYJf6OdyxNaY40P+/6SqUEzhvfmjs6j664yX5iH7isjn7Z7UVSPKuVdSiD6yY1vdFaRg83GSpTBbf2P/Lxzwp69a/hO+rg0aNdAxmrpHm1rOaiJvjSJ9tJw7X9/3mfUZCxNvgX5d9Ly1ToVZY8ogfBXdhD1+dRo3++fOefDjitMTeXOS16ns2/Vj3CJwuF6OjRS9MPpeuD91L0pZ+tR/frC3UyJM5t209VO0aSV+dIHQFnuR9twMaMLjtZNWtExKed7IkqFnQRusYyE3Bps74z5zag9xS8vWgKXuBzzZt3I/q7G5Uyx8GbKhSuNG5C91Ep/GkGfnLL+M2LHOinne9mWoCrxWTc3cGFzlUabXoS3JnZPP8jNzpDTTCNJfjnaPaXITzo1dI+RVbgtxk/NkhuIZ1z3sWTNuBV/vGf+raih7aFrLMDD+gyG76xDf2m1p1se/C1XPx/FLejO+e91nEkni89tjoigH7r0eL30+A3BJ4z3xZCv0rRvexE7IsSzqsljN46XcjjvEp8T99c5M9O9LEI6UIX8KIMCfkMEfSTGh80XME9btNqG4qhZ9XGtLuBLysNGi+Lo+sWult5EPUzvNI6VwK9Kc/7x3lwes90V7M96AXmD9y9wFfmggNopdE9Ty3PXAC/y+J4vUQGPd0ixPsieG2BQZKtHHrhjNxfH/BjHfJZG+TRJVq3ePiB610QKqlUQE+OUhjzJ55/Y1ONixK678cb1oHgpzfQtPHsR9fX2twRBP5qeb6vQRn9duhXrWDwRt1f496qpPiUnSgKAa+ZGlkQUkfPWFLgCwUfHxui+6hBikP/xvAr4PFSAxwhWujFx+/9DAPnqaQISh5Ap5etPXwV/Pu1Qam+g6R7LJYqjAB3j/6mekMXvd/vF/N1cKU34waKh9AdxFfP3ADv2DlzYkQfndbFrjoSvKfgn1OCIbpaHx9XNPjcMUYfzSPoaYKyZ2PAKZw84b+NSPc19PBFLLjpD9H4uyboDa+86W+BCzcoZxqYkp5jlmMSBy6Rb1y4dAz94TG11HjiObecKnPM0K1PqAwlgEd5XG46boF+jCFrRyJ4l1baF5qTpPyl83NMAlehfTFafAp9zd+KB3eIOlbwedbGCr3yosdAMnj7vgXqDTbob6WTN6eCH33Au6nSFv1eo+KRNPCUr6rbXexJeUcxvpJO5MW0gySPI3o39+izu+C5rVHKDafR1bmXhzOI8/F4fsjbCf1GyE22TKLftQ+ZCzmT7mU+d9998G2/WM+0u6APbjtk9wD8zmsV72BX9NkUr4iH4O/U3a5IuKNTbRDNyyLmgXP3bvV6kN53m+v7bKKuKndmXPdE53TV/PEI/E8+Q4HCBfRddx9T54KHlKm/+u6NrnPs8dY8oi6Z+b2P90Ff2Kst+5ioexEl3Rp+6LXDvjr54A81pkam/EnPX2dg8QScK3T3bHog+lO5aqcCcH0tF2qDS+Rz6PYuBNcMebxxKRhd1SEx5Ck4g9wkf85l9CM5/64VgZdZSEkev4KeEsMWW0zk18QFZZpw9Psv2+NKwE+MvjxUfBV9qk0r4Rl4yYF1FjbXSPnleTa+lKgn6/TPsN5AP6d94OZz8Dqe296vIkn9d/zLjTJwgauDV5yj0bXWi10pB1fUkojbHEvqO+qKfi/AfQwC7r29SYpPBXrXl0Qepb8vuBCHfv5mslUF+HHpLZWCCaT+/uuP4SuibtO4Nn24jT4zu2l/JXFfG6u/XEoi1Su9NTurwEeOcvzYnUzqv9EvWF8Tc2nj2bmeFPT3DtqzhO9xrqa5noYu6XX/SzUxJ+zdzK5wl1TPT3VV1IA37Dgv8D0D/VDd19RacLm9TXviM9FZDd771RFut1NV4wEp31Nij70BL34UajD1EP2B0d499eCZVIMn0rPRg9mr6N4S+z2nelY/B33r1d19hH/+mu6zmEt6vsGVwgai3tqthj96TOpT6+tDGok4HLFOOPaEdG7Wf4+8I+LZpfY+dSFpHvjLzveemLcnhIuKnqK3Oe/8QfivMzdeWxeT8tpRsqgJ3LV7qoXlGSl/r0v6NhP73Xe8r6IUncNPVKUFfGNk5fjZMnSeboG1reAT9cKL3C/QBQ/x1hD+eDSG/u1L9GeenCFtRF+eWOC88ArdfJZT5QN4frv9DsEq0tzivW2B8F9xbTIfXpP6V6J0UTs4t4SyxqUa9NEVY6eP4K/Tco/srkPfqB/K1wEeTuG26nmDPrmj/gPhm6eunrv2lpR3knyhneAiTXP+8o2k/sgQLf2JmHPcz1z/9g599ST3AOHPu7uT4prQfzVU3egi6iG1frZ6C7rcn3C5z+Bhk5XPfrWinwhw7yO8Jk66Lu0D+jeGS6HdxBz+O6v90EfSuak/2/kF3It6y+BCB7pGLcc7wjsbb/7K/oS+Q/b+2R7wWBX6f6af0a/JW6/vJe7d6hIT9Rf0OffDWYQfEZ3jKeohxU+op3ofeGiKm4h1Hzoje+sXws8XjsqzUEhzb539+X6i3jraHqgYQE9VlKengGu96D16doi0Tk7dVMLv5By34x5GH1pJlRgAvyX10aP+G7plvFwV4X6HDwd7jaBvCeQwHCTiak1TtMAP0pxwQrWH8DAN3bS2MfTLH585DhHnvPFtXtBPdMUI/ynC285pvxCfRDfaGufzlZiTjesavvxCN9m7+o/wyQrNrojf6PXeNaHD4E/yar/tnUaXvkyh/QY+y6s1MzxDqhvLZhGEWzC+oYqbJdWrCCn67+C+Fw+wqc+jxzQ6hxM+d6ph268FUh+0Z1g3Quy3Qk8ibQndaok1iPCO2Ob9h1bQX0pfmiM88/ORQwv/SPNMvoXbKDH/3+wwz15D+c9pNjz8RnhrudkZUyp0qhVrix9E/Bv2ea+jRtfkvtlM+GVD27CnNOhHaBRUx4j1lI7EWdGhF502KyA8N+xcJvN69F9DM1vHwafLpgtfMqDH8Gy4QfhDQ78qJyZ03qLHs4RXaa1t4WJB5zFotv4JfuBORO8bVnT2GK9GwrX1Nox7sqHH8j7cM0Hs1zRpYfsmdM7bNrcJXy3np29jR5fIfLxI+B+vHM4gTnTbrxGnJok8vSK9Q5wbfe/KfCXhbSMvZb5sRpeOW+X7Bb41VVsjghd9SOduIOGzd1uP7N2K/r76yxfCk3+bWw3zoXvdK9k7BX4sZvjcLX70MzckbxLufdEtQE0AXUzQcIxw40eL1ycF0XWYNmn8JvKXP/xO6g50rbHgJMIL+9ge6e1Ez7NOniD8X39a6fwu9LWbbNX/gKcKiL7JEkVvffAljvA12aUfj4qj3y2n/UZ41lnNISoJ9LmZUdlp8A0ubVOFkuinFkNDCa/NObVqKUXyc1/aCDcUGGdmlkEP+j25ZYaIhw6fLS9l0Q+K1p0mXLOSVsxpL7rKy5NPCf/aH6/IpUCKz4MvFwhvkRXUeaOIPuA5pPaX6I+VT4957kNPGuoIJ3yPv5rDdmX0DPmE94RvcGr1bFVBD+EUZp0FX3/V8nKgGnqNwHUjwj9/nIgV00AfW629RbieYeDdbk30UKNP7YTv+sv05Ko2Kf5f1rLNEefwNrVC7iD6joHow4T71Yq//6pDOgd7pUjC741WdN/UQx8Za3hLeKqcwaiqPnoulzLVPBGHOX2zEwbojNF39hFepuFKk3oY/fbvAU/Cn61Z3aRnhP7hG0ce4QeGYgTmjUl1hmXfIOE23/mlso6i+7CYcC6AMzMVqR49hv73mrUe4QbGmoZUZuhqQo6BhIuVdZwsNEcfDXYsILxsv6Oz5Ql0V037AcLpKXO+TKfQLVltNyyCy6Rfi3hhia4aYatKuLkvb+IZa1I8GJ05R3iKW/5DTlv0GRbvZML5g1VL6uzQu+2i6wlnz/1Qc96BlEfTxb8Jz/5p94H/NGk9tj94l8BZD85SWs6gs5lIaRN+pSxiMuAsurNT9DnCNdV4V0RdSHmnsy6B8Ji+fMbuc6R9Jdx6SXhejBrPVTf0ht8qg4R/N/24S84DfQsVI+0yeKSko/zX8+jVTgsihP/iXdC+6YWu3sRkQPhpnsijqt7ogs0H3QjXF91mN3ER/Q9rfizhVIeKPFJ8SXVVQfUp4SP+2sG6/uguP9Z8INy24nP0XAC6+NuZX4RTGF3SHgaR7sVrK8sK+Hun1TyTYHTj24FihCd13nqx9jKpPrdw6RBeYSjcWBCK/r160o7wpx3lXafC0CU30Vwi/I+jwXfGq6T1OJ66Q/gamsGZ8gh0e8vFIsKtnnitO3Md3eZu/3vCb9vSb+SMJOVjE9Mw4Xu2p/LXRZHu69rVJcJf/pCUPB+DruFntPEfeOPLWmX+m+j31M/tInzy9nH9llukvAjtUya82m/cIiAefc/XB8aE9zlechK9je5GXe9I+FeLTT6fE9GLr2v6Ee5xLDs8/A562Gb+KMLFzPclyKagnztqeZfwl7at94dS0af71zwlvOG8XVFsOqnenmSoIXzNtbnXKhnoS+6B7YRvenij9ec99Miqk0OEP6vf1p98H713PPc34bcnin/qPEQ/f+fsmlXwC5t1lmaz0D87p7MQTqfXu/7hI/R4Wt0thDNecuc2ySWdG/M5EcLVy6h3rn1MimdB5r2En/2bJFeQjy78U0yD8EN7d2udKkC/ydhkQHiuX7Ux41PSfoWmzAg3qTG1KS9Cn+xJtiOclXnM7XQJKb8+tpwj/LFFUBBHKXpUYfRFwhdzN0bVPkfX4+gLJrx5JSvFoxz9ycOKa4T/Nd6Xu+0laa6g2XOLcIPc1rLmCvS4LsXk/61/nf1b/0p0ode99wj/bjnfKfIa/ZItbw7hlJeRw13V6KK28wWEe/Bsnw6rRS+09S4lPNDv2VrZN6R+RJdUQfhwj+6GoXp0pxmrGsIjVPr5YhvQ85va3hJ+OPP8bpV3pL4sM9FEOD8d3f6f79EfNz//QPiAS4pecjO6r7LMJ8IDPkqa67SidwnbfiG8T6nu9GwbutHug/2E/8o0837QTsrHmeFBwjMYJ64Yd6CXbVP59r/z8QqJW/MJ/Zmx6Sjhaf0cmU+6SPGwZ/c44e90cgtPdpP2daphgnCLYpUqhh50mUCRKcLV+D42l/WS1ilt8odwt2unex37SXWSX2eG8MGZpTH2AXSRnwyzhF+zjl2oGST1cfn0OcJtmoToid+5/38vzaZe+J8rlHNu+0auA2qLhIc8MNjR/B1dPsR0ifCKDUMy/qPo9NLa/8fGXUBnsSXa2p5AgkuwQCC4uxMIEhyCuzskeHB3d3d3d3d3d7fg7i6Bu4r9nrvqP/dnjO5nvLNpdpKqr2p19x7929lj9u1WzPn/wf2/P4cpccL+3T8vola5/srunSsc+Lc/rDG/kfP/N/k/e9K/lf84e8NDuUJyvbN79wrH/+0Psp7o8+C93SPeSfPX2dvMrj96/Ee716zY/t/+M9KHmYU+2/1R6WX/9lFdhq549cXuQW3P/tt9H/hsn/nN9Vxt+Ozfvq7CuqOlf9j98ZGv//Ziu4pd+fLT9XzI9+fffi3t9YeLf9s9XFHnn0MDWk9u86HKH7v/9ys0oMewc0s7/P1/d+dP++vaE+/1v/u3f/gB/9M/+4dXmML/99f+G17x2H1ir29YJdqV2Pv/yGtwuJTvyybqmeC3+deP8nu9IvAbPcw/Injpf/16H/C/F/b9/3vx/L//3sZF/v8c8D8djkaFp1ERaJQHjfKkURFpVCQaFZlGRaFRUWlUNBoVnUbFoFExaVQsGuVFo2LTqDg0Ki6Nikej4tMobxqVgEYlpFE+NCoRjUpMo3xpVBIalZRGJaNRyWlUChqVkkalolGpaVQaGpWWRqWjUelpVAYalZFGZaJRmWlUFhqVlUZlo1HZaVQOGpWTRuWiUblpVB4alZdG+dGofDQqP43yp1EFaFRBGlWIRhWmUQE0qgiNKkqjitGo4jSqBI0qSaNK0ajSNKoMjQqkUWVpVDkaVZ5GVaBRFWlUJRpVmUZVoVFVaVQ1GlWdRtWgUTVpVC0aVZtG1aFRdWlUPRpVn0Y1oFENaVQjGtWYRjWhUU1pVDMa1ZxGBdGoYBrVgka1pFGtaFRrGtWGRrWlUe1oVAiNak+jOtCojjSqE43qTKO60KiuNKobjepOo3rQqJ40qheN6k2j+tCovjSqH43qT6O58P81aiCNGkSjBtOoITRqKI0aRqOG06gRNGokjRpFo0bTqDE0aiyNGkejxtOoCTRqIo2aRKMm06gpNGoqjZpGo6bTqBk0aiaNmkWjZtOoOTRqLo2aR6Pm06gFNGohjVpEoxbTqCU0aimNWkajltOoFTRqJY1aRaNW06g1NGotjVpHo9bTqA00aiON2kSjNtOoLTRqK43aRqO206gdNGonjdpFo3bTqD00ai+N2kej9tOoAzTqII06RKMO06gjNOoojTpGo47TqBM06iSNOkWjTtOoMzTqLI06R6PO06gLNOoijbpEoy7TqCs06iqNukajrtOoGzTqJo26RaNu06g7NOoujbpHo+7TqFAa9YBGPaRRj2jUYxr1hEY9pVHPaNRzGvWCRr2kUa9o1Gsa9YZGvaVR72jUexr1gUZ9pFGfaNRnGvWFRn2lUd9o1Hca9YNG/aRRv2jUbxoVRqP+0Ki/NJoD33+NCkejwtOoCDTKg0Z50qiINCoSjYpMo6LQqKg0KhqNik6jYtComDQqFo3yolGxaVQcGhWXRsWjUfFplDeNSkCjEtIoHxqViEYlplG+NCoJjUpKo5LRqOQ0KgWNSkmjUtGo1DQqDY1KS6PS0aj0NCoDjcpIozLRqMw0KguNykqjstGo7DQqB43KSaNy0ajcNCoPjcpLo/xoVD4alZ9G+dOoAjSqII0qRKMK06gAGlWERhWlUcVoVHEaVYJGlaRRpWhUaRpVhkYF0qiyNKocjSpPoyrQqIo0qhKNqkyjqtCoqjSqGo2qTqNq0KiaNKoWjapNo+rQqLo0qh6Nqk+jGtCohjSqEY1qTKOa0KimNKoZjWpOo4JoVDCNakGjWtKoVjSqNY1qQ6Pa0qh2NCqERrWnUR1oVEca1YlGdaZRXWhUVxrVjUZ1p1E9aFRPGtWLRvWmUX1oVF8a1Y9G9afRXOj/GjWQRg2iUYNp1BAaNZRGDaNRw2nUCBo1kkaNolGjadQYGjWWRo2jUeNp1AQaNZFGTaJRk2nUFBo1lUZNo1HTadQMGjWTRs2iUbNp1BwaNZdGzaNR82nUAhq1kEYtolGLadQSGrWURi2jUctp1AoatZJGraJRq2nUGhq1lkato1HradQGGrWRRm2iUZtp1BYatZVGbaNR22nUDhq1k0btolG7adQeGrWXRu2jUftp1AEadZBGHaJRh2nUERp1lEYdo1HHadQJGnWSRp2iUadp1BkadZZGnaNR52nUBRp1kUZdolGXadQVGnWVRl2jUddp1A0adZNG3aJRt2nUHRp1l0bdo1H3aVQojXpAox7SqEc06jGNekKjntKoZzTqOY16QaNe0qhXNOo1jXpDo97SqHc06j2N+kCjPtKoTzTqM436QqO+0qhvNOo7jfpBo37SqF806jeNCqNRf2jUXxrNAe+/RoWjUeFpVAQa5UGjPGlURBoViUZFplFRaFRUGhWNRkWnUTFoVEwaFYtGedGo2DQqDo2KS6Pi0aj4NMqbRiWgUQlplA+NSkSjEtMoXxqVhEYlpVHJaFRyGpWCRqWkUaloVGoalYZGpaVR6WhUehqVgUZlpFGZaFRmGpWFRmWlUdloVHYalYNG5aRRuWhUbhqVh0blpVF+NCofjcpPo/xpVAEaVZBGFaJRhWlUAI0qQqOK0qhiNKo4jSpBo0rSqFI0qjSNKkOjAmlUWRpVjkaVp1EVaFRFGlWJRlWmUVVoVFUaVY1GVadRNWhUTRpVi0bVplF1aFRdGlWPRtWnUQ1oVEMa1YhGNaZRTWhUUxrVjEY1p1FBNCqYRrWgUS1pVCsa1ZpGtaFRbWlUOxoVQqPa06gONKojjepEozrTqC40qiuN6kajutOoHjSqJ43qRaN606g+NKovjepHo/rTaC7sf40aSKMG0ajBNGoIjRpKo4bRqOE0agSNGkmjRtGo0TRqDI0aS6PG0ajxNGoCjZpIoybRqMk0agqNmkqjptGo6TRqBo2aSaNm0ajZNGoOjZpLo+bRqPk0agGNWkijFtGoxTRqCY1aSqOW0ajlNGoFjVpJo1bRqNU0ag2NWkuj1tGo9TRqA43aSKM20ajNNGoLjdpKo7bRqO00ageN2kmjdtGo3TRqD43aS6P20aj9NOoAjTpIow7RqMM06giNOkqjjtGo4zTqBI06SaNO0ajTNOoMjTpLo87RqPM06gKNukijLtGoyzTqCo26SqOu0ajrNOoGjbpJo27RqNs06g6Nukuj7tGo+zQqlEY9oFEPadQjGvWYRj2hUU9p1DMa9ZxGvaBRL2nUKxr1mka9oVFvadQ7GvWeRn2gUR9p1Cca9ZlGfaFRX2nUNxr1nUb9oFE/adQvGvWbRoXRqD806i+N5kD3X6PC0ajwNCoCjfKgUZ40KiKNikSjItOoKDQqKo2KRqOi06gYNComjYpFo7xoVGwaFYdGxaVR8WhUfBrlTaMS0KiENMqHRiWiUYlplC+NSkKjktKoZDQqOY1KQaNS0qhUNCo1jUpDo9LSqHQ0Kj2NykCjMtKoTDQqM43KQqOy0qhsNCo7jcpBo3LSqFw0KjeNykOj8tIoPxqVj0blp1H+NKoAjSpIowrRqMI0KoBGFaFRRWlUMRpVnEaVoFElaVQpGlWaRpWhUYE0qiyNKkejytOoCjSqIo2qRKMq06gqNKoqjapGo6rTqBo0qiaNqkWjatOoOjSqLo2qR6Pq06gGNKohjWpEoxrTqCY0qimNakajmtOoIBoVTKNa0KiWNKoVjWpNo9rQqLY0qh2NCqFR7WlUBxrVkUZ1olGdaVQXGtWVRnWjUd1pVA8a1ZNG9aJRvWlUHxrVl0b1o1H9aTQX8r9GDaRRg2jUYBo1hEYNpVHDaNRwGjWCRo2kUaNo1GgaNYZGjaVR42jUeBo1gUZNpFGTaNRkGjWFRk2lUdNo1HQaNYNGzaRRs2jUbBo1h0bNpVHzaNR8GrWARi2kUYto1GIatYRGLaVRy2jUchq1gkatpFGraNRqGrWGRq2lUeto1HoatYFGbaRRm2jUZhq1hUZtpVHbaNR2GrWDRu2kUbto1G4atYdG7aVR+2jUfhp1gEYdpFGHaNRhGnWERh2lUcdo1HEadYJGnaRRp2jUaRp1hkadpVHnaNR5GnWBRl2kUZdo1GUadYVGXaVR12jUdRp1g0bdpFG3aNRtGnWHRt2lUfdo1H0aFUqjHtCohzTqEY16TKOe0KinNOoZjXpOo17QqJc06hWNek2j3tCotzTqHY16T6M+0KiPNOoTjfpMo77QqK806huN+k6jftConzTqF436TaPCaNQfGvWXRnOA+69R4WhUeBoVgUZ50ChPGhWRRkWiUZFpVBQaFZVGRaNR0WlUDBoVk0bFolFeNCo2jYpDo+LSqHg0Kj6N8qZRCWhUQhrlQ6MS0ajENMqXRiWhUUlpVDIalZxGpaBRKWlUKhqVmkaloVFpaVQ6GpWeRmWgURlpVCYalZlGZaFRWWlUNhqVnUbloFE5aVQuGpWbRuWhUXlplB+Nykej8tMofxpVgEYVpFGFaFRhGhVAo4rQqKI0qhiNKk6jStCokjSqFI0qTaPK0KhAGlWWRpWjUeVpVAUaVZFGVaJRlWlUFRpVlUZVo1HVaVQNGlWTRtWiUbVpVB0aVZdG1aNR9WlUAxrVkEY1olGNaVQTGtWURjWjUc1pVBCNCqZRLWhUSxrVika1plFtaFRbGtWORoXQqPY0qgON6kijOtGozjSqC43qSqO60ajuNKoHjepJo3rRqN40qg+N6kuj+tGo/jSaC/dfowbSqEE0ajCNGkKjhtKoYTRqOI0aQaNG0qhRNGo0jRpDo8bSqHE0ajyNmkCjJtKoSTRqMo2aQqOm0qhpNGo6jZpBo2bSqFk0ajaNmkOj5tKoeTRqPo1aQKMW0qhFNGoxjVpCo5bSqGU0ajmNWkGjVtKoVTRqNY1aQ6PW0qh1NGo9jdpAozbSqE00ajON2kKjttKobTRqO43aQaN20qhdNGo3jdpDo/bSqH00aj+NOkCjDtKoQzTqMI06QqOO0qhjNOo4jTpBo07SqFM06jSNOkOjztKoczTqPI26QKMu0qhLNOoyjbpCo67SqGs06jqNukGjbtKoWzTqNo26Q6Pu0qh7NOo+jQqlUQ9o1EMa9YhGPaZRT2jUUxr1jEY9p1EvaNRLGvWKRr2mUW9o1Fsa9Y5GvadRH2jURxr1iUZ9plFfaNRXGvWNRn2nUT9o1E8a9YtG/aZRYTTqD436S6M5sP3XqHA0KjyNikCjPGiUJ42KSKMi0ajINCoKjYpKo6LRqOg0KgaNikmjYtEoLxoVm0bFoVFxaVQ8GhWfRnnTqAQ0KiGN8qFRiWhUYhrlS6OS0KikNCoZjUpOo1LQqJQ0KhWNSk2j0tCotDQqHY1KT6My0KiMNCoTjcpMo7LQqKw0KhuNyk6jctConDQqF43KTaPy0Ki8NMqPRuWjUflplD+NKkCjCtKoQjSqMI0KoFFFaFRRGlWMRhWnUSVoVEkaVYpGlaZRZWhUII0qS6PK0ajyNKoCjapIoyrRqMo0qgqNqkqjqtGo6jSqBo2qSaNq0ajaNKoOjapLo+rRqPo0qgGNakijGtGoxjSqCY1qSqOa0ajmNCqIRgXTqBY0qiWNakWjWtOoNjSqLY1qR6NCaFR7GtWBRnWkUZ1oVGca1YVGdaVR3WhUdxrVg0b1pFG9aFRvGtWHRvWlUf1oVH8azYX6r1EDadQgGjWYRg2hUUNp1DAaNZxGjaBRI2nUKBo1mkaNoVFjadQ4GjWeRk2gURNp1CQaNZlGTaFRU2nUNBo1nUbNoFEzadQsGjWbRs2hUXNp1DwaNZ9GLaBRC2nUIhq1mEYtoVFLadQyGrWcRq2gUStp1CoatZpGraFRa2nUOhq1nkZtoFEbadQmGrWZRm2hUVtp1DYatZ1G7aBRO2nULhq1m0btoVF7adQ+GrWfRh2gUQdp1CEadZhGHaFRR2nUMRp1nEadoFEnadQpGnWaRp2hUWdp1DkadZ5GXaBRF2nUJRp1mUZdoVFXadQ1GnWdRt2gUTdp1C0adZtG3aFRd2nUPRp1n0aF0qgHNOohjXpEox7TqCc06imNekajntOoFzTqJY16RaNe06g3NOotjXpHo97TqA806iON+kSjPtOoLzTqK436RqO+06gfNOonjfpFo37TqDAa9YdG/aXRHND+a1Q4GhWeRkWgUR40ypNGRaRRkWhUZBoVhUZFpVHRaFR0GhWDRsWkUbFolBeNik2j4tCouDQqHo2KT6O8aVQCGpWQRvnQqEQ0KjGN8qVRSWhUUhqVjEYlp1EpaFRKGpWKRqWmUWloVFoalY5GpadRGWhURhqViUZlplFZaFRWGpWNRmWnUTloVE4alYtG5aZReWhUXhrlR6Py0aj8NMqfRhWgUQVpVCEaVZhGBdCoIjSqKI0qRqOK06gSNKokjSpFo0rTqDI0KpBGlaVR5WhUeRpVgUZVpFGVaFRlGlWFRlWlUdVoVHUaVYNG1aRRtWhUbRpVh0bVpVH1aFR9GtWARjWkUY1oVGMa1YRGNaVRzWhUcxoVRKOCaVQLGtWSRrWiUa1pVBsa1ZZGtaNRITSqPY3qQKM60qhONKozjepCo7rSqG40qjuN6kGjetKoXjSqN43qQ6P60qh+NKo/jebC/NeogTRqEI0aTKOG0KihNGoYjRpOo0bQqJE0ahSNGk2jxtCosTRqHI0aT6Mm0KiJNGoSjZpMo6bQqKk0ahqNmk6jZtComTRqFo2aTaPm0Ki5NGoejZpPoxbQqIU0ahGNWkyjltCopTRqGY1aTqNW0KiVNGoVjVpNo9bQqLU0ah2NWk+jNtCojTRqE43aTKO20KitNGobjdpOo3bQqJ00aheN2k2j9tCovTRqH43aT6MO0KiDNOoQjTpMo47QqKM06hiNOk6jTtCokzTqFI06TaPO0KizNOocjTpPoy7QqIs06hKNukyjrtCoqzTqGo26TqNu0KibNOoWjbpNo+7QqLs06h6Nuk+jQmnUAxr1kEY9olGPadQTGvWURj2jUc9p1Asa9ZJGvaJRr2nUGxr1lka9o1HvadQHGvWRRn2iUZ9p1Bca9ZVGfaNR32nUDxr1k0b9olG/aVQYjfpDo/7SaA5k/zUqHI0KT6Mi0CgPGuVJoyLSqEg0KjKNikKjotKoaDQqOo2KQaNi0qhYNMqLRsWmUXFoVFwaFY9GxadR3jQqAY1KSKN8aFQiGpWYRvnSqCQ0KimNSkajktOoFDQqJY1KRaNS06g0NCotjUpHo9LTqAw0KiONykSjMtOoLDQqK43KRqOy06gcNConjcpFo3LTqDw0Ki+N8qNR+WhUfhrlT6MK0KiCNKoQjSpMowJoVBEaVZRGFaNRxWlUCRpVkkaVolGlaVQZGhVIo8rSqHI0qjyNqkCjKtKoSjSqMo2qQqOq0qhqNKo6japBo2rSqFo0qjaNqkOj6tKoejSqPo1qQKMa0qhGNKoxjWpCo5rSqGY0qjmNCqJRwTSqBY1qSaNa0ajWNKoNjWpLo9rRqBAa1Z5GdaBRHWlUJxrVmUZ1oVFdaVQ3GtWdRvWgUT1pVC8a1ZtG9aFRfWlUPxrVn0ZzIf5r1EAaNYhGDaZRQ2jUUBo1jEYNp1EjaNRIGjWKRo2mUWNo1FgaNY5GjadRE2jURBo1iUZNplFTaNRUGjWNRk2nUTNo1EwaNYtGzaZRc2jUXBo1j0bNp1ELaNRCGrWIRi2mUUto1FIatYxGLadRK2jUShq1ikatplFraNRaGrWORq2nURto1EYatYlGbaZRW2jUVhq1jUZtp1E7aNROGrWLRu2mUXto1F4atY9G7adRB2jUQRp1iEYdplFHaNRRGnWMRh2nUSdo1EkadYpGnaZRZ2jUWRp1jkadp1EXaNRFGnWJRl2mUVdo1FUadY1GXadRN2jUTRp1i0bdplF3aNRdGnWPRt2nUaE06gGNekijHtGoxzTqCY16SqOe0ajnNOoFjXpJo17RqNc06g2Nekuj3tGo9zTqA436SKM+0ajPNOoLjfpKo77RqO806geN+kmjftGo3zQqjEb9oVF/aTQHsP/HCF7iV2jAn7/Or/sB+v/8Cg04tCfh2tLG/1nC+v73+wLzlo103bUPevTf75/cdkrMdeHsPm6ux7/97qJ78YeGt/uyytH/7elupk9SP4Ldzwb6/Ns7xOqcOpeH3WPeyfxv31lyb6aonna/UrvMvz1cn0i5Hrj237Hb/dvLbKrivyOi3UvUmfNvH/t8dtHxkezeYcD1f/v5pE/LBEe2e6mbycI5e4wa2SsXimL3EVu7/dtLju5VK15Uu/8Kvvtv737wSMNXrr15QI3wzr7gW8zgQ9HsPmzC/X/73ix12s2Mbvc0a/pGcPazzRZ36RDD7p6Ps3v822e+6V06pt1fjfz5b9953m9w0lh2n/Xutqezj/McNOqLa78efC2is5cqcGbiGS+7Bxd9FcnZ73Xwnrk4tt2jXUwcxdmrLGu8oFccu49s0Sqqs8+8vWp5lbh2X1rzajRn3+D1ZV36eHZP/b5xDGcfXzJg21/XfmJojFjOnrXXyL3X4tu9Vqs7Xs4+fN3lI2u97T7l9bk4//6ch0nODElg9+JNnsZz9iLeLS/XS2j3jD6pE/z7OQRuupXTx+5Rg0f6OHtIn98PoiSy+8qZCXyd/dq6Ui9CXftpzwtJnX1X6IT32xPbPffvzSmcPXqc29/G+dp9xbkjqZ39QLE0f4OSuK7XuQjpnf1op/YRCyW1+4GKnTI5e6xFO2PES2b3N/NjZ3P20RcixH/l2vPGe5TT2TP8qeB7KLndG4Y9y+vsNzLOSDUzhd3Tr01RwNkH13yYsUNKu9frOjHA2RMOzJyzdCq771yer4SzD1zVLX/S1HaPNC1hoLOvuHSgyBfXHmVSzorO3u1H1DJn0rieD2+GV3P2K0lrVFqc1u5+P33qOPvKYvNr9kpn99dRXjb89/U3f9GgSnrX/Rnyo7mzBw7NFZQ+g91b9gxs8+85s7hv27+ufVuf2x2dvceB452vZbR7vFMbejj7z1uxe6/NZPfSm0/1d/YSn+oNGpLZ7nFGZRzu7LmiLBtZL4vd/RdcHOfsi33fT8iZ1fX9lj44zdm7ZPGfESWb3ddf/DnP2fsVGDI/1LUPm9B/ubPPKnVu2fbsdj95tfKGf8+NignXjcth90Kf2u909pbVmm4Nyul6rvrfO+Tsx6qv2VMwl+vzFTbnjLOPqfr1cNzcdm8xbu21f5+j8kVOv3TtgYVjP3D2ucVGXTqYx+7ZGp189e/zmPvKzRl57X6/2PWvzu6TMumD9n529y1QMHw4syeP1vJ5qXx2Xz3zRwxnD3638V2S/HavtMErkbNvPvfr62fXfu7CoLTOfm5FyT+n/e3+snyVXM7er+94z8UFXPdDt75FnH1o+ZvRexW0e/T5kSs6+9L4qeJVKeR6Tib8XM/ZF9xomzh9YddzMnfR1s6ec+q2lH9d+7CSH3o4u085ZbwWYPfWczxHOHusn4E51haxe9nR/ac7+9mFk/MNKWr3Z80aL3f2aMXuBtQr5vp89Vi53dn73kpbOmdxu4f41D/h7Ddad6gYpYTr5z+z501nP/1xZ41Q156sXIRXzh6pU4QG20va/WO/n7+dPd/z8s3HlXJdr+GNY4V3vp4a09oElbZ74615Uzp7+h33OxUsY/ch9frlcXa/2Bl6xQ10fb+n8wU6+51GnQa+dO3da7Zo4Ox7Fu8ecbCs3S9UjNbJ2bvd8Zgwo5zdE0ZMO9zZV0epOL19ebvHPbdjjrN/zjh9XqkKruvy/cgmZ38bELo0SUW757pe7qSz5yiTYe1n1x66u2Kos1cp3mnL6Up2r/z93Ddnf5x99+5Fle1e5t7ZWBHM3svL43DPKnYfs798emdf9KD8qcpVXdflTfmizv588dSL6aq53uO7z9d19hs1793449oP97jWxdm//UgberW63e/1aDre2c+Oaf9sTQ27J4jRdZWz34654+3gmnbPMzzWMWdf3F9f69ay+898uR7++zrvlQnLUdvumbo8+OPs1TJN9IhSx/V9jUrs62H27EE3o4W69tCzD/M7+7rRKeJur+t6T43PV9vZi85rlWhcPbt3S5m0u7PXm7MxRVB9uxe+PmWas7ce+iN9wQau97LmbXP2m7WLZo/b0O7z3/pfd/Y43iP9Xrr2/Z/bfnf2XnsuFD7YyPW8ap4nkadzX5VLWGpGY7tvGTe1oLMHH2pUoX0Tu3sdG9fI2VckX169VFO7R66fcrCzTw96Wy9JM9fnYlGV5c4+ZkKeZp9d+52XSc44+50FfVqfbm73osNHfHD221MPd1wUZPcqJycliGj26yFRe/YMtvvF8IULO7tvpioDKrdwfe6Gjg5y9q8npw9P19Lu2Rf3Gevsq8veG/fHtc9YG2ebs/dbk3ra1VZ27/+14n1n3/C29dw1re2+6nzOKJHM3t9r45LBbex+d9T+XM6eNva31XXb2v12z68Nnf3Ou4Kbc7RzPQ/f3hjl7FdXD9oVOcTu5f1bbnf24iVOHLzv2kuuX/rY2avtiHFyW3u7J5o/KU5k5/MbqdqFsR3sPr5e9qLOHiH7jOvNO7rOCXkHdHD2dznu3ivQye5BAwcvcHbv6Cmfxunseu+MK3DR2SfvDX7zwrW/WLcyfBTnPVJy9ecDXez+Jff53M7+d9G7X9O7us4znda2cHbvq7kitO/muv93lJzt7LdvdY9aqrvdO9eZed7Z623eHTtJD9fzedlKj6hmn9fgb8LPrn3Hx+7+zr7mRrHkp3vafcQ4z47OPiTVsHSLetk97ZlqK5w9Q6GTWXv2tnvtsGahzj4ldfS8lfu4njOd/XyimX3vjYqF0vV13ScDz1d19hm1J5b449rDumcZ6+zeiy+Xu9rP9R5ZWfWEs6fZHr/amv52XxRcxCO62ddOrlV38ADX8zb89yLOPsVvZpO6A13n5LO9+jn77oW3WuYYZPd8iU/tcfbwFxN3iDzY7t8LPPvl7EWP1O9+37V/GHi5QAznOd9rbr9tQ1zv38IT+jh7hI93h44davc5R5Luc/Z0GZOObT7M7teaD1BM5/yTouGUAsPtXqvjtuLO/ura3NlxRtj9UYFDw53dO/DuoheuPcB76RlnP9HNd9WBkXbPUrVxnFjO99uw3sbpo+zeqeiX2s6+4u/MHSGjXc+HPEELnL1o7Rv7S46xe8yBG587e54W3sd9x7qez11u5/ByPkeZqp/75NpzNnvc29nvLJp49dQ41/N27tljzn7jzLk7C8e73iNdZ8SJbfajy6M97jHB9V4rXKqRsxfKWeZVpYmu51XpG2uc/VrrIR/TTrJ7gceVfjl76soHfoS59jdB68rGMfu20F+6OtnujZJ+meXs8RL7RV4zxe7VGqV57exHwjrGGjzV7mN7FSkc1+xlhq/xrjvN7pcOlp7o7Em2PU2SY7rdnwwr+MTZd49InibyDNfnK3Fy/3jO/R9WJ/N91z7g4qfxzp4y7uRc22bafeLPHU+d/ejx0/5jZ9m97/MOheOb/aWPR7Hms13vlze+0539Q6SCgQXm2P1rnX3vnb3AhM6V48x1nWMH1iznbfakG1fVeuHao255uszZP7Z80PDAPLtvL9EhQgLnHLgtQfD0+Xa/PORzY2dfPq1Cu5AFdk9zrMt+Z/eNMrhLyYWu82fdj0kTOvdhtB29fRe57s/JIf2dffic14M+ufYvh16GOvuXnclHnVps913+LYv7OM+HptUnLlziuk/KP1/m7KUnD5/RY6nrnFO2bbREZh9Wbtf8Sstcz9uhXzo4e5SRr5elXW73ZZWGXnf2j4FJ14W59vS/fAMSm73BmEpbr6xwXcebe5c7e5OKA/asXmn3jgVbxfZ1zhvjNhwetMp13uiavI+z9w0MPVVntd2zXn/8zNnX9ot1Kfsa15+/aXv1JGZfkqnwzUhr7d6jzqxDzt6sYtvQe679VpJxOZI658/HM59tXWf3VlWmLHT2RG+OvR2z3u7PS66Lk8w5Nzb/9KXZBtd7s8LdIc4eXDZZmP9Gux/ZkfK7s5efXdYjzibXz+1W/7bJzT6qRtdoL1z7UI+vD5w9rNv8OAc2u+6TEcNqp3DOXWEnfKZvsXvp7TkvOPulpx+Sh2y1+/pHv8qkNPvl7InSl9xm9+SNHh1y9mI3i2bz3W73hr1fFkpl9gd3W+b95Nozjoqzy9nbFRxf6NQOuwfere+X2uxzPm4psXCn63N37NRWZ0/+52a5Hrtcn+vpDfKkca5L/T9VK+12XcdF3tuc/UK0lHXT7nE9J/N980tr9lJRSjYJc+21Vmu3sy+q2qLllb2u82GF3AHpzN7zyYj2q/fZPVaHyUecvf7+ld0G7bd7uqBk5dI7z9u7J/vWOWD3Nv1uXnL2zoVfDMl+0O7zYhyul8E5792LNCbSIbsPbn73ibOH7U4z+Z5rv3MlQ8eMZr93udisrYddf/6GlWHOvjdVo4Vjjrg+v2Uajs5kds+VvVY0O2p3//dlEmU2e8ImU9f7H7P732+tVzl7rcD122Ifd70XNh0tkMXsPo1O7H1+3P1zqHvO2TfODz2y/4Td7w/O2DSr2UMifz897aTrrxvg983Zp02LebndKdfv/zRwbDaztymd+laJ03af/ClamuzO+Sdh/geJz9g94YRre53dM2KF5x9de7bEj2rlMHv2mI3fnTzrOg88zfnJ2a9k6fR1wTm7pyhxfHxOs8dvOjis+3nX533owiy5zO61YrJHpQt27/370Blnv/97UbS0F+1+9WfmdrnNPqnBxjhhrr3SpdCYeczud3yfz5VLdl975f5GZ7+c93Ty1ZftvrFappp5zd5i5bV0g664zmMLj/xy9leJH2Stc9X1+2OuXeTnnLdHv8yT/Zrdc7x9Ujaf2cd//lgw0nXX+3dih8/OPrj6z+L3XHtYYMX5+c0ee4XKbb1h97OtBpTzd97Xrz2rjrlp9wnFIv9w9iZJotZpdsv1/kr7bHkBsx/LF6Ox/227/wpKWrug2aMViNUi9h3X+bb6+iiFnPdmcq+Q5669fLHZe5w997NYXfffdV3fQY86FDb7yFEx+0y7Z/dJQSPTBph9bqTog9vdt3vuwuPuOnuiepFHlQh1PZ8bfJpaxOwLBkaYmPiB3Yt776pU1Oynu4dN/+jac+58FLWY2bP6f5138qHreT6j43Fnr3P0zdIFj+y+3DNoaHHn+sZ/vKb7Y9f1qrq/RAnnvZz+5uaKT+xe6uJAz5JmX//9zK40T13vu8trjzv738H7D/527YlWlRhdynluH9tw4vIzu99eXrqy87/3DN2z4Pyq565zadId3mXMPqDp+GsDX7jOUQ2n33P2o1v63K390u6jdz9dHmj2petbPs72yvW5G7a8U1nnc1qp2quIr+1e0Ot24XJmbzih4Me7rn376kHRy5t9R0jqH1ve2L3sqvm3nX3z06ga89b1+xvkWlPBeS9/fhex2Tu770sQ0K+i2YtMuRzD/73rvZPxSJVKZk92aGu82B9c596nh9NWNnuuXtMSP3ftv+YFhDn7pB1dU+7/aPfPS/JdrWL2wJ7VMkz75LoPy25YV9X5vnZky97us90Phy4fWc15v3SM6lfii+u67EoeXN05Zy58VCjxV7vHSe9boobZlxXfXeKja2/TZ3aqmmZ/Um1iuZPf7P408gKPWmbPey6o6oLvrvszWaZnzt59Xb463X/YvVjswqdrm73P+yiNK/60+9LstzbUcZ5jE24Gp/nlev+e14y6Zv81Ynm73659SuHNA+o5+7XOXS7/tvuCCx9b1zf7ia6Fe68Ks3vs6wdqNnCeG00iDRr4x3UOWZy0REPnfptybkTtv3ZPNiJGrkZm3x5tyvhsemDvn2vjUjU2e8VDtaZFDGf3vfcXx29i9pubfebede3NvlaI0tQ5X92+uXhLeLu/bjPuj7N/yDNj1egIdveZFPylmfPz2Vt9Y1MPu6/cdf1Nc+f7bRdrR35Pu9f3e/QsyOx3ip3Y5xXR7h/rjHoU7Dw//foffebaM3Y5F9rC7JVK5z6zL5Ldj1zfcL+l875r9+zS1Mh2738tZ2gr5xy+dMbNtlHs7nuoxsPWzvPnZenQ4lHtXvt1oqdtzB6Q78vTRNHs/mnZ4FdtzV5w5II3H1z7muITP7Zzzs83Aj+fiG73YvFK/gpxzocpP/ycH8Pu3Vsv8Oxg9lRNpoXrHtPuEWcsid3R7NfH549cMZbdN7ytmqyTcx1X3oqZxsvuuQ+sydrZ7GdW9oz/27VXarg5oIvZE4z29r0c2+6HErWs2tXsk8tsTLkqjt3Llz4T3M3s2e4GZhgY13W98jzo093s14qHZqsdz+6z/FZM6WH21t275M0W3+535qVc19PshztFLBTR2+7Z9lY52ct5/mSfVvyua6/0OO/T3s65Yk2qslsS2P130GWPvs458P66yqMT2v3z5PRp+pn91FG/Wk197P51v1/p/mZfXmdfg/yJXPdzgfBtBph919Rizb0S2z1anZETBjrP2y5HWj9z7XNands+yHn+vy/ecZ+v3bPsvxQ62Oz1PA92n5rE7n1XT4821LlP1hTo1zap3QMHJM03zOyZQzcPKZ7M7pXHtwwebvZZszOMTpTc7hUzdp82wuzfb8yZ+MG1h19c7sRIs6+bFGPGiRR2T1/u2a9Rznv2cO9581PavV+XcjnGONe3+bMl3VLZ/WCHni3HOuecjpVXV0ht9/UTOy0cZ/bbj7ZtTJ3G7h4Z8t0Z73z92xLt+OXa+444nXCi2Sc87L3vUlq73wiXtdYk5/nf7NaRlensfvFp4+mTnedqzrynB6S3e5qRQTenOO+pwPEXa2Ww+wT/Qkmmmf3k4ifXs2a0+4XyL5pON3sX//z3PDPZfWHsNqtmmH1npFGP77j2/bcOf5rp/Bw8b7zcnNnuz398Ljzb7O+zpPowKovdrx74O3qO8/nq1eZbk6x2Lznwya25ztfzZENYvmyu58CY5Znmm/1Hy08RvLK7Phd5SvdbYHbvPzmjPnPtP84cvbTQeX7Oa++1L4fdTyxJnWGx2ZOWXOk9Nafdj8YMGrjEee+8vO/bNpfrOVN/xO2lZp8+Im6q4rnt7hc63m+52VP6lMiQKI/dU73qM3WFc86Z2jHbB9ee8XzlLyud59632XlO5LV75HvRzX80Cw34k+9wgfl+rudVq0271jjnlqrPinbL53r+HC6WfJ3zfi8cuUyF/K7vt+D+4eud89iXNBVT+9t9YPoMHzaY/XnHItV/ufZh1wfW3+Tcb2tq1b1UwO6HZ586udnsr+e2abyyoOs5cMwj/1azdyjSJ3hAIbtfWpVj1Tazfxkzsm2twnZPMLNqkh1m39hncqesAa73wqOWk3aa/WzkWT08i7iek7e7Rtlt9rYZ5/a749pnX+41aI9zrrg1Z8jmoq7r5dszbK/Zx8SZOWpUMbt/j9yp136zpzg9cUKT4nZ//yL4xwGzB4UNm5avhN2bx67T65BzLlrUY06sknaPdTEw7LDzedkUvOipa1/dy3/QUefnn67Kir2lXH9+o8xRjjvX/Yffuiml7T7jUvJJJ8x+N0XiLW3K2L1eap8kp8x+f8bPncUC3e8771Wnzd6x1rX9PmVd7/c1ifKfNXvxmuuOvnftQ4amPXXOuX/GDjp9vJzd3w0p0OCC85z8VvXivPJ2j/O77seLZp8zKtn1rhXsvqTgsJGXzT6vyPM75SvavcGMfSmvmv147LUPU1Vy/Zwbe+675jyXvrZ7/tO1Z3xer94Nszd/lvHtxcp2X9v/8M+bZl9159GnFVVcn6OehebcNvveczN+9K9q9wFpTwfcNfvLrYF/a1Zzvd9vtntyz+y9R331yFrd7jkepR0bavY1JeZH9azher9P+5b3odk33Cnudce1dy/+4OEjs28q+zj+5pp2L1ToyYQnZj8/bEDiUbXsHvOqR9Fnzjl8ZMIUTWrbfUH9op+em31t4Jq0+erYfVWaOctfmr3XgQKZY9W1+6OB3g1fm73fk2M5nrr2cIc3er913qcbKvjtrWf3Xf7tL74z+y2fCwWn1Hfd//6Vx30w+9uEFYu1aWD36/FqVvhk9i1Lj5cu1tDuyxINivnFOS9tL1jBp5Hr+Tz36sWvZm9aem3V96696vsq07+bfVs5n9rHG7s+j82+N/zpnPf2DGgwr4nduwWeSv/b7HMnPmratanr+fzpxOcwszc6VLRl+WZ23735y6G/Zm9Wana7VM3tPu52lcnhwoUGpI//vtNP135iz72gCGZPmbZIj4tBdk+ycq6/p9l3dRjdd0Ww6z75OD52JLNXen1xUP8Wdn/1YtvLyGb3mxB3RM2Wdj/7IO6xqGbfXa3y2CytXF9/phWLo5s9cdYRkzxa2z2ST9fBMc0+xnv39Nuu/cSv3kFeZvf3eDFnUxvXezbNvsA4Zi/1NvaikW1dn8fnBbPHM/ux03mWN27nOodM/ZHQ2+xHJldf4xdi97j9vkRIaPZihUI2xmxv92+fc3zwMXve/YO2PXHtTcttCE1s9tFek3bv6eD6XFzueCmJ2VOnn3Ngcke7T73b/Vgys1/9veBo606u88yew3tSmL3t0AWninZ2fV4O1dyayuwrd8w6n7CL6/oG5NyQxvk6x46/8s61vxpWa206sz/60e/msa6u99SL42symD3Ll5b35naze9adQ9ZlMvu2rhUedenuOoeUHr8pSzjn7xvJ/LxcD9f98/T5jmxmXxLq+SZlT9fz7dmkgznM/nf7zQ8/XPvUOePO5DL7kLfLv17oZXevWndv5jH7pF4dfi3vbffjLQe88DN7v6q51L+P3Vul6vkrfzjn7y9971Gzr92X3zgRq6DZo+9fHiVLP7tnv9UhbWGzJy9SJ6ZHf7tv7dkpoIjZvz7xiHvbtT+KfL5uMbOvWbYqwaYBdm97c3iPEmav3qOs78iBdv9bcN6MUmb/Uvlx8saD7F52aNzdZZz7Nm2PNH6D7f4rwov7Zc0e5Z1nxphDXO/lqMkjVTB71QVjsz5x7eVf7cxeybm+2WPl2jPUdQ7/tr1+FbOvmDLKb/Iwu7cYkHh0NbOXOfy3QOvhrufMjSe7a5j91saQIkVH2H1n5YTvajk/t5rXSyQcafcyBbakrmv2gUvzB75z7etf7Kpf3+znpk6tcGyU3WeuzTK9odn7+76qMne03TfdiHGlsdnjZ/Ov2WWM67m9p37cZmYPf3hQ3XJjXe+11YlrBJl909kjDVOOs3vol3IzWzh/fgk1++Hae759e7+V2ff55mlxYbzd5z31zNDW7FvKNWuzfILdw7JN6hJi9rnHRrXvN9HuRX2nHupg9mWDVneuMcnu8cNixe3sXN8uR7tnnmz31Kk9gruafdGkG70jTHGdHx512t3d7DsuPO5/y7XPH90gbi+z50v9cvDGqXZv1P5ouz5m9xn0fPiIaXb3DF19qp/Zi96/P7rRdLv7Z4uTcaDZJ2S/MD7vDLuvWPdj9GCzX2+9c3KMma7zw/pm74ea/e6g2dMfu/bLQ6rUGmH2uu26zd49y+6P+x05MMrsf5KWnT9ptuv3v9ubeazZ24zxXtxqjus+zBAwe7zzfa26vazIXLu/6RMYfZLZ37aduSrBPLu3LHiv/xSzxzhZad1b1950558v08weefOfjUfn231wyTUhM81eItmyrXMW2L1TzucvZps9SfhSOzsvtPuNi5tbzDP7w0r39pRdZPe6Xb2eLzD7ld8hB1Isdl2XkL+tF5s9U9i3w99de6VYg94vNbtXyZ7Hzy9xnVdXzuyxwrnuJz6eWrbUdc4fWzrCarN/6t38XN9lrr9uzLET1jqf92rnLlZfbvdsfdsk32D2O0WzX820wnV+y/R40yaz1y846kb4la5zVJvvpbeavVXeO7dvuvac41be3+5c91Rp729Y5TqvPvnec5fZ239v8XD4arvHPvzMe69zXZYvfNJwjd379Oi+bb/ZI6S9/DzPWru3rrWy9iHnuRT8+1X0dXbvv7Ff2BGzd6yf5N0j197wxvclx83+6leej7vW231lEp9Kp8I5/71TqS8TN7ju88uhv86Y/Z5Hxe8tN7rev2WrrD7vvKdqVPgVsMl1/rnSpsElsw/zLfHHe7PdLxzOEeeq2XNWzBnurWs/3GrJyetm73I3gcfRLXZ/n+Do4Ftm77v3c8Q5W+3+I9nUInfN3vnBiSidt9m93+X4CnW+34JTopfdbveUQ8ocemj2QQdrxkqxw3XfDs46/InzfG7mFee7ay+R6mTF52a/Fv9gvPM7XeeQrT4+r8z+8VTLBMt22b3BqBRP35j9RtdIifrudp9DHmx9b/ZqUeb6Vt9j93al6o/45Jw3emRIlmmv67pcmNjgq/Ne3rImRfh9ruv7eHCeH865ZVPa1Ddde5Yrubx+m71xs+lpN+y3e+kPi978cT6/u/6kH37A7tXHXjobLrz5vKysn6nhQbt/+nF4g4fZ76XcmCXPIbsfGNFjWqTwznn7d7boh+1eZ/SHflHN3nhAoZyP3Hu17K1jmH13ma65dx1xfV8589b2MnuGoMV5Jx61e4ReHoFxzX73+PF8LY+53u+95xT0NvuPpg/9A467zp8j/+b0MfuM9J8Kep+w+5HPWTP7mv1Q1J+F37j2XzEzp09m9q6/vhY5ctL1/MnwPW1Ksy94/aLY7FOu6zVtSvo0Zk934VKJTqft/nF5+CzpzX5/+sZSgWfs3mRd8dyZzD4xz7Ayyc/a/d6v2oWzmv3LrMplv7n28A+Ll8vh/Hx2epU/d87uwZs86+U2+5DBxyosPW/3Rfvmt/Mze+iLjpX6XLB7hdpxB/ubvda9OFWqXXSdcy40mV3I7A2rrqya8ZLdK/cas62I2Zv55ake7rLdry+dcqW42Q/021bjhmvPuLT3l1JmP+aTpdb6K3a/f7KYT1mz7/gxo/awq3YfG/QqoILZT8b6WafBNbufPNmtVWWzJ6tQuV7u63bPUObp1Gpmv7podv1oN1zv95wFjtY0+7dwdxo8dO3Lb3b7Vsfsg+rFbrTzpt3fjp+VuYHZgxYUaDzhlt1XL1vevLHZhx2s26TFbbt3bD9/fjOzb18f0rTwHdd7s8Dgu8FmP1ive7P4d+0e1KB60tZmb7CtS/PXrn1nmnhN25k974bgoMP3XPfD08MrOpj9Vf4KwbPuu55j75t/7Gz2qCXSt+gYavcv074X7m72BPu/tSjzwO4eGQeM62X2obN3t0z20PXe+fU7tK/Z95zs3Oqra+/foEPegWaP45+89dlHdo++8Pa4IWa/fOdA6yWPXeeHBEVeDjd7gUU12vR+4jr/x51fZrTZe/a616bqU9d58smPlePMvrZGvbYZnrmeD/erxJxk9hepzrTVc7vXrLai61Sz57yavd11165Jf+7PMHvfOiPbrXvhOoe/qVFhjtk3L7jabuhL13th2/q9852/7qz4IfVfuT6nATFyLDZ7Pr/AkFyvXeeNW+2XL3Oeb8EdQqK+sfvB6zeSrzL7Y+/RIQ9ce8jIwLlrzV47/8yQHW/tHrHoYd+NZv+1Z1bI+Hd2j1e59PwtZq82cXxI8Hu7J498PfUOs19f2j2k0Ae7b9/Vee1us799UTUk3kfXfbIzaf79Zn9fPkXIK9e+osbN44fMnmnfw3aHPrnOtw+W1Dlm9puZp7eb+dnu2dcOenvS7OlHFG7X4YvdB0brMuys2fPvv9G29Fe7T6jQK8VFsyc5GNQ26Te7Pzkybf8V5/PY50mbL67d8/Cpxjecn8+DWm3OfHed52cm8Lxj9pF397Re/MPux2b2W3Pf7AGN47Xu9dP1uYsfrtYjs5eo3bBVlV+u51WDBR7PzF5ly6yW6X/b/euRBltfOtex2ckWf137rdn+rd6aPWm1l8HXwlw/h9z5kn80e5TOYUFr/7i+zvu1bn0xe6WN4YOG/HWdz9/Nmv7D7E1+/2hWTw/tfbUlfO0ws88v9qhpznB2zzpoQuJwEcxzoNO+JlHC2z14RcmHHma/13N041DX7tsz1ZrIZq9Zumyj7RHsfrlkpp7Rzf7mxM8G4zzsHqNxw0Avs29/Pad+kKfdS/vs841n9v0LstcrGNHuEQ6X+5TA7GGXttaJG8nuB9ZFPpvY7PU6Zq790rX/yvJ1ZTKzb2k1pebByHbPPSn+qFRmv7ryTfUZUez+PHPLdunM3itZvmrto9p9SqV31TKZvcqOzlVKRbP7jnJrCmUz+68mCyoliW73M50WZMxldo+o+yp8du2VvM8m8jP7u7lnyp2OYfc9w3PFLGD2rNHOBC6KafdxCa96BJg9ZcCe0j1j2T0g0eY/xcyeNN3ckpW97F7u3rlfpczeYkNI8XSx7Z5+W4bfZc2e/UT2on9ce/VPR/5WNPv8eo8KX41j9xLPFkasZvZTtYYVXBPX7p0eHfSq5VyvlT7+g+PZvWb+tEnrmb1h4bl+dePbvYX/hayNzL40fOw8ObztnijfwWLNnK/zUZeckRO4fv6Df9ZpYfY2Z09ku+/aS7Xv26WN2duujZ5lW0K7ryxXblJ7s8fpUCTjWB+7D2sdtLmz2b+Ha56ueSK7V0ly9np3s6+u1D11gcR277d18N/eZl9csleKOL52HzhkVMYBZq90oW3SF6797O2HtYeYPcqdiokPJHHd59HHjRph9mQ1kiecntTunq3G7h9j9jPpHsQLSWb3a0Uffptg9oAiE2OXTG73rc/H5ppq9qmjssf0TWH3eOsndppp9tsf90X95NqbPH27Za7ZvYIKRjqV0vX5Cl32c6Fz/5xdEWFhKrsPfbOr+DLnPvT2UI/Uds/fOPOEVWYvlbXi74pp7D5t5O/768z+5M+w72nS2j3S7sy5Npu9T5d1n3+79rCS+0ZuN/uqXkfeX05n99Demx7tdj6/v0+8XpXe7knWRS16wOyfn+5+PjCD3VNkPbHwiNn/ppr7uHZGu1er8NrzpNn7zm8bmi2T3ZM16NHurNn3lMh4J+L/Yeq+46n83z+Ay4wGkSJ7R1KIKBwjK5uMsopQZmYK2YkQMj+FyN5EiKiMlJBVGXFEVmVkltHv8v3j937/+3zcj/vc531f7+t63RyHMPL5Eqcv3eCb2/2fv2IuFN+h8gncqdalt/I4tg4WKTWD4MKWa533RZCHWPQcHwVXH3J8b3UCufvkrZxx8DdMH1ukTyK3V43lnga/S8r1mk4UeU8Pc+ZPcLdgy/opzPcPHuRbBDe8e7+6QQy7XyXBhSs7/XMlqyJBHPl/GXYSf8Gn6guLHU8hryB/82YbfKwlPU9JAuvngvEGZOSw7zYCnh6RRO5xeXSKCnxNVSdtEfNvG1n+e8E3E2hS2k4j/6o5eeQAeE9XxcN0KeRNWVm1jOAto6rRXtLIVy+MmR4Bpyt7d0/rDFb/Jam7OMCHhaSCec8if002VMADrnzmod8G5oez/zM+Cn6hbfBmjwxy8YmvVMfBSRv3u+XLIveiz6kTBT+9+4RjgBx2fwOX3STBP0SdtTUmIB8OfH/8LHiY9KnLIvLIq20EfxLAuVaYLlEoIBe4Q19yDlymYMZgGPNQ1jB3dXA3xRytZ4rIhePuyWiDK+Vqq0YoYfVzkonaAFzgzTf5K+ewPqB2esAY3N/X6oyUMnI14akiM/DUxg5xWhXkwcKCIVd21t+D9/gk5g3/bVvYgvOH2vK/VEWu3XZN1gGcOPCQI14NeRjldY4bO+tpVsTkoI68MYeEwhP8/nLpAcXz2Nz5e3LuFrhtZBoNswZyP/2NwTvg7nu9yRYwzyW50h4M7mMus9mqieUHI+vGe+BS134sp2ohP55FVh0FbsgY+stDG1tPGaWKOPDrWtSTGjpYPnHhKU8C31q/OcKti9X/g+xnj8FDSbo//cG8++f72oyd69c82PVRD3nqQHxTDvhKs8LbXH3kIznk3YXgXvoXG+8YIJ/IZvlWBn7466VqwwvI/woMrVbt7CNNlVJhQ+TX75yjrQMXi2DJJTNC7v/X5Ngr8GrfwbRBzIN/MWu0gN/aG5xYbozln7x7zu/B9bkYo++ZYOfxy0noAt/7NCbU8iLWt196vOoDv3JrxVfyEvL0muW5AfDV+0oe+0yRP3gtwDUKbvXmtsME5qyCtMYT4ILkj6zqzJBHyBfFzIA3SmVdjDPH+vNFks65nfVXTdS9boF5817aZfD3h11V5S2Rt/f0GPwB74g5JXf4MpYrPhk83gavTyGemsNcgjN2moyCSChj9jzWcgXrb7sipajBq9YWuR5bYXXSrhy5H/zNEWMmd2vk6l2N4wzgDdez9p+/itzMYkOOGdyvfYCcywbrh+/+pLKDN/Gv/V3DnMa6noQXXN5qc6HTFjm7zzk7QfDEqzOT2XZYjrJ+2C0CrnewYdj3GvKfjgWEU+C/jG/3GFzHctRMRLk0eD8je5uQPXIWQUkBArjVqfyXuxzwflX85Bz4YArLsy+Ye0r/ZjsPfkPYM6/UEblcEUW6Dvj5nqrUu05YPxSY4TEEv+n6Nc7cGTnjVmrRJfCV+R9hp1yQx/jxSV8GfyY+5rvnBnKTvwHvbCh2Pqf30vUb5lnN5eYO4Ocy/W1rXTE/XrtyAzwl+ahpjBvy+3eTY73Aj/2o1rFzx+qQU0/UFzza//g5OQ9sv2tO9AWCK50Nl2L0xPK2mYFvGHgNWbvwT8yXnqQLRIGrNfzmbPJCfszh/ac4cIIuCeN/N5Fb7+0PTwbvTVva7eqNvK3/lXwauNCDD5uqt7C8yvRg4ym4CeX9BfbbyFv5FF7kg5vPiEysYF6p/cW3FPwoW83nDz7Ib04YKlWBJ9zlb3/qi/y0VN2+OnBnmtsNt/2w3PWIevgVuGNURbneHWwuWCiWtIKLLndlHfVHvthjG/IBXJ+nJ+kf5oLnvS16wLX/1UR8CsDqkNFb5gt4vGOIX3Eg8h8hduwjO/tI59SNkCDktbOq5BPghpFtVqbBWM5POjI3s3N+KgVDsRDkA8PEoXnwB1mpqtShyB32PO5YAedXG5EmYn7HQ6tpA5zhE6lw9V1svlxfrd9FSSQoiu1hjw5DnnQm+QUVeIT8Gq3NPeSD0qfq94E/m2jdJROOnLam/TUDuDPp7SX6COR6lJfbmcEt/ei+z2D+wvP3Fw5weumIT6/uY/VjHDLLB76LeeptUiTmm4dIhMETSQRqnaOwPFlVyCwGLtCrXqAcjdVPn9JpKfAVd51HrA+w/FxANJEDP9F6OnIJ8wdhwXfO7RxfROr3PgZ55MvjeefBtfaUOWXEIjdPJfbrgp9sJlh4xyE/6J1KZQwe9KJcW+chluvSbGTNwQ90UxD447H+Y3XmpjV42uzZE1uYyx5kq7oO3jNjwNGXgPwoBe2aC/i5ci3awkTkSncPyHqB+/AI/gtMQp4yzRfmC/6de3LOJBnbF35a/UHg32JDRk6kIOdPCBcIB3+pT95J+R9yl8Ahvwfgxao2L79izvrw3JcE8E/6uUWVj5CLsrRKPgbXNHr/6P5j5DX2V1IywWlOdUZYpWJ5r+cwST74346KW9JpWJ/JmrUvBV+j8L5Gl46c8+TQQBX465dsxlOYJ76d1awH3/P5qXLDE+RRdUea34C7itOcSsjA8oC5I+EduF+lLrdjJnLyLWJDF3j22Zt0Sk+RB/68pfhppx4K/LaZs7C85yv1fnjnesasfy5gvrzFZjQOrtAkOPg2G/n462OTM+C/T3S9TctBrshsfXsBfHb3hSrPXOT7DVvo18AFT9RkauZhddJqULoFnhq88YAnH+u3L2l1yamIBM4pNr+/mOdE/l2mAb95hsO+uwDLG8GMaQfADS3+GeUVYrlx+YoGE7iJeIOSfxFWzyJjm+zge/8zPWlUjNwrJL6CD3za7TPr8RLk8ip+jsLg2mmi1OSlyOlaHguJg0dvXl8ZxLxPb/mnNPiEU8BYeRny27Khz+R3rr/Ho+NeOfLfX3TvqIKb0ajWWlYg5/M00dIGj1tZzZJ8hnyXdSqnITiFR0jMvkqszpc4103Bo2zmfSYwv3RzotcKfD7/tF1dFZbnCTPProMPcprrxz1HTkg9mXwD/Ee+pez1aqzexuoCboLn8RKOytcgnzSNdLoDfvfGBv3hWuQNFk8tQsGnHOO3fmHudob0QiQ4/R/q6eYXWA4nFGg9BFdcNu15VIfVYeNjjf/A/5ONqHerx3L1niGtDHD+yvgc9ZfIndxtL+TtrL+kTwxnA/I4NXnLUvDaLNnba5i3D113fg5+a3jIurMR+arfROBLcGK9oVb2K2wO+penNIOn8BZK+r5GHirWU9UOLvV7iMPgDdbHJlU/9YArkE/vFmpC/u8nw8YAOIt01yJJM7bfE0/zjoHzusQOfsb80KlKvWnwRyEiTSUtyJ0P3Q+eB68wzikMbcVycvTL2lXw4Nb1h2ZvsRz1U3N5C/xgKZ+veBvWB4LOiFPsJhKM54Wv0rxDLvUkzGsv+FGb/ZpjmPckSjQwgOvNvROveY/lyWplGhbw0GuWLA/akXfo1V7iBrcq7yS1/YC8qTq2VBDcM+fwrEwHtk+lP+4WBRfnO9PN0InlvaNetlLgWzSSNbOYL/SFtBHA2ST2pL/uQl78YEtEFbwroDY0+SPysPyxFO2d87fLO7p0I1d2F6M2AjdZfKKv0oPlWNlFX3NwqY8DUmy9yO0ucqxcBa8694N9GXPNww2ujuBPjvWTt/chp2/r/O0O/uxK0mxGPzZP6/W9fcDjm0Q/en/C5pGyBmkweP/xrCqdz1j9VNTGRIAv+M79x/8F+X9G6Txx4JpRdAFbmL8I2HqRAn72LI1N3wByhqB+o4zdO7+/HlIvHERuVnh0LQ+8hBgsEjSE/LzW+qMycKcYMoaLw9h9qVFWrtm983mJS2snviIfkqVfagT/vhI2RDmCfOy4ZfZbcDPryMavmOsMHDfrAtd3s3taOYq8N8b/8Gdw122msPtE5MzZhp9HwDXGn9hbjSH/YFv+aBLccnNbS/oblg/546/OgTPyiYvSjSPnlvgnugreJCV7cApzxvElsm3wLHq2tZcTmAe6D1JQQw6J6hmI/47NL0v/qn3gMaHm9Q6T2L7rYkpgBC/pe5mmOIW9Ly6FW2zgXEZLAczTWB/L+XOFD7xxYstqAXP5EiWd4+DKpl/PvZ1BPhPOqSABfjE+lj9tFuvbEbGnd75fMtb+yG7PH8hP/UsSUwa/VnNzRuMn8j1nJMS0ds5vkv+e+xdy3vv2kobgPrylhX8wP6wkTTDfOX7tXuTHOeQ+FZmaNuDtBZJOufNYnxfMs3ACZ2Ou0bqzgM2RP+c9PcElWfeJGC5i+8U9MsYPfCNKYr/wb+R/vzuVhYLLqInOkS4hP/50oS8KvJKXpHMAc+kNxu0EcMqtjOKyZeSFcqPH0sBfFxyKCltBvq9ByyIH3IzKwtFiFev/76wSSsDP/rypIbGG1VsFR/dz8AKxq0J715FLvgs90Ag+9oybehzzcvNEo7fg/9SeTdX+Qf7qlf6TLnDadsbWmL/IpxTr5z6DUzGcz7LbwHLRqT4FInjrH50guU3kdyYfpUyDHzQRuMy4hfxn3sHVBfBMyo+yPzF3+UAw/gN+YESdpWkbeVAG+8tdNETC+PP49ZR/yJ94VwjQgEdeL+u/QTKO6jNzM5Ee/Grn4wrVXciHnbdpWMDLXl58wE6KfFKkNpgHPJV2ymEF889iIruEwc89Pqf2gQw5R7tF8CmanXzrxvuUHPlJNU0aWfCiFheS2xTIff6uJSiDi9DLDutSIncWs+bXBp9eH6gWoELuJf+gzgg8RE/l4Tbm/zz8DC3B45YCnft3I3fjPLFsB/7geaR6ETVy6YfZSTfAR1xteYNpkL9g+0a4Bd61uf/fxT3ITekmfwaCp4jcHTi5F3lgXUVaBLjlSPszqn3Io1zUDR+CC42PRo1gTvQtpHsMvsDwxq5qP7b+4oMfs8CjVd0UImkxn/iUUAzefmHhiDUdcjlipuVz8Iv0MsvSB5CbeRFEGsG7jQw76OiRx6wV72oDr14/mzOFuXjl/MBH8Jud83caGJAnb1JUD4DbltwwTjiI/DDX7+Rv4C3ODSccGZGTuFX573zvbf33L1RKh5DnEvQclsHNZhpHmQ9j1znYaroFnqnjXr2AuWPcYT3KPUSCy9zv6LdMyHlqzmnQgsc9krNNY0be9UjnPBP4G2EjWc8jyGuipLW5wB/dlD6oyYKcb4TMWAg8X296lpsVucXX0qvi4GYxVq//YJ47JHdTBnw/dV7SRzbkSoIV0crgFLE1TrnsyD0O7SnUBrffeqh0hwP5raXzH4zBDXnOMBtyIo+jc/99Gbz5c8HcMS7kGy9D2OzB0+a/N5FyI/+lEajlDl5O+JE8gHkWjX2QL3jd4xdOZTzIjc7L14eCXxwyUAzjRX7GlGIjGpz54/NDFnzIg6NeyCXv2fk7/fHZU/zIbUSvhGWAlx4faNgjgJwu6W9fAbgAITnuG+ZV++8JVIKTmXDa1h5FHjBN4/8S3FjTVTpGEPljj5ChVnDehYi9dkLIT5OtynwE1z3sNCp7DOsDE5efDoAXJxyuOCiMnf9a6/5x8N9yESE/MPcdFfD/Cf56stnozXFsn6bcXV4Bz7789miKCPK+yXHnf+B0AbF/XU4gdz2sMLd7L9QJE88HlZPIg3zS3ejBOzd9UtlEsXqzJtlkAY8heey8jLkbu00EH3j1ahChXQx5yFYn2wlw+YqTdJni2PG6hOdS4Acos4nep5Dr21UbKIKvNo+W6Uggl4yTWtUAz35NDOCXRC7K1ZxquHfn78JydbcwN7hqet4S/E3DKc6+08gLC/9tXAPnvxo2XyCFXFm1osINXDY2vSFQGrlwmIezL7gqk1+UyRnkdnWqJ+6CO7ZzmJ04i/WNU8dXHoC/8A0TopRBvinP/2rne7EFt5+tD2NuLnYq5il4Cld26zNZ5PwmJjbF4N01l+Ij5LD6J40nVIMHJ/RduUJA/jNgmv01uFI4/QkpeeQTPMZk7eAPbQ5u7ldALnV27Gcf+PDGQNt3zMcO3RsaAXdgs06oV0TeT6nVNQ1+61HplYdKyGlMRdt+gwuoNh63P4fdX2vJ1k1w38XYP/LKyLddzN9R7iMSbBwEWg6rIE/7mNtNB14X6h8zhzmh/9DoEXDZA/+Ztqgi/9BRuMgLHjfixf9YDZvLNNeoT4CrNzAuuqkj1xvU5JcG/xLgVad+HjljtKmaEnjqanIopwbyK54JLlrgX+d9ddYwP0TceGQM3irDzdypiZyBPabjCrhL8b1vWVrYOvsbkDuC9x4oK/TRxs5voCrvBf5JOtlDXwerq1nHwABw5RV5WUFdbF7Et7yNAO9jKKAg0UPu8ESfIQGc1aa34xPmBy0Zr6aDZ9bUJxTrI5/noH2RD9711cY8xAB5p5gCYyX48tNOXtMLyO9MFXk2gGsMrv4QNUTeEWUw1Aa+pDNSsdsI2++ekiq9O+fpDbk1irnznNHzr+AEiVnCc2PkWmrPj02DFyjup4wyQT7bY5jze9/O58kX2q0vIqcckeTf2qmTx7GxZy4hv1x7qZBqP9T53QWjA6bY3Kx8I0EP/stoH+s05u85brSwgvMNTxEbzJDrnr96SQDcZ8I/O8EcOVnIk2VRcBa5/uuOFliuYOWPlwGnr546rmSJvNV6VWrne+1N2aoXmS8jl8mnH9cD75FTqlrAvFjGN84MXHbmvvfbK8ibnU6p2oGrz8acTbNCfiJSZpcbeCSt/raHNXY9UwmvfMF9+bteaVxFntOlEBoGHrBJFcxtg+3Hhwo6ceAjFpvn/mCuEpLIngreeqSI8qMtcvYFhaVccJ2tQ205dthcEFDuqAD37JUJ97uG/I93RtFLcDZ7tvMXriOXkDCJbQNnjK6hOWaP9Y1Ce59e8D1797fvckCuemzQfgT8vzK2+18wVyPPs5wBl1ebOl/qiPWlu/0Xl8GvptvT3HVCfoTk6sV/4IZBue/MnJFTv7lgQUML/fNl6j1xF2yfsuRfYwTXZNVSpbmBvMTUypsT/IZDFcUY5l49gVHHwBO8PjVVuyKX79qdJwkeQV0WGO2G5diM9bcK4BQLCgQbd6xvJ+v/0gR/snJ/86wH8gZyJiYT8JHvUbX0nsj/O3VezRpcIFLVawbzxZuzfs7gbc9qxF55YXmb/W/NLfANgbG5xJvIV7xu/wkB//LsVYGTN/LIbkdCDLgVt7HtuVtYfvDriXgEHiSXxcVyGznT+6KhHHCq3tzhRcxnKbdEK8BzC64ktfkgvxDcHPUSfPNBt166L/JX0eTzbeDhWmt7vPywdfNuMOwDf17c06J5B5vXMUuvR8E/3rb25/FHvsybLf4DnNY/X+ov5up3+wpWwe+HZC1+DEB+lyxYgJQO+rDhhYLcQORUP8vz94Hz19VY3QlCzvvASpQZ/K9/9xHDYOSnZBIbeME9ndJ6joUgj1DU1jsJflKLI4I0FLn34v2Zs+D50wYKA5jrJOuGqYKrU8usl95FbnI3VcgA/KL355K7Ydgcp/HotQDf+4/PxvweNh89+wPtwb1tBVhOhWO58WCThBf445tDH2kikEtLyc0H7px/Q+HuGOY3T6iVRIHffnHpbM19rP+rf3NLAS/141uIjkSe2r9PNhs8Yl9mlk0U8i3uD3vLwcPEPprIRCMfDGD/Vg++u6p0L8MD5PZylC/bwPXN5V/NYD5SEJLaR/e/52X3VzHIrzM+CiaCfyZ48CfFYnmy47zLT3AWmsMDTnFY/+FKuLwOfuaI/f1zD7F+eMXHmPwAkbB+2kmWJR7556FtAzrwTSHO+UXM1YmcRqzgfS+CnrQlYPX88pv5UfDlkni99ETkF5uUHU6BV3caknolIReT17gjD2481lKhmYzcOng5UXPndYsnrHhSkFMMK1aZgJdulNP/xfx4yumBq+DmscfffPwP+S/qPlJX8K8Sxq65j7Cc6ccs5gc+VSrCeecxck9FartwcNbWZ50XUpEb5mVlJID/k5v0PZaG/N/Wz7EM8A1iixBpOvJbceMCJeCWbvpfvmDeWhnu/gL8cu390NInyCefEZtbwQ/7uordzUD+ZWSGpRc8OIBs1CwTeUpIjvcoeHikwn3xp8i5lg8P/QBfsjl2miYLuY0vQWkd3Lnn1Tci5uaO7OXk9PC8k7Qrujob+Rr9c94D9Dt95pdUdA5y7kaqNDbwSIWQ8au5WF5tPMgmBE5d3hJ1Ng/5V+uRDElwp+jy0/T5yGX/2ggrgb9NUx2bxvxjd1G9DjhVblhEYwG2H6Ur9c123NFVPLEQ+YEAv7lr4IEV5MOORch9l6ljPMEPERRClIqxvvr90ukgcO1P/MJHSrD5nuk6EQ0eK1PVu4D5/ls6SY/AxSR/3n5bipyjdkUnD9w6rJ0rrQw7T7nN/ipw2WX9No9y5D9Ln/S8Bm+UD3LWqMDmJnne407wjpMXD3I/w+ph09dxCFzk3ufadcwzpzkVp8GjaLYsuiqRnz6UwLYC7ufzjiynCttHfYPbuxiIBPc0mTzf51j/dF36vh+8TdJI06AauaMssYcF/CXVoQXBGixnhma2HAX36vN5SFKLrXPK2QYJ8HXLMMnPmNu+LapXBBd3khoofoGc32LtlQ74WkO0T0gddnwRa7sZ+J/DEWym9ci7SdiHroP3nxFqFH2J5Z+CzQUv8N2zzpd3NyCvWq3dGwK+MmW8axRzNwljkVjwidWJjKpG5MTKfsM0cLIBRsXIV1jObJIMLgS31J0ds3qN9asyn+c14HPsVoHSb5ArvsuebwEPp/TjpGtCbmb+XKR35/i2M42TmO+vK3EngjcIPDJ/2YzlopMxDb/A/SZSNx62YH1+nxntBnjiK8UU+1Zsv6cz2O4+SCRc8guXVHiLPO5UzRtG8LUh197DbcjPsmrw8YCHpG64zGH+OKsj6iT4vyD+vS3vkIuwKmzKgitp/c599B67nu6cGxrgB19aKLm1Y3menuSHCTjzQ4cRtQ/Iy0S0HWzBRx4w3eLowF7XPW7RHbzL3YZhFfOVE51+geCK//SKP3Qi56kgpXsA7vD7q8rTLuTRaqJ5j8Ht9lETb33E+qSCqUoBuDhdr7duN/KsH4Gz1eAVL84eEOhBvi8hJ74FvOCDYv4W5iKR78/1gr+lmJbv60VuyTH/lwgez3fsS0EflsceM1bPgYf+2OMS2I+cYEC4tXlw5+8OIihMPmH5JMZJgYYRngvssh+JfEYu9DSDlgl89T9zUYovyC8PDI/zgVe4VrQOYe4WyNkgDs5T8NS0YgB7vzNOaQrgtGSiC/cGsfx2uTVEB5z37KUQyyHs/OLHXM3BF+k4mCSHkVuUp1o7gE8p+hfu/Yrt36McZrfALR/clhvHvGCy7FIYeGwlXXftCLYvzlywTAB/fEPBOmYUebYrjf1T8IDAvSu2ROTlg323y8G5sl3vyo4hz2mqjG0EV025cfjgN8xvF5Z0gKexUOfNYt6r9aJ7CLxy5ozU63Hk5+9/+zsDvvmKoi1pApt3gXxC6+DvLa4bO39H7uUXYkl5CHJLgM3kuUksJ3SSPDoI3vjtjwfLFPa6rx8Nc4OTKvGT/cZ8I9uIV3THLWZj2qaxud8m5kYAD1lQZk+fQe7sLdqqBS5aLVXoOYu8hfQCpxl4kvOb05o/kA9VPQqwB+fu/dbE/RN50Sj1lDc4f0aKzh/MxTvTDcLAB+MnB7t+IbfrsmhNAL9g/84mZw75GVE1QhZ47FeFBd95LA8rmDdUgLsU6Nw2WEDup52u9Bq8NPI3mdAi8qZs2q4u8DWCUBTJb2w9E0ovj4B3+q8yfsb8kEPA+k/wdCrjtOIlbG56BCdugFfHafCHLGNzk+TFGZrDRILKcG/xpRXknGZ835nALdPnT4muYu+rvzVBAHw9Ma2Oag3Lt7XpmpLgP/2ICiOY+xuXUyuDL++velu5juXqzc0PBuBl5Kxa9/9guWglONEK/AkzY8+Vv8gp41RtXcGP7n5iJLWBPIxdXSYAPCaifnD/JnLmmXCmBzv/V8/U3uI75j6EPRup4CHi+WN1W8itXDrHi8D3dnpfjdtGHtTa11MHfm3iy+S1f1hfiuNoew+ucfLdNQLJxP/7Ca6ypgFwLQf1WcZdyOlfhbVMg09oX3T4iflQfW7HGrhL/PqPN6TYeWwODFMyEQlCK/yOKWTIiyhbFxjBTwtN/HAhR/5rrnUPH3jCzxMOKhTIIx0Yj59i2vneJOpZVkrkbO8rLiiBt2y6XlvCXNTkSZA+OFW93eQ7KuTG1qPPr4D7/5i1frIbOZO06+IN8MdKG0QvauSb/MZiAeBlvsnmWjTIQ2/H3XoA/lP7zQDPHuQSgbxv08Dt3LwN/2J+995+lhJwpvQXHz/uRb74Vc/zJfhg5D2N3H3If3bO938Av7401uK3H/l03ozMMLhVRCvhAi1yg1r5gh/gytSStUJ0yJO0Vtk2wG8KnBTbdQA5y7M9yTTM8Jz4uLLgM+ZKp4OYjoA/Z2/iLqFH7iRgmi4Ivmxj+l8IA/KVj0nC0uBfj/odMD2Ir4P0KzVwefaj90QZkQeEKlwyAX+/abpNdQj50WPlf+3A9/kweYxgfqsxPOMm+G0d85nKw8gbHnzQDgO3PSlkcZ8JuczMbdIk8N19d3quMGPXw5xYnwPuvXBJReoI8llHDr/n4KVnG2r3syB/KMp0rhU8wiFP+Dvm1yoDD3wCb5FgTq9jRZ6maP79OzipLt2BODbkVoJFjSvgr12igq6xIx+vcnlCcQSeL87HLMlxIFeVyA9jBBdJYLrKyIm8YvmiJx+4OgV/3w/M1RSCr0uA1+nUKL3hQs59jf+qMriTYFdFMjdys+fnbAzBhVTtuVx4kNPcGnW0Ac8wD3+gzItcdmvttie4GZfwFgsfcvKYBw9CwTtU9O1/Y379Tm5BArhK0ManNn7kbowKH7LB18MElNIFkHNlmi9X7fieTyWeR5G7u25zt4LLvKE8oimI/OpHXpNP4CkWtSHcQth93NPzcBL8XfyvuXXM/9yg+rQKbsP01KTrGHJ/zVZ2KhYiYebxwOtsYez+/qB1Pgxe1h8j5Hsc+X//fW8SAP/j2RanL4J8PUeNUwr828mAv0dPYPfd/EywGrhDbfWVf5g/o6n/aQLu+ca5rf8k8qaNTrPr4M3bWSJFotj79fPovQW+wXkpPkgMu87hYt0I8PShqD8m4shTbHz7/gM/OEawOHEKeaPNmEUhePa4yxsKCeSPBUfm68BvJrDxD2O+uOUe9gE8IU8tvEISuc+JLL6vO+vWufDj3mnk8zQ33v8Cl33BqG0phZz06xfPbXA51upSCWnk1r9HBWhZiYRbOX10e89g+zrpLpED3JzG2fUb5i+YO9NPgkv/CequOYv8b3O1jQK4DC+D6AMZ5OyT58T0wW/KsMfYyCJ//c6Lwhp85PfTubNyWJ+p1x51B5dff6pJT0A+TNPZGAKuv8VWMI25167VnATw3IoDVI3yyHt/vo3PAa9uu2OdoICdn1k5vBq8b/5qo4Mi8h+9ziFt4BJfmo4oKiHPv6ZydwD8t+gjT6ZzyIV4O6JnwUmLZ7vmMJ/SJ0/bAJf7Uy7YooxcV+HXs71sRIJF60LQIxXkfWfDP7KBbzTlDLmqYnM8emBJBDwmo1dcTQ35h7ujbPLgN/ffvM+ujpzqxmNtPfDZ2phvy5jPJB64awVOZcAp3X4eO4+qfLM7eNs9vgcZGliddAlSh4LT0DyZuKmJ/Kt314VE8IjQB9LaWtj6xIrl5oJP5i9F8WpjucLmAkkt+H98H8b+Yn5MQfLye3DKXCaJbh1sf90YaB0Ctx3+EparizyOQDj1C3zIfe+gnx42l/9ey9sGt2Z5duyCPvKsOWMeOnY4PuCDr5AB8knbfdlc4JT6Jh0kF5CPlEYcFwcPkjFi+4x5OWN3/Tnwzl8tjsWGyO9MjOkbgWsw5NYFGyG/cq1h3g78zKU/1JeMkXv+snt4C7zWpd74pAny9sZR2fvg7SQLWZQXsX57TGD+Mbj2i4eLw5h7+xJyS8DJ1HNln11CTtwWtH0Ffv+iUHi4KfLi7aljPeB2yax9lmbYfXx7e30cfK3cj13SHJsXOePtK+A++lrX9logPzfJk0PFAX2M/375N8yv9MqEMYM3fZH8W2OJvKD2hMsxcJtDuooPLiOn+L5lLgveEPEp3OYKlgMz8gx0wO3H3n08a4Xc94yo7hXwXy2Ch+mtsX20mWzgDv50fMVsGvNcsTHzUPAP349nNlzFjhfc45IEfu9m92S8DXJmYaawfI7/fe+9kIMt8vd3qXPqwGNXLjor2CHnDSW2d4D7nZYrP3wNqyu3tPVRcLHKyKVfmL9/dE74N7joIWWJ5utYXtXosyXnhP5DZef1nz3ytx3aeYfATcV/P7/hgM1956qFo+BjipOrKo7Io7yp5c+CWxIVJdmckF+S0kzUAn9WReW5hLnSnztLluBJjqeevXNGPkb51NgNPKekbSHdBbueoto3IeAmfM3HvW5g+Vmy+VQSOOVtfntNV+y+zzcV54PPGs5nc7shr+V5cbwe/IgV+9g65qfY8yo7OXc+1/eMpcsdebLQA8UxcLbSYsNsD+SX4298XgL3Vdj3wMcT+WaOljslF8yL3O63el7Yvi4WOMQM/vXe338CN5E7L/9rPAaeFx12ehtzhtbPN+TAey57O/d5Ixd2LjuqB+6U+yGr4BZyRqn7U9bgjjQhgwG3kfO7XC/2An8smkZr7IO8zELzdjh4efORc8d9ke/Sl9B+DC7h8OcmmR+2v+L5BEvBkz5IFw5gftCVfc8bcL6Yoa+ld5CbiHMt94FTm4/Q3vXH8gn/iYkpcO1BBQWzAOQ3E9SH/u6sTwmFm1gg8pp214F93Ds/FxLM3B2E/MLB/BFO8K/rRd0jmLu9WJgVB/epe0BSFYxcnPr8tgr4K5dukfshWO7SeM50CXy+ztXsSijyPR2SZ5zAj6ncCD99F7nmlw9WAeA3Kz9U7QvD9lHNrbiH4BVFd8fGMX9ZI/cuB/xxX+reF/ewfMjDRvUCvLf7wOmYcKwOlQ9pdoD3q3+7bBuB3MnuWDIRfGNsf4TMfeQJ/eY/lsCDCEkV9JHIUwdLlKl4iIRAKp/BacydX3PkHgFfGKnd1RiF5bS+cloR8Bx7g6MJ0cj/Wdr6K4Ab6ahqOzzA8l6x3OoF8HjRBHeFGOSSu2U8roH3VMkkH45FTl5n+ceH53/fH1j/C/NyusLQB+DOEkmjTXHY3L/AwfwUnOqWOul/D7G81/Xy2XNw5nkD3hvxyOM7wwzfgzuefa6skoBc/dGd7a/ghbtu2LImIr8f8LRkEfzS94C7vzHf/W7NhoIX+lv4dHZbEnKbRl9eZvCguJzmtGTkqiXis8LglpkvvnmkINcgslXLg98y4yXR+A859ROZ+xfAi63HWbke4fs31vYa+ItLa1JrmG/+ZlX3BZeesLzQ8Ri5CsuYWAx4Viary9NUbB9tjPBkgetLHQ+/lYZ838hh1hpwb9XYTJ105AH7olg+gAu5qdXxPcHmbB+Bmwh+8ZJ+7wbmb31FTy6Df84ome3OwPadnrXybj4iQWfWbFdeJpbHHn+6wgqu3W92+M5T5O/yIkNPgsuRlwhfyMJy7Ku7ZefAbZl0FYSykXMfb/1mAj5XoWhIkoN8S1qT1Qn8s0fotU+Yk4keMQ8EJ/t32KcoF/ltM9HsBHDx338ig/Kw/UL5cDl/5/h5oTSTfOQ5t+Q1GnZeN6GgRKQAedu/M/k9O+83zLuBvBD5yfHg/VN8O3+PE98xiDmFM6vPBrjQ+62hsiLkDrMU87T8REK+aeXM3WLk/pkK9rzghdXVq2YlyC8SP/6UAh/1oyITL8Xqaq7SSwu8U+vpfuoy5GmM81RW4OOtEcyjmLNlBDzxAr967yVPVTnyiEF7+fvgXqJnj9+vwObXntKpdPAjV8gkrzxDTu+vnVgJLvacUe50JfJDd85rvgP37nJV3leFvF8/i3oEPFzjsOY45hKq5p2/wYfbKPRrn2P7ItvrPyoBIuHtdxnjB9XI9Z4vOrGC+8nXm9rUYP22uUtNFJz2ZrDl2VrkR4/QH1MBdxCIszrwArkZyYuDpuCX5qeuTmHO9rqN4gZ4uGOI7cs67Dw5hO0QcB8ZO7uH9chP/+HYTgGP33xgd/0ltn/JHChKwRnPb9sSGrD8Rsd9sBmc9U25DWMjciM7FaEB8KxdBdY/MD9lMKA6Bx6SPXn59SssX7ENO5IdJRI8ztuZJ71GbkGrm8IEThl17KLTG+TdbpIdx8ELqcUvKDVhuS42ZrcSeLGZnzZzM3K+SksNE3Apbhq1ecz38GUnOIEbrn6Rb2lBbnvcaioI/LvHjNSjVuSFh5Llk3fOL332pOtb5MpCahnF4KrEDn7VNqxuy92pm8BPkWewsr3D6mqV5dYX8Db5ygNLmNMoKC78ApcWpaJ89x75x6EpZzLBnd83pfxJa0f+nHb/ChP41xT7nx4fsH3E/zxIBPy96u2R8x3I914bO3wOfA9jWxdnJ3Z/2WMrL4LzPzZ4tYo5Q3yriQv4nZusZR+6kAfTBZOHguspcKdnfkR+6+vb6v/AGx5ejfLuRs58LtGtDPzF7vHb2j1Y3oiaP9UKzn4m1Y63F/kX0v7tIfD/XscZ/MWc75fqx0XwV1JNch/7sDmeoJ5PJUQkrEuJCOb0Ix8/NxTOBh5l2kvv+wm5+bltV3HwTOmKDb3PyKeHn11RBz/j+H5c4As2j4y3TCzBxSJZ2rcw39wcMvYEVxbLLu8dwHL1IT2L++A0a7ZJ+YPIw36aO2aAr7hd9vUfQq7TRhZUDW4kF3vZcBh59G+l9A7wi4vrSse+Ij9cydE8Dk7Fm8S/awR5pWHywh9wVWeH3Z8xF+Is5aU7BvPFznOmaBS5lJnNZX7wi3mV74KIyBP165/KgCu/PZpvMoZ8TaNqTh982bQ7TOQbcspYPYXr4IlbxTbk48iv28c98geXU2pQHMT8NeetrQTw3qZdHGUTyLM3Ke2KwLkOef8N/Y68QEX2yxvwdx85+00nkZuqsukNgGtFbJSITiEnqOZ1z4NTD1Ddo5pG/jl69CKlMDwXGChf/or5I9vmGVbw79HPTj+bwXLjIZNAcfA93Pr7w2eR35h+xHke3C2Tc8LiB5bneWLfXgZvzmavPfUT+X46aa+bwjvf66sRRfML+fJqvHC08M7/m8u9TMTcjDNnNgv8eZKo+PM55LF9TmV14Ld9Z8gj55EPm/7y6wE36ezsv7KA7YttPoMZcC7usezTi8jzyJlPkhyH55G9nJ77fiNPfv724GHwf1z3lcYx9zAT3yUCvmuN60DtEtYn5cxXzoG3ckx8jV7GcmmWyqIpuP3J7vyrK1jO+bSw7AY+Xj/tcWYV629s5iQR4FQXhQh0a1jeex3JkAEenJywexLz+t2BIjXg3/YLddetIx+SOavXBR6uM5Uc+we5VXa9zyR4/a8PlnZ/sXwYQVmyBZ7kO8gnu4HcXvzI9EERmHcPaH/QbyKvnV4XFAbfXeNQOo053e+n7krgvBFzbg1b2FxIYm25BL6YlCQRv41ckPMquxv4gLvt2vV/yO/2+fiHg7OXXaohkHz/f2ffvDr9BHxkxN2bcRfy0hHOizXgDHHlp39g/quprLsLPN6UYfUVKfKwJUb9KXDajuRniWTIBar0BrfBD3gr3HAkR+6ka2N/6ASRQDq3V1iRAvnSXn1SEXCeV38nD1Mi1xZjzlQGT/CnyfiF+Z7d9erm4Novz15qokJe1n/2jwc4H000fcpu5HXfUsoiwd+tkrx3pkae6/XZJQu8mSE+4BwN8okvK5L14P6LKpJH9iD/qrtK0Qcuxcn8Yx7zVb7B4R/gdCdp0lv2Io9Kz6wjO0kk/C1j1n+0D/kauV4mC/gHMVVy1/3IQ1MnY8TBxZXjqlRokfuWXQ3TAK+++deGlQ45Z+iHUGvwhov+jL8xL7TiiPQBv3ubs/ntAeQ6MRb/PQQXvP7VNZUe+RnD+2WF4I8rq9jdGZDHrOd0NoGX/ch7r3YQudvriuUhcNrU557sjMiXV0u5l8EJxiMcy5gfJaab7BUlEp7kcbx7dwj54ebgRF7wGxy3XdMPI2+eMRuWAW9W/8XkyYSdJ1lYyBD8fpV343lm7PoPLfs7gScssNhwHsHuY0Hl11Dwu/c+Ua9ivj/VRSkNfIwmr7idBXmCOH/5c3BSihjdDFbkelUD/F3gHOTRv73YkDNcv581Ba6VkPFQkx350wQZIRIxyJ/K78W5OZA3Bc5VM4GbZ1D1rmF+0iNTSxS8UOKiawcn8v+eXfyhDj4Q3bD/KRdW53cZY63AZaRPF3pzI2c89VnOB3z36zcq2jzIr5E+WX4IrlZxeYyHF7m8lGtFEfh4Mp3PH8yFWDW9W8CTSXoYuviw110WVRkBp/DMKsziR66/m5d1DTw1MEzxtgDyiFSev7TiREJF+e0vOkeRt/0VJR4V3/meBz8nPkHk3ra6nQrg/XkPdm1gvskf0HwJvC20LP6jEPKKoDdv3MFJKkb5c44h/9HI9C4S/EANa42PMLbveEM+Z4Nf57ZT0zuO/Mg6xVwDuK5Pw2d+EeRx/ul7v4DPaHLbbmKeuEtffBFcjCtuqfsEcqNmdiuaU3A9QfsCck8i/7OPKoUHnPLPwz1+osjTePd+kQHvouVL1BdDfln7BIcR+CudVxxHxbF+2O3q7ALOrGiTt4W521Jfyz3wZReGk72nkHf9vciXCa5i9f55ngRyy+OkUXXgAxnhMnckkR/s7tzsA79Yrfva4DTyoWOvPebAlY9xKAtKYesQPLhMJQH9LXT57Tbm3OysflzgJTof1fukkRsohO07C+5CV/E+/wzWP8XYci6AC+mmnPc/i/yj1KiKM3h6Yui7CzLYuiV3zoeBOzl4qQrJIj+U/PNJBjiNkUPzP8y/+565VAfe9tVavl8O+bPIWpZ+8J5wy7oCAnK2fQ7f58CPjZlLBMhjc0RJt3q3JJHwzN6ixFABOYuXfSw3OFcxxF9F5C0zL9xlwClPXE0lUUIuNaFoYQTe5XWN4RPmPwrI9G6AN9I43Ss8h9334G2NCPC1G66bAcrYPqo4pZMF7nzC08VIBbvOO7mXGsBX2m+OHVNF7i9s4vwF/MwHb/1dasitd6lF/N553aqbbz5hXqboXbL3NOTYfR6iRerIcyRmB/nBv110Sg88j/wORzqtAngbu/VeYw3kdsrJmqbgwWMXvIU1sfn481OsJ/gnfsXxXVpYf75kNvoA/LK7kNZnzEl7BSUKwJM09j0v0sbm42P5h83gH8Rn2YJ0kAdvZPwZARcqexVirIvtdwmda3/An52LmRXWQy4ZrT7KIEUkKHqa6JDqI3+nEWchAh7TwvTsM+Z1FUKTauBCtR8Ziw2Qz1Ed9LIGv9XrfzPoAnbfY3T23wFvSOL7YmyI3D5mpCQZnDH89enjRsi1tN4YPwN3ETJIJDVGnr5nc3cn+OPtgaXPmDPTRb2ZBle4Z6hbbIL8erpXCJk0kTCs3lIYdBG7nu1abXbwdy1HKU0uIedxNeGSBpe442953BT5axmDTQPpnc+VtVWTmmHzLrtw1Bn8YRE57RfMNRes2sPBefnFbIrNkctcud2YBe41rvsiyAL5jMxSXSP4ms3l/SaWyBvfdr4aBP8lcvnK8cvIeVX2d66A+zTqPCO9gtxjs2Kc7gzMr2QR8i+YU55o2CUMznh206DYCutX3KJHVcHTBGoyg6yxOjyyz9gKvHrkyoLxVeQUpgbRfuD1xHWZ4zbIpQUpOpPBvxX73iO1Rf65jedQJbhk68+ez5hv+ZXZdoE/yVdjLbbD6i2yqHEWfPTzg6tB15CrSzNzUZ4lEiI+vi40vo787tu1CC7wgwwji8L2yAN81LdkwJvYJyRJHbC8kULrbQJe59Z7+zPmIVc1NtzB16IKXxY5Irfi2r77AFx13uFfoBPyfAZBlkJwU8aD8sbOyEX8O6pbwSvvPPUXdkH+Mven2Tfw8nzmhl03sP7ZHUazDR5y0GvjE+ZkhCevmGXgeV+25nSRK3JBidP+EuBNGaNugW7IJda0VPTAuxt/FBm5I29v+87oBE7KOPz9mAfyoF//ft0Df81exrbLE+vDeamdWTI7P+e3u/AJ82i5V9WvwKfP7Yoo9EI+vXgtfxjcztSvIeAm8huUKU/XwXOODC0aemM5s1Ev56AskaDzj5n32C3kNZfjy0+Cj4dKG5LcxvrScasWTfAXQtKh/ZhbXasfuwZOac9UWeCDPMwwizJUdmcdPo35+2J5+DTLqQzwrVz3/YZ+2BzU57Z/Ca6UNictdAfrAzMv8gbAJdlVr/7D3FRucn4FXP6pb1SfP/KbCdkEejkiITMvuio/AOvzon+TRMBv5fsO3wlEnmf4ff08eBWnCumFIOx+nbtmZQfOFT7LLxiMfEEhpC8Y3NL8+vltzHfHnNF5Aj5z+I1jbwjyv66RPfXg9OLLUXmh2PwS8rEYAKcQ/Ffsdxf52CbV0gr4G/dvH/TDsPd17FQMPQGeT6NSZwXuYXX+h0TyBPjw3AmqLcwb8lwmNMA96FO4e8KxHOUb+OgauLbrF5ncCOTCNadNQ8EzQ34Z+t5HrpP6kCcTPLjls5NeJPJh58TlBvDPRYkh/FFYrnNR6BwCt3wm+N8G5mZjCWXr4JV6MSUfo7FcQZXwiFEe8iHJ+9fZD7D14ZF/IAZuevpT7+0Y5B+8k+/rgDO6VE7oxCLnUE+PcQS347i6zBuHfOWTYVo4ONerCdK/mKdcfVmZAz7dJkHX9RB7v6c+9zaBy5QbsWbFI9e/l7VBBHdZUBG4lYDlw0x+4W3wki0KUe1E5L9bLGxYFIiEbZ2H0jxJyPvEtXOlwM9YzMmvYx4lsrpoCH4w/ZBqRzJyvnVjZXfwQ+F7NDNTkD/p8ciIAc+K+6Bz8z/kS/+0KEvAl0Qv6ms+Qn7gzYR7OzjT1zIDrsdYPVw6MzsNvk7da7CK+cm9utcpFYkEfZFG/fZUrD4PCyzygNc3eug+SUNe3fgqUAE8S3xJ0zMd6z/K7CyW4Lr/pNXOP0HePCv/0hd8MElNkSMDufmi4LX/wCXd2M8uYz763yBLDfgJsjqxd5nIx49e+NIPbtvIJpj2FPn6cFLqEvgFFhV29ywsJ6znOBxQIhLU74vTq2VjfexlkOIJcPvg7+RsOVgdOgpzaynt/NzDdHUR8y+q2TQO4BTD8ZOtuciNY+Y27int/H+Q2P5HechvhVGv5oAfbdJpupGP/L7z2noz+LDwx1LlAqzO79aSj4Of7zvw6Egh1gcO6DHvOgd9TPhg6DzmtTqNkhzgGnmfnJqLsPsSRGEuC+7xwsQwpRh5xA/eSFPwgP6Us84lyNXa2Ztvgfc6pHAqlWJ1ZbVMngyeP29EzlSGnWcpR/s5+IHe7smfmJM2nM7oA18Oo257XY78HFne5u9zO98LtJWbWIH1MfI/lw8oEwkbwsV3HZ4hT94l3HkCnIuE6ap8JZbrZBTPaYO32svKM1Yh37ci0+QITjrCyjKLeZwjm8Z98Jb3VcsNz7HrH58Yygf/kkHV8bAa6w//xXu2gX/qPZB1rQa7vz3HmabAJbp7b8nWIjdsL2+iUCESCDRa2vQvsJzfyuXNC84478s1hTknmb+EEnjpvNVSXR3ygTfvN66AD/tsN8XUIy9WpmwP2Dk/mc5Dm5dYnbeLPU0HN1wxuHKmATltol5IA7jL670itI3Iz05YO38Ff/7J+8845rWr9lc2wfmzkppqXmG5d981cxZVeN5JvhYZ9Rqrw+tmVmfAK7h/GFi9we77efUbF8E3ytiPnG5C7jV/IswbvK2cdHRPM/KRlAO5SeBqDxMziZifDZ/veg7u3zRwtaoFeejW+12fwNXL2vkiWpEXSGbLrIAbvnX4bvEWebiHf8BBNXiO9qp9Kt6GfHv1Uof4jgtVXt79Dnn/lhSPAXiorinrV8w/th0JcgNXMSr5VP4ee92kXbOx4Ofzih7cbUdOXzB3qRxc/ZmhqukH7HjCeN9H8O7xvK0THVjdJhONF8AVc7IryDuRv/89NU6rTiT02WrYDmBu++Cv9wnwpNgUppIu5JeKmQ/rgDvEPXgX9BH5oUiVBmfwA/3Ct4y7ke9yCHKOBmdouSEg3IPcPbxToAR8qONSH0kvlp/5hWc7wJ9emvXvx5w36HHVL3C/T+xCBX1Yfx7kjNh3HuZI0VrPnX4sb9x4YXccfETF47bBJ+RcgfbaWuA1dPGcRz9jdaIpJucEruRh1LKJuSc9w+ko8JahF9e6v2B5mG6/dDG4dvkrmpwBLJ+H8Z7rOL/z94N2hbcHkZ+vNDb5Bb6hVXJeZwj5/s95nvs0oH9Ox0/zDCM3EWF+fBz8adKR0HXMN9bz27XA3zXLcXZ8Rf7C04zcGXzrC8mLjBEsb4yLqkSDC8te1vcaRW4fcCy2BPzQJbOZ80TkJffPf+8EN0xevsMxhvy5UoziPLjR5aMMy5jvn9rKo9UkEsyOrGW3fUMuUxnPdBLcX+Ty6dRxLP/PGMbqgheTW791nUA+36LI4ApeQP7PUOU7cqUws7RYcNpE8fEjk1g9O2aJVYCrcZK4zGP+XwXLxx7wxzRX/zRNIRdKafJaAueptwhKnsbym3kq/0EtWM9H89ROM8j5CQWjp8CN6A7FKMwi/3r7R4YhuGVA98FDP5Cf0LFy8to5Xp8reRbzo39pFZPAfX6SH2n8ibyldoWjBvxnpc9/D39h97f9INUA+MMDoczX5pA/c3Ze+wN+6hpnksw8tn9HyRaPaBMJ19m1GA4sYP3B/NPSWfAnKTTR3zE34J36ZwZ+hGBC9WIRuar7acY74L/dJfyjfyPPDGsTTwenT81YsVpCTpn+yPQVOIHjsf3pZawe1sojx8DpLHlH9qwgV+/Y+5ZUh0hYeCWtS8T8jGUxDS84d/7Qq8pV5Bdn442VwV/4UJ8MX0POUNRcbAue9/hNqvk68ndjsvvugRe4UNKI/UHe3bbLKx/8gkmfB+VfbF+nHZh+D07/4tjIIOZL6c7WP8F51/eolG4gD6A5Mr1PF+rK06MoeBO5Iguj1wlwm4SrB0y2sP1Le2WfHrjMiyEP4W2sz/P8K3YDf6Yy8InkH/KKhAXjeHDxVLPT/ZivZkjueQ6+zmGTmE8yiXJdaM/bz+D0or+X/HYhN/BrifoDbidGpqtPipyvlc6cRQ/maWhSAT8Z8s7HVRKy4CGRJWQbmO+RqzpsCS6bp2raRY48bpKOLBCc6YxV+VMK5DS979YywbmfblF4UyKnkx9baQaXOcd8UZMKuaS9ydYkONudygLO3cj/RZ3cT61PJOiVd/5dxnxyyv7oMXAJOTv1d9TIjSt3a2qB/wvxS0ylQf78xJ5bLuDV3+m+ue5BbpToXhoLfuYVp7DKXuTBvErzz8DPehR5HNmH3OeQj9QncLkrz+rmMHfJY72/Dp42eWpX037kYYcEp44YEAnh1ieVk2iRf32coSkLTn46O8yBDrn/zbA6S/DJxrg2wgHkN74NiQeBD5itUx2kR57N/KQqC/yKY7/yNOZ7LvbLvwX/qCkYVM+APGDYt38GXMdsqT7mIPL+0ST3vRdg/q6LrV5lRN6TJsByAlwlYOq49CHkJw2Pf9ADl9Slu7rvMPI0uYK7HuC8rUXJY5g3JqafTwI3J9S3VzEhP5qyn+kFOBWz3FY4M3KrwPW5YfCDZaLHLY4g/xlh0fUPXPdKoqkYC/LTiwq13IZEwsVwh3uUrMjz5p8WKYM/DSl7Noh5yuvQ/GvgHqVXv5awYfWQOV16H3zSJowimB05Z0dHYwn4FBmTsDEHciE/yYFucJnvjHrHOJGn/+LZXAb3sQnw+Id54sWko0xGRMJ+olFiLxdyrs1Yi7PgYmXJz3O5kSvRMaZZgG+dVO734UG++JFrKhBc/6Xpbx1e5Ey3aqWzwedKh/bx8iGPVfqa0AZubt0ssI65qEP0xg9wMjFG+Q/8yOuFOu1pjWH9vTqMngggn6lPHRcD/y/8p4PHUeRXzbZtjMDdW1391QSRf1BaXLwFrnPXLJZVCHlV8c2wVPBK7qKMBcyz++L4X4OvL1uWNR9DzrCk1DUBrmF082WyMLbvlCIDd5sQCYXpi22Ox7F1IHGSFQb/IdjZIy+C/Ir1FKku+DOtvUMHTyCPyd3sdgf3sy4cm8b8G2VJQRJ4YlPBZP1J5EF1m5F14Hyt1LMxosjj/814j4IfaXr746oYcsF9N53JLkLepp/4ISWOXJ0920kAXHKPxezeU8jnHD29NMCvUUhMETGnFp+55wLOanLtW6UE8psFu7IfgttdWhu6J4l8375X76t3zm891mt2GvnDeL6/Q+Dn3vG9PymFvOm2uDjJJdi/400N5NLINf7MevKCS1PVlX/BvF1d640aeP19mqdFZ7B+km3K5ARe01oeF3AW+W+Vw96x4Hv2lwVckMH2o23gWBW4XTW501FZ5NJyjy4MguszlRpvYn6SyrZ7G5z7bon8RzmsX/39ZsxjSiRQGJEezSJg/USfYVoVfH04f5+3PPIjquuBjuAdLlmLGgrIeekf8sWCH7Ne7OVQRP7k50RPFXjYnpjKJczTaOfDB8FPvPR/+FYJ29eVFef/gct/aLzx6BzmDKKMvGZEQlGkjqaLMvK7Ng4zauBS+iL8SirIhSes3jqB+9ww3T6kinz8LVNpHPjomU99s5g7qUc/qQbPJE/Lb1BD7pvR/GgY/BNnhW+cOvLa3S+f7DKH3P7tgLbteeQN1d6l/OBzj+rZzmggZ5xaf6sBzvCk/Mc+TeSELrnZG+ACCgvVY5gX52kcSgS/1H0zqEoL+ZtCTs068NJMVY1wbeSf6RrvE8HXKS3pzXWQi9Md7aewIBLGdF5+PqmL9YdvZkePgX/rvPKIXA/rJw0Wobrgav0a5l8wpx4R+ekJLlF5m61IH8tL3p1mj8D/q/815G+APLxF7vMrcBlCVrLBBeSZWwGmk+DPI1MNBAyx400SZ/ZYEgluK1/2bmDOsj8gUBS86J1hc6cRcgEjAo8xuOdFhtuZxth9vNbf6Qtetkwn4mWCPMtXKSQTnOGHFlH9ItYP30cotYHzRb6LYbuE3D68aO8cuJJAMGERc9bF/FGGy/Bcv+f2z2ZT5GTSIfXS4Dz3ipOSzZBHJ8s8tQSv/sGq4GiOnEO172Eo+J+Qt9MECywH+mpGF4JbZRZFM1hi/cc5J64bXCquXWwK80XD8Sdr4P9l8vS/uIxc7zp5LdsVmNdclZ7RV5B3jNIMKYHfM/M9aGWF3G1hjdIe/HqGT7mENXKFng8yMeB+suWa1Fex/VUf4fscfMOPdXIY88PfxVqHwX+V1vuV2SAfCG5lJrMiEkQ5YxlCbJFLdancFAR3Y0nJNbZDvrBVOaIDLjnXK33sGvICFXpdL/APE/LvtzGnJFq2PwY31xg16bmO5W2SdN0m8GGnku/Z9si7Rz6OzoAfTi6+ccsBucT/MXXf8Vh3bxzAZZQdWYWshlFmIaO+tmwhSqIiM0pECJEVmSEjSUWyRyQjFJWRSvbqvm2VTVTS73r++Z3z7/vl9XXu7znXdX1O9dxP6c/rLLYkIodj6Jf+JSz/F7HyyoP/kVYIEnBFvsqwp+UsuOmRpq0rmM9THLwZYvvf3xPdiHznhtzgjbhqPvgByfOM6ZeRK90WZewE16hwv+N2BXlfhAB5HfyecSG9mjuWQ9bZGvjtYF/02MI5riLXZaJ5pgUutPBoywzmbJsr6a7goRFnfGs9kLtTTKQkgntbKy/GemLr0e3JrAFPrdGwt72G7Rdra8ko+LkZj345L6w/RzW20V0kEdulW3TpvZFnzdYtSIG/GVSvHsbc1K2B/xT4eZkx4dLryJvUWk8Fguf459wN8UF+7eFQeg644Nbovxa+yHtq16c/gEuyJ1884If8+Ad+lVVwyoWGtk3M+baZZvHak4h0MqNU5w3kGZl3GTXAP0v5JGT7I99oGw1yAT++j2b5egCWixpVt9wF99lackI/EPnE89LIavBCHp8i/ptY/Q4e4hsF38y3oVvG3M65pYbOgUSc2bxw4W0Qcq1kD1tp8KDTwS9Tg5FzJh7iOA1OQV3H7HoL+eMU+s83wZU0dlxQCcHmSN+v5Fzw8+eCytlCsXVGUDp8Ar/xgI5qCvO54X2q6+DWGnnG1WHIzzBe3CfgSCJK7124Hx2OvOR4I9tx8Llh6clzEcht3ykxXgG3tuKSOHwb+UBtN3MKON+pHZ7bIrG+fTaOpwGcl1OoagBz++FLMtPgOwc1fxdGYfty5ZIpixPcH7/fUAy6g9xKPy7gCDj7nbfXzaKxHPK4v/wceD6FUIVwDPKuPJ3lCHDH6Jj535ivJZGVS8H5vBhEOmKxek95FNcP7rN5zzorDnnxVPTcFmcS8cPp0F3PeOQrFU/MxcCb/gw1aycgD5Wffm8Czr129yf3XeQ7Hp7W9APvf2Cxbw7zY3t+tz0Gb5QVNmlMxM7tSqtVO/jZzS3+iUnIS7U/rK2AMytNZTskY33JiDJjtwvcoyV62hXvIa9TcdHXAlff1bHIlILczYBu62XwlGMd7GTMdZ4Nt9wDL/zaLfs8FXl4+My9BvCVo+Nm4WnI9XkkrsyAl6Wtu1umIy+/V2Cy4xKcZ/kd0eL3sZwjaU8ogb8xlcqhyEDuyWklZwf+Utqk7gvmpQGx8tHg9qzenTkPkJulb1GvBBc+9GDCJxP5/szyU1/BxXrf/tR/iOXD2pzrtK5wHo4u0AhkYXNBeOiRNHhp9i62ZcyrWE72Wrr+9/95UeN7+wj5r/wdnCHg+b5OwqmPkXsc4LQpBGe0j5G49ASbU43nynrAu41LDhHZyJ8/XN5O4UYipn065HbkYOv/89Fb1O2/P9ealp/AfC/V2owJeETQhlzVU+RD35zsb4D/GKI/HJWL/NK46Gw2uNaVHZLWz5CTBY8EfASP89khIp2HzYXupF2/wKPk6Pmp87E6ldKoF7pMIjrH19l6MVe9qHFZH7ytcXhrXgHytOx7ol7g+fRVazcKkUvuIeYywQM2wiaNirA+s125rgWcp0vni1Ax8ur7scnL4OId/+pWMR/8o+i7+wqJOCicm/O+BHm8NeGoDW7PoxadXopc72fGOXfw5cl2d7cy5A4rFrbp4A3N2maq5ViujnS70gweuVx6mP058tnp0fB58KF8erYpzF+rVj7b5Q75U+zE/MsKLIc0z3Srg9s8C2m5U4ntb04Aoxt4jd2TLJsXyF+xeRmkgP9MLvaWqUIeRnxOeQ1e4putR/MS69uW8XM/wE/qhu7uw5wu6YUh11USsV/FcDavGqtTAc2XquCHk/9V+9cg/3RQSeIS+JmwlDDjWuRS39MKk8ENdXca76nD+mTURflG8Ds8AVw/Mb9P3G/7Dm5/qGXo/Svk0XIqzpwekK9a1zPT67HznGXCpgquwsN43q0B+dPirrcu4EtWlAKqjciNE96FJIM/fj8wxPYaywM+Bw0awSuTE+9NYp6dSC3wA/zMPwnjl2+wecR+4i+nJ4lIUny29U4T8hQRtglV8EM3KWusm5EzbNHvvQQ+sE3RVfot8vQPG1/uga/RGu2mfoec8dX+wdfgndUqbT2Y76Bs+zEL7m3G7P3sPXKjlm+0u65B7mV8IXCjBbm5erikBnggt+J7w1bkuZlZ5y6Dsz9PdhVsQ17JpHQ/DXxwezvLCuYjtWajzeA/bftL37YjvzI0L7MIfnqyzjj1A/L8dKYYXi+YR+3XZ106kNeIFi9rgzfo00Uc+4i8tqLb1gO8Kt1NgPUTVr9uwSMPwAfmnlaOYV50q9K2FXyf33Pdys/Ib+3xWF4Fd752dyiiEzmL/8toQW8SobND49KZL8h56yNlDMBlwpp/iXcht9k5Tb4ObkfDFUrRjfzGi870J+Czb+SZv2BO16Z37hN4yer+pOwe5BFBZpIb4BYdY7uu9yJ3opujFbkO97gg1/u6fdg643fNmoILqL3h3d2PvFWrbzAQPF99PG0e8+5TB7rzwZeqPnK+HkBuvcrW3wte3hUSlziIPFj37hSVD4m43kJJ6zCEXDcsj0IK/EHLcX+FYSy39FjutQI32ma+wDCCPNUp2yQCPOy56PkRzEcuRUU99/nve3HffCz5ilydmfkjCfzmXkHlWyTkfn4Su5l8Yb7oquecJCMXGZ29pgCenC3CLDKK9e3LBv0Xwf0cPnn8xpzNxFA7Aby1QaG3fQz50crF+lfgB0Ztj2SOI69oOaL+HZxtw+Ce+wTy5pd7P3P5kYj3x9aW1SexflJe6aQBfm7A2pBzCnnQ+DyjO3jt5q2cacwdfT5XZ4DHDV7cqJ5GfiHTyqMV/PxDKuPoGey83UqQWwP3v2GVZfMNm48mntR7b5AIhszLC9LfsX0/QjVsDL4ip3yU+gfyfluVBn/wjauN4T2Y//p3sCgPvDRo82PuLPJ2hdacXnC3+CUOvznsPR/dlUftD+f/0/3TBvNYvzrCUyUNfufSRhr/AtYHzD9/sgYvu8sysIh5wRvllSjwKx59nE2LyGMLrIVegksqmJ5IXkKudfTImUlwkR03bzsuI5/Lan3AFkAibA9Y1yuuII/byjWrAv689McS4yryPff4tNzAX38W2/sV87jA0Wfp4JRVXKalP7H9/W67s+W/58SVBd5aQ35g25P4n+Cz4b+fnVzH3tvfxxx7A0lETMvcZ+FfyIX/2D05Aa4dFLP2C/N3YtNHA8GTBvq4238j31clMVoA/o7ig9KDP9h6OhTiB8D/8DlbXtlAnpVKr0d7E3LOuWIvtb/IT2k82i4HTppLj2PfRL72a8tXW/CeVYncScwzJ8RexoObZDrUVf3D8oAM34N6cH8OzU+RFFP/d0GG4ehZcN3gtySrLcj70xwjeIIgj23/PidBifwU4+toHfDCydLfFFTIz0Z+y/AGPyLNTf0F8xRirCobXH/nHoZsauTZ5oUjX8Bnm9q2e9MgZ/qts50ymESM27Dt0NmKXNesWlcK/CPrL1aebcjrYv/FWYPvorqxfRbz6h7u0Tvgv8+k09fTIr9pynSsBtxPw5wqng65slTfkxnwK+P5vy7QI6e9d4Nz5y0SEWybPnuYAfm30j8JWuACM3u+bmVE3pdnzn0NPOa+Rkcf5uX5MQWPwYeebFTnMWGfa+SJTif4jIhe9g1m5KcvpS1ShEBdGElGG25HHhl45YkkeNOx3KsCLMjdVUUuWIOf3F1xcgnzpMHXYtHgh1hPyjWxIrfzVt2sAVdVCWdP3oH86LHsoW/gsp90FxzYkDudnm/eFUoiEiYftCiwIxdaEqg+Dl6QG/yQgQNbp7TSS2/wLKVVz2HMn6sQb3LAzzWtahVzIs88LtHXDZ7jcIsziAu57FW6deowErGpkzFmshO54eRnocPgjbFqRXt3IS/9EHHKFpzj7FWvn5gzn5BMTQBf6j6g/J4bOU3q2/FG8F18bv9SeZALdBgpLYLznz7S4MKL7e/O9vsC4TDf824HHN2NPD5Lmc4YnEX2vOJ2PuQP4h7dDATfz/tqmYT5UeZ/lMXgl4Mz88r4kd9TM40bAb8VSW0TIoC8+eRDEeYI6CfmP1jMBZG3X55qOwruTmfeICyEPL1K1NcVPKRJxfUX5ttPOR7KAP/4LJ+rbQ/yxWtP1trBlweS6u/vRf5L4evbDfAzPpt2bvuQt7Ttyjp4G/J5zvg2lf3IF0xOhlmBFwRr57IKI5/+meB1B9xbcr/WGObcX7+414KrfggkPxfB+o/Mrus/wINumPqGiSJ32GV3mzeSRHiefchySgw5XK6y9cGF4y4+ET2A/I7S9g83wH0OP5L9g7lqs/u/AvAdzieb2g8ipwgYUR4GdzAOMH4gjvzpHfNQpigSUb+Vd+CyBPbzOwf7joJLFIifV5VE3qDlKu8GftembGKHFFYXBHPWA/B04pnDOObfReo5PoK/c2adqpDG+qpoUNK/qP/uKTO24TLItR1OCkjdgX3nkRk5dQj5H9qjlefA54amT4odRv7isIJFPHjoeaa2P5hns+hRvQavfPvg6AdZ5AOvPaqXwD+J3i98IIf1JffnN/ZEk4jvT6l5rsgjZ1Fj1jUDXz7bG6p6BKsXy2ChUPBMR7a5HQrIvcisWyvBr46/MB3H/P6fupVJ8PrZN5UVisgnO8LnuGLgfvdQjitcCfnwzSvLx8GZdm2/dkoZ+U85Hypf8Iqr+p9EjyKP43zMlw++r2VW5A/m6xrzGkPgpfJLAe3HkNtOWXsxxcLc7D/VmUFgzxdaLjsGfq1FYM9lFWzfeQt/Xwa3FNJxV1FFXvUr2iALvHLzUy2rGvJ3I8n5neBfr7+gGcO8duE9O3Uc9L28P3rP1ZGbmu27LQtOWXw/NlQDuZxEIa0DePGD1E/mmtg6H52/mwIee3eRWUQLOVuvumjrf8/Peaz7C/P1ObPWP+B7loputWpjfYA52Us8nkSsRu+oTj+O3OIMrYQN+KG7H2Yv6WD9bb1gIQ78CvdXvmO6yJvoQl+9Bt+mrGWwXQ/5bHn8vRVwIRZKHxLmOdxdfvsTSMTLItZHpfpY/zlv4HIKPEbS832wAfKdhZsXI8Fl80R+mBoiVxOYcakFp5eTYNpnhHxshMl/Dlzx260DPzG/yeiWKnCXRLwaFtF+Z4w8vJ2+0QT8jDDvuZQTyE+qTSyHgGcNW3k5mSCXjN+UfgG+yvnttqIpVr9DFn4z4DdnXqcxmCF/qbX0kSeRRCi7TOYOYR613CFpCL5Qavq88CTyEpr5tJvg0l/o6gLMkVM9NGUtB7ce3/bGyAK5/sTfhAnwJ7/13wqcQk6sz/HvTCIRFAf63i5i7vVHuEoXXD4yt+n1aeS+rHln/MFHDtbV37VEXm/lRV8CflKYo8ruDDbf/0U3jYK3RRcXylph9cW7dJsj+b9/Pxb1cOtZ7Px0P7Y8Dn5p7mlcL+Z6+k/k/MAXt1MH5FojT3i8srsIXPzHA0cfG+Tb/iaxkMENkr2Ndc8hv+V7m5n9HrhgtCzPeeSfjn7i0gZfyhzh+oH5A0eXg77gn/e6rNVeQB7Ba6VfCK73Wror2hY5h99jbxJ4dKR0kbUd8spstSK2FMhRsU6hkhex+V6nuKAFzj/Wd5rCHjtv43eO+oK3JAcc+Iz5QSXF5ELwuZrTv7MckH8YVf9NAn9l6/T2qiPyyxt5Tuyp8H4yC2LVnZBv5l4Z1wbfGihkzu6MnWe6ZGc/8D621l0TmMse490oAqdyezRQ4YLlWEfq1FHw0oy8lLBLyA/kGqlyppGI4TKyqYUr8lN8/1Z0wI/XaTGKuGH7/p3tuT94cHtf4zrm4pKxAaXgP+aTPVsuI3ekv2o2AV4od3Nv2hXkXBl1srvS4f5efPezszu2zm0eQgbgg06f/JSuIv/neJc7CDzdQ3YPowdy3lF+vgpw08HGd0OYuyfsEp8Blyj2dCr0xOZsapD27vuwj3/1aQOuIU/kOu16AnyqU+eJoRd2bg9kPQgFZz3mfJTfG7nYquXgS/CfeoVf5jGvvRu+Zw68jm6HQ8N15Hf3i3gLZZAI85B7a3E+yEfbj/aYgwe+Vw4974v8fXaLShR44ygFi4wfVl+f2ivrwa9+Hb1HeQO5lcvxIyvgVa1k3i+YdycdbRZ5QCJulGw8eOyP3Met8OxZ8ID7MnyeAcjX2FK3JICrpAWnaQQiH3+ypfQtOFfFdzaOm1g/IaZd/oDvWb8UOYH5KqWhjFQmiTB0o9msCMLWw3iY+iL4CaHnbmHBWK7wSyenghfyXR8yv4X8imtoawd4qauxtnAIchuK5VdUD+GeuEu5eA3zcyYTr46Azx9QZH8fitw86GyrK/jbIh2vlDDkdPlW5Ef/PSffqdsxHKvf2TGqPvBTB1KlFSKwvHdxRZopC/KqfG8k3W3kAtKxLmrg9X1C5H7Mx10rSrzBB7j8DudFIt+i4LilEFzj70iIbxTWf4pzz46Ca8YbdOrewepr3ruZ6xHMl8FmXp5obB/Ze48YgO+d0LL7jnmi8rsXweCRzz/m1sQgtwvRUasCTz9h8y0qFvlzWpu+WfCUNysiVnHIlSZpffc8JhFxrLF2B+OR31M4Lnwa/IyaeMYG5sb8fKQY8Cyrjs72BGzfy6OeNIF/sXenybiLPJAtwfM3uLgDh6xrIpYDLWWMpZ5ArrB9ef5oEnLpbFd5e3CDC1ZRTMnYHNyuKXYfPNTxb+kw5pYVL0U6wTv90rsL72E5sKxdhjabRLhkyf70T0F+bU/g8WPgxiOtbIap2Pvf0+nkCW4qbynBl4Y89MPb5Dxw5tJRzTnMqY9ZfySBTxnZWr5Kx/JPXCobVw7ca3YOusTcR8751cfWAPw2k46vdQY297Uo6m+Bcx0uCJV4gOUQkvj+anDjWKqYTczvtlClLoDfFTK825GJzS+eW1zCT0nE9sXIpAcPsfyzVJB1FvzF36pEtyzkKQ7B8ongJnq9ccceIS9Ppu5vBXcaGr/N/Bhbf9rhsC25JOJ0OSlwBHO1O2zEEXDtzparRU+QZ4U/oroMLqSUeSEgG3lQzuiXbPCn8zZGhjnI+ai6i4fArRbpFfieIk964XuP7RmJSFTN5J/DfHG4K1IX3JXMQ/UqF/meuPHbQeCdnwPHop9h9Tidl1gF7sHW2nA2D7nBP5H8efCenF9p4vnIi+dtPuzPIxFqd5iu/sX8Rafxn7PgH99Qa30oQD7UuHE4CdzGYIQzoxB5QI+dbzt4pkjq+KUi5BOikW1U+ZDDTx4uVi7Gc5eriBL4wOciL8YS5A8XWeKvgos+2KY0hDlDiidNHnhb1dGN/FIs15FTQ8ngTgLG1X5lWB1NBrHuKiARl78cvaZXjvxXvfgzY3DeTzTiPM+Rh4U90I8Av8b+lPwN82yT7j/14AYPBO5WV2DzQvlL5Rr4MRd31chK5PvPpvpLFpKI8uspP06/wM5Vu4ixA/jXN4mJolVYrs4KlsgEr9e5qPAL8z+rT3f2gvNuoxt8/xL5NCmVeXsRiYhaD/BJqcb6le9pFm1wZ+637I41yOf7p3YHgk85DhfI1yJ35dKSfwG+/PWN6rY6bL7oXrOaL/rve6iuf+nBnC/SK1q4GOpa7vf5nFfI+ed0W23AfzIen71Wj+XY6OUdKeAVv85d02xA/ibQ3eET+PM19d/sjdjPDza/oy0hEc+2LPiNY76/avGQKjjXDrvf5a+RKx/8me8Drrcn89qtN1g9GnZJloGfkXw4a9KE9TG56Ppv4Aek7C8INWM5YV3wzJ5SEmHPv/BlEfPVwruUVuDhP5XVGt9ic9NlrCIR/FORXmHcO2x+ae+49gFcX5WH49x75B6nBFW2lkG+zcnzkWzB5tdzVi4CnK1vfWATcy338V/e4Jc/UCt0tCL//SRtugR8T+CHuxltWM68KDs2Ay4zceL7pXbkU+8qZoTK4TysxRHKH7B6GeXdOANuX3g7jqED+bFWF+4k8LBNxZEBzAcSH2t0lP/3/faPRfI+Yv3Notl323PIvYZvLvt8Qn5euLNWBTxOKaX8+Gfk8bva6H3Bt2QKrnB1It+uXmpXDu582Vp6CvNXVaGtP8BnHxm4VH5Bbh+ro7y/AnKL5FxWaBfWrwb/vrQBf0tPdJt1Iz9e9lg9Ffy0GEGztwebL8LK/Z3gN27NSi9jvmH03pexkkToMOiced2LvI3QEdECf1xpHBTfh1yCoYEcCC7nS/XkXD9yxbfiT1+C++meeyM5gPxbyN3ry+DlPPZfNzHnO7N0UvwFiZghs61/GMTqwkqPcABfj3NkyhhCzpGReTgLPIDXlv/SMDaXpRZkB8GnvSkllEaQ84oeU+eogntusqYC/Vfkt9IjrYzAGVwOqPZjHpvWE3QbPGa6TDOXhPySwp7yN+B3tgxqeZORC0e5L/wFt899pKE1irzq0WuFIy8hH36kJTjGsD6cwBV7FZzbkVFuHPMCN/eFAvAcuwLR8nGsnx//fHYK3LNyalfwBDZfZI70ClaTiG7Duq0nJpE7qzy1sgKf5Du4wD+F1e8t/rlk8FiuQz1zmP9mehT1GTxY9HNV3TRWp0uSsow1JEJZkyblzgzyR2qt37TAt5zp8DjzDfljlqsFQeATlgf0xb4jV3AT8a0FbzjMI/gLcx7XOdM1cLm++0vvfmD1y9esIFML96DDxQ3Js8gFkwoPuIIHKpyIujiHnUNyrmgueGx3kMnheeQ27FWHxsDL1whOqgUszxNDOnx18HljIns+Y97tyXnpNPj5iHN3Hy5iz29ySEus++/7xBr0Ly8h7zz2uesjOIQNymPLyCNWTXkYXsFcYOetYFzB5tr6gqsWePYku90g5nWnn7UHgQs13N2et4pcXSRAvg48PObei+s/kc94XilaB68/xm+lvYZ8zihI+nA9ifCtE/3LsY7cu6W04TK47FpF2jjm0YuUVvngh/teHy7/hVyg7xrVFHi4vlFb0G8sX0UzvBBqIBF0KpbWxn+wuuZv9rIGP/NgdJZvAzu3Dx+rpYHPmkz5zGIuwpfL3QO+fNyBsvYv1p9zv2yyNpIId5fz4ZGbWJ43FJ43AJfO7qI9/Q9bP/+T77fBm0n1YcIU0//3WjG9lWbwWFqhLT8x/xuwm47yNZyrrb+9m7YgP3iAV+wYuHiz1vcESuR0x45b+IKXiG87c54KufLbR3GV4K9FFd9JUiM36jzYswRe+WhEchPzoitTwpJvoH8GLSe202Be/CXUBfxSsffPtK3IwzKW5p+C17M7mzltw55/XNN+HJwtraVInhY506v2aYEmEvFEOIlmKx3yh4yR3mfBg7LbTnVh3qkasCMN3O+PS+4jeuSGLnkve8DFWa+tXGFAnpO83ZWtmURQdUwoE4zI9T8XHTQGF9lVF8TEhDxN5Pb6HfC0/l+vBzFvf5b5qQWc52caRR4zcsoLy8+3viUR8iczFa9vR65qHZqtDn58mMZdiwX5lXzzRzfBnT0/PGZnRW5t7phfBx5Fsdo5ivkLl5qG3+BWDn6bJTuQs64bj8q/A4+x2R/Ihnx8mxjLNfBPlg91DdiR336qrVv27r/v8VB24eFArjaWFzcPvvv6oYgZzCXfmY0dfA99O+FW1gtO5BY2WmrO4EcmDrwI5UKe/eJm4VPwh2YHWkx3Ip8cpN43Af6s6Wav4C7kbb1fcoVaSAT/rgOj85hPVc4dOQeeICs6U8eNvCLEvDsD/Oxfnx9RPMhj9BkDBsGfmvL+OM2LvGwX66FdrSTCmmf7tPBu5OprF1fMwRXkT5BWMddeYHidCF59m9z1hg/50+3U9zvBRVdfNcfzI5c4ZxTM0kYiHpyZLrMRQB79Y87TEHzpgdV9cUHk5vVjHnfAOx5yB//B/N+oRGAreKaaoF2LEHLy+c/JtO0kIuviZbV7e5DLa7VXa4F3faPafXEv8j1pAt9DwGnKh5dl9iF/4vBR+A34+wd/3lLsR/6oqv/Klg/Qb2OskjswH0tWeUuAa1z4d/6+MHJ2RhqRAHCO36OiziLIXwuKJNeCP5XdOicvityGnMfyB9x/xaGIRgz5UbOYewodJGKMY5vLF8wTb30Ruw7+4/ronqwDyAOu+7VWgvturPe5HUT+UyncaxVcKlAnUlkc+WDPmsThjzAfv3bK00sgnz/RsXwVPPfPXXIv5j0VDM2l4NmlUeHZksi5GEofLYBrfq0S9ZBCzmNZf0fyE/SBC9zvVaSx85Avf8sNPJyr+AKzDPLArTxhheDFQ9d+DWLO5+mc9AM8JMb1zrND2Hn4s7/0wGfI53RJPN6Hka9nn+h3Bh8W+56jIYu8wec7Ux64ZIebxA455EsBq4Yz4O8/8pV9xZyx7sp9kU4ScYvht3ShPHIXJeufDuBbz/4r9D2C/MSWequn4A2Z4vuPK2DnhCPx4yT4t6JbaRyKyPfeHDHc/4VEhF6kYBjDfFMrc+Ai+OkHj7xLlJAruvdezQb/fciJ5K+M/BZNBNcEeCOFqabeUeSO9GXv93ZBbhyxztl5DLllmHmYHbhgbhTVJOZ5gV7GT8Ct5fqsygnkkRs7hMfBaW3Vy26qIN9BJU6/t5tEOGxrpzJUxdaZ2vzLFvzOxpUTPGrIB5qGVx+Dn+CRTp/GvCjKa3MM3EKZgVyhjtx0OY5tbw+JoD+yKXRLA+s/WyRk7Xr++94D2vPGmsi/VxvaPgFnEhBL362FPGjfSsY4uEDtuc/fMD+oxT+xtxdyYEI+VZU2dh4EPx+5CC7qSycTehx5TR19ajZ4sq6PlYkOcgO+DzST4AkDv4L5dbH1H98VuL+PRLRSRGb/wPyUygK1A3jtXZGml3rIW+hN7z0Fz3PqGgnTR76SryY3DZ526s6qqQHybSINZJF+EnFRzohW0BA5x632VCfwR308XHOYb290tM4Dr2ZfFKwxQv5+IknyO3hv/QeRCGPs966YMR0cgPxWVHLg5AnkYks5a5fA31emiAmZIP9KujNXCD6SH7JvHvNLTduW5sAjLnjw1poip3+4k1JqkEQMFNluv22G5RavBj538Co7s82TJ7H61YOrLnirhcaMkDl2fgT7/ZfBb56R+TSP+Zk/eg2Hh0jETvXd5bUWyG0HT2/3Ak8gUyXcPoWdqyYqlxfgNXQTl8xPYz9fpftlHXxvTL36Hkvkv15KHlccJhESqgmcC5iLtZW3+IH/XjkzUXsG+dpsr0UduLcfT8ltK2zO7s1Y2gS3yPnoZX4W+afL1GkqIySCT9tbYY819vOdzIbB4EySrOvzmPMZ1DE3gctJ3i+rtUH+jswyRPOVRFzZyeV0+xzykHj6Sm3wUzU3eczPI/c9m3//NrjldG+L0AXkhVorsW3gjy/zeM5jvs1wMpaJBHlSUJe71hbLjZ7B943Aq9sv1EbYId9X3VIRD96pamd58iLynQJ1g1/A3xkZrAjaYzkh5ywzJ5lElDXzRs5h/sGgwOAUuPfVzzw1DsgpOPNS08Dr9zo/C3dELv7PYmkInCJ/QsbMCZuzdC8s+EfhPvJFrUrAGdvfQ+9bzoNzXbqpMIs5XeCd40/A69QyKl+6IF+doe6aBP+1N0Uy7BLy/Z4yl0THSMQ+0uUnJq5Y3uPlZL0EflF1Dwe/G9afx0peF43999/PlgZ9xzz6LVXQIvgD0Z3fXlxGbt+8Xf/wONSjjoVhyBVsv0a693iDO6m5Fhm7Y+tntaCtBo/9eop+91Usn59J/LUBzjK788IM5v+qY9aICRIRJldQUeGBXEtSm/IWuGU4K02wJza/Kl7tegv+Mk/b2PAa9v4Nfh6lm4T+6WJwj9sLy+1Lc2764OWJggOTmF948qwgFjxx4fXOcm/kX2yE1zrBw3SkTAOvI78j5GTIOQW52snxtp4P8sWZy2WnwRu4nWu4fLH1lyvvyQCP3n94ZgzzPL9PD0ngHubNO0r8kAupHDywdxr6swfvkRs3kEf9NX7tAC6tfeT0cX/kOSWEfT54WyqXF3sANjfNf3HOg9MffhlDwtzgW0CXzAyJUBvheVwQiPy50+cHXuDx546VX7+JPPjT4rVq8JFg/nqNIOTd3OTTm+A9jK/esgQjz9Z4qKv2jUTMN+9sHcK8XUfqeBi40zWJltxbyKn2J5i0gh8f/fvGMwT5SNdbJ+bvsO9fQqtVQrF8eOJjtAm47PbmAsYw5ERKwatkcDmr6rQ+zPUe22wMgIfctAt5Eo7NKbcZLf4fJIJB7bXTlQisLy3rPrAFD7Tv1FW+jfV5iVDKXPDz5XeFaSORn9+V6vEDfHGWmqILc57i8EWpWRJBDO7tyozCz8mJG9fA+VSWHrvcQS7VtM5WDS5GdrksH42dc3n/qk3wluA4OaoY5HYEyUl9jkQIz1j/6sBcs0tIJGLuvz+H6X6RFovcYUFzuR28mG3F3T4OuWu0bhvrPIngtqkSlonHzv8T6RJz8AZ/wf6/mG9IbmSlg1fISIS1JGDnViT/IQm8U2VYIukuNtfCiIJ9C9CfncW/nEtEXqle3eQM3n11t8fBJOTLp3i/FYOf4ilgXsf80yt73lVwhf192W+SsTzgmnZGcZFEKJ18eCT2HvJE66qngeCTTlTvLFOQH7vdSNEMHrWP4sT+VOS0k5X29EskQkUnqWcRcwrX1H4j8OmkRou6NOz8cDqfTgIXbr/VFZGOvZ8+0ckB8MsFA/pm95E7F/YHCixDzvnZ1MCfga0/0ne/PfhzF1Wp75i/dGQayAf3bjVMr3yAXO7Y3bRF8Ped37cEZyL3pGRylF8hEZvqXHYGD5E7Ffip+YMfHv7YuDML+YIMSfQN+Imz7DzjmL+8o8RHt0oiNoLHLhc/wuZFSQy/EXgeo3KD72Os7hIHxJPA71XxMmo9wfqthIDOIHiTRogpazbyH9fOuQv+JBF/3dyThzCfsLmf4wD+aWW062kO8vDRrulC8Ht3e5k9nmL7u0x/ZAXcg9ZQ41gu8oIIIlFxjUTosWheo3uG5YR7Hn9vgn90qMnqwryNPdfjHfi1tuKWzDysvn4O/2RaJxE31gRmnfORi0hzhpuBTz1lYpQrwOZd9Ym96eARKZ77txRifTI0voMMPhdiptyO+ZHbPaEiv0iEj0iBwb0i5FVVgrqXwXWO+VpeKEZeS+vJUwmuF1R3QbwEy1euHb82wGUKPO3XMZcclJ5Q/w3vx+fBxTel2PM1M4cjwU8+VjgXU4Z8/SHX2GfwoTEN89PlWD8npa/u/EMi+ldeae99jtxw/SDHOXBybM7hecwvDLapPgU/6fabt7oCm8v+Pn5z4JY6LylCK5F3fZJ7LbsBv7ef/NXoBXKrFmpOf/C4vqvV3FXYek6PezWBL/51jpvA3M2zZ5zhL8w1ypbzJS+xfWccsjEFj8mIkvCrxt4D28+pNPCc8NKfmjVYPvHf5z8KLnRdoZqlFjv/ii78Ypskwna/kM8g5u+Pvu9wB4/VcT6UU4dc1udo1Evw5BSWmSuvsH440ma25R+JONjKlqZUj9WjtecBHfDPiVe1tjYgP/1Dfns8+LuiA3OfMF/25qLoB+fqOBqf3oj5EtumAAWZSM19Kmn/Guv/hhJ0TuDkZYcWqTfIlfwcBEvBzS/6W//BXM65QesX+O6yybnmJuS/GRR9VLeQiX2xj3zjmrH+eaK76jb43tLiLWfeYn1A9C5NJ3h6O2PIvnfIVcM8bbgpyURbUtWWBcwrzX3fXgB/3VDqW/0eOU1UtmI++Mkta3MhLch/7lirWQbnZgi3NmrF5unIZV1lKjLhGX+uZVcbcukhlskQ8GjtYMlxzC02BmI+gJuSvsUVtSPvF/+owUlNJgKYU2evf8D6hs3cNhvw2yFRmuod2NwPUuh7Cl630pDC9BF5ws3SigVwQdYjU72Y9+hbPFSgIRMxUfNSjz4hd+w6kBIMnsoxee3SZ+SPaaQy2sAfn+OulOtE3tBhV8y+lUz0745apPiCvGN3W8dZ8P2bciJtmNeRbP/kgKuU8VomdSE3pZGSXQB/+k0x3KYbubyP1A2FbWQiwyKuWLQH+bio/adgcPFnPF+WMX9B3SndDi4WO7hY14t89KfnQw5aMiHxsoMhog+516wRrw14Ss+ygEk/8rPdttm54LHJOtK8A1geSy9VWgKnyu1QnsSc5aDiVyU6MpHzMki9ZBA7tx6bsaHgqz7nNX2HkLvY/DP4CC5775KaxjA2XwaO7tpFTyZc67MUmUeQ3/xcvXgB/MrDf+J9mHNKefcWgHdPhfA++oqcbdSj9Sf4LzWprZdIyNm/lLaqMJAJGhuK77Jk5NFz0n2R4OTp5dZ/mH/gX13qAteMpstpGcXy4YkNbn5GMpG7Tty4O4Z8/5Xjxk7ger1JBmfHkQteHEgoB1fopuMWnkCex1M++hdc+UEaeQFz04AvxHEmMjE/rPWkehL5bW/lvATwPILpQsgU9t4W5wSHwRPcfnAbTiO/1/M9R5gZnGOsg2sG+R2WwwpXwS2/zvuTMde5/b6vFvyCF6tI/jfkAWJ5odu2k4mZEK0Pnt+xvjHcT5iArz6Pdj32A7nJnVPbMsCNSiZoaWeR3+UXHpoCjxEwyPyMecxNrVcyLGSCtvi1VPocdv5TXhT6g49Sa9bZzSM3N/LLew++2dqpIbGAPD4m4TkbK5lgyXN+t4a5w7HNNmvwSF0GzcZFrC9p1y88A882K6+LXELOH98jtArueOW8tNkylmOpNS+o7IB60WR/uHsF+dUIhuIo8Pd+rXRTmPvRHKDrBdevDnYrWcXmzoUnV4TYyIRarlKHz0+sP0dcn3AFj/uxLKK+huUQq1yHl+DD4nkBjOvIg98dXqNmJxOZO85+7MY8oZgv0RicVpWBJ/MX8jd/7I/dB99tU37e8TfypgTmn1PgGTvMHkv/wd7DGc6aQxzQ57f8+PobczmlwOhA8NGPPlxNG8g1dum6toGz793Qif6L3HrQ25KLk0xEPHL3Nt/E3psD3Ulb8Nn5vkz+f8g1H/+zKgZ/VgJTE3MfzzNX/4CvRHiTSylm/u+3GnYnaXPB++ct+O27BXnFJe3mu+DT2z8wa1AiV7bupySB99L072aiQr7Tt8vg4E4yMZXVIdyD+b5shZzr4AfDCw5mUiPf1UTH2AwefMr9oCMN8sAazUDWXTCnqniEpbcir7089+8seKFOHu9vzHc0U8fkgfMU8TC92YY8MfO26Bp4S7jbehQt8kNj/p3q3GTi2vWsETM65JUeoxFx4I8Ey+t30yOvO1ylPwyevPdR+iTmr+ko+MR4yIS9kOvVYgbk7D3VG17g4zU7NK4zIh+5MTP9BrwkPp5FlQm5IPnOKAsvzCON6V46Zmw9E9kzZ8FDPDjSOjE3cpXdzAN/Vs9lkb4dubelssA6uPH7WWY7FuSxsTVGmrvJxNrB5MaDrMg/z5XfSQAfu7P98irmJpb7e7+C84ef4nq1A/l6OZukOB+ZuFF9uTqMDfnt4RuJvuBxzaanjNiRZ1Rd2PYe/JUW1SIXB/Kn+9+Gc/BD7hq6EULCfJ42l8MWvHRP/Y5nnMhTVehKS8DZa96nu3Mhv1/07fQmeAuRwq+4E3nrIQMWfQEywWB08AHlLuQfSqS7UsG/ht7iasN879bU7ClwtqD7UXe5ke9nDwmRFSTDPfTa7zM8yKlrlq/cAs+UY7bby4u8aWDa+TP4ZVG79z8w1zC1u8ovRCbunPASrtiNXInaIdwVPFNXPcifD7nsh8VnNeDcJS3dmvzIU6JpBuj2kAm53bT7mAWQZ+59zHUKfOHgX7cezK3c2y7kgG/3fVr+QBB5tUlgzQo4XybNsr0Qcr+n9YLqe8nEJTlOcck9yOUNo5PiwTkHes+vYW69b4aTBP5zj058/V7kcgxd2RL7YB8LHWvC92Hnf9hQzR+8gkWWZLQfuY6f5Y82cJnJgn9cwsjVG9cec++Hc/iuYxcJ8yvRwk5O4Er6qRK5Isi1674pVYHTMTMcuyKKnEdCjXebMPSrJ0LHj4ghZ6mToDcHL88d0ac4gPUr7VKabHCv0qP67zGXeNbKvAL+yvyYVtxB5D31fvvURcjED8mviqfEsX1xaNZJAJfq4hMTkEBOupHrRwb3HvjDNo156+C+GilR8H7P9WJJ5DbnjtHeBC9xiOj1lkJ+Y3LpwkdwWx7ZUkIaeaeORhufGMyjSJ/QbTLIv188pOoGLqZnZvYR872cjU114E+W3uy+dwh5mezcSaYDZMKB8x3Z+jDyrMyaFSvwRD2rh/tlsX4iIZZVAM4mHHx6DvPfdYpnNsDTjsozVcohfyY8J6R/kEzc2+Nb4y+P7buW5no6uI6rjp3mEeT/llUGv4NXFD3exqSA9Q360TYlcTLxwC88uwvzNTvR1ijwew7LR+8rYu9nkKtnEHyJZvKTrRJyNp2i+QMScL+bOWt9QBk5f9gs5w1wqpzTk0uYH7rUo9cOrv6h17H6KHLbLqcYXknot4s9E0HHkCffyx25BG6ac/KsDoE8Muauch24yQ2TjywqyL/EH8hlkiITZTTtSn2Y9/u4C1qDb3xpeJSpinyQzz63CPzGdUlqBzXkP07RH/0Hrh7CeU5CHXs//6y/GknDvSbCs3IV8+rvdrEPwfvZj2+r00DessxrsAj+rDrWJEQTecx8+E41GTLRSqeboqeF1WNlzmICuFTCtb4d2si38fv2jYHHjbGwDWBeTUH14fAhMuEUzX086zhyXhm1j6Hgf/nivR11kDfcPvK1B/yMsEeWpC5W1yOTG8KHYQ7K1jf/xFyHxlDEB9yj12O8Tg+5f7fb+VZwofuxf0P0kSfs1c3lkYX3ycrKqm+AXOs9aeMS+OXmn3xshsgPJB+yeQWeq0kID2D+xFb943Y5MpHOPyOaZYR8lobV4Dx4GGlpv6Mxcg6TjL4ycHuOM3ySJ5BT7J5xp5YnE1v1BFh+Yu6ktLrTHHyFSXWj1gR5X9DrD0/Bg77VjN4yRf686UTcL/CWS7FvdM2QS/c9Pqd3hEwUCFQ/YD2J/HTcy2MZ4B3xip59mDM23hWbB8/Q266RaY7879FDe1UVyIRuvxyzvQWWJwdSDtwF72gu7jx4Cssnzs0qE+CT6dfjlzGvbXhpK69IJnZNxupWn0auWuKVeBu8WGLl701L5KsMfzsHwav/Pc7XPoM8PMeAX0IJ7jVjGabMVsi9TJx8boIbXCCtdmG+a9SY3AnevdU5If0sNn+FaSz2KZOJT6cVRC9YI19YCRvwBhcf168WsUG+xNPr0gqeJfFYcx5zdbef9LuPwn2/UbGt4hxyy7qJF5fBA/bt0LtxHnnoQPbV1+BSo8LNaheQjyXLK3Ecg3tBoK8CnS12Ht6kszqCc4fS5n7EfETqy2o1uIrvJ5ZkO+TDxSNTTATM98lPHlYXsf7DUj91DjzEiPazkD1ymr3XVsvBZY9eE5nBPOzlFtZtKnC/k+X0LXbA9ivroqIl+OSrmeZrjsgX87LcC8F5bOYYlJ2QC+dUVlKoQr2nC+lTOiPXvJBNZwbO+ick7D3mwUVuzk/B87aw18S4IJ86zdb/G3zgcMeM2SUs3x5KPGmoBu95V9kOHlfkV+mWvmaByx+GKsa8NU/8+iq4G92iyVM35MUT2nw66nB+dus4u15Grh+h2nkf/P1yk9+hK1gePseTuACexmIb/gvzK8o9thoasC9rgtH17sgdZq6qpoD/E6OIDr2K/OfhpYM/wCckNsL0PJBf/GG2X0WTTDSGsvuxeiL/OJQungguWqbt1Iu5wJd3atPgN+QST2RcQ77zfv9FZS0yMZS4fsjWC/lx6s7kOHAZIw8WUW/knH2l3ePgElOUU3OYV4/5CClow9wZyX7x/DqWe5fF/KPBiyosg319kPt0Nk+Qwd3m+LVVfLH5a6BnJXcc+gndCs1WP+QlErWkSPCOsO5XbZgHqO3y+ApuPPXaPf4G8lJTW7bDOvDe8qr5LPyRHxNPb4wAdz1R08wbgNV1aqP/MHiM5Rv7Uczt7Hq1ZXThHqr5eUtuIDbXLIb5w8GpEsaSXW8i51buohkCD3y1vu9QEHZ+hmt/SemRCZLO9uJ1zJ/RpPwJBc8t2yfzKhh5o789wyA4v7di8a1bWA7cLioqpQ+5gkN/v04IctkQklko+C6G0/eYQ7H+lh0dMwBO32ND2YX5XiXpHkkDmEfL1g6pYVge3t5+IBS8jGT21joced2MdewAuB+3Cv/eCCyv3v1GIWVIJhJ281+dwdyg6/LNUHA3+4VXRbexnOw5zzQIbuheRuMZiVxR2fmZlBHcv6pttRSisLm2RDIJA/9WSxm0iTnlOTP6IfB/K9EVb+4g36HX/FHamEy8HaYaj4hGLud3+HE4+LmlC4yGMchdXjwKGQbPLnwmwRaLPOgti+ehE2RCM7JHtw9zzsuB7rfBsymnz2XEYfXuPX/jK/jfuKErF+KRn8o5nyxrAs8pLvMVTsD6f2NPXRS4Qq9jwA/Mw2KMlsngNsF//UrvIk/80i53xJRMUIhd9vBKRE5nbhQRAy6pXWunlIRcebB3ahy8zmTMiCIZuZmIw0klMzKh3zx6uBlzPcrNT/HgClwv2SLvIf8mnmE5DV7UYPfDMAXrk5c1l46dhP6mMP6KLRX7vHfW7iWBF/2SjerDvEP7ud4PcNvrp05kpGH7Yn+DSd2cTPw5qMt6IR3rk/nGw6ngvjF0bfvvY/NiULpmATyfLSngO+b9VQJPtS3IhMCh7wdKMrD8v40v6wG4uC39F88HWP6JEnu2Cr64a9FDIRP5BI12vf4pOJ8fMpg3Mc9X9Bx7DD6/xPz49UPkbD/KOP6Aq1CoS4dnYXU6RGVucppMeDofean3CDl7h8OTZ+DhObOKLI+xPB/8lWKLJZlQFD1f2YX5g1oXl1PgbA7xB1KfIP+nzDReDH6m60ba2Wzkzs1NztvOkAnhCUEqoRys/3Pd/WcNrs8UeHESc8nl648qwZ0bEhrznmJ5idsb8hOZGHU/w3U5F/kjg5gd9uBfE3vtDz1DLmNQ/7UO3PA+Tcka5h799DUcZ8nE1O+xpZo85LfK3J+4gu/Z4y55Mx+5YcpKejO4enj+RY0C5HG6iVm7raHPp8Yn0RYi74k4UXENnK1NsL4dc98d4r0fwPljLEfjipDn5ghv228Dc8RU8Z9ZMZZ7qdU0A8CPRddz7CpBbv7tRnwPuEn+9L5hzI9w9X+XOEcmnvM9l8wqxea4joVZOHi3hcChi2XYXCDWW7+Cf3t7QEq0HHt+Za3RkfNkYm6wa/8s5ouXskfjwB9t5eYqfY7lZ4HyWzPg8ZW/KK5VYPsSMymjdoFMUJ+5On6kEvllT5WFNHBW2+DGDcypYxtrlsFjjoqkNLxArpbunKRvSyZ4T19wDKlC3ntS2T8bXGCvpMzxl1je85P32ARvYoxeZahG3v7OytvCjkys3/Qt+4j53bWC2yXgHnOrjndrsDn+ViSP7iLMndd/d1rUItde+NR3AXzFOe41dx12rqRyOGrBtc0KLo5gfkrt2TkOezJx9bsR5aNXWM4hD7x0A2fO8Em5WI88552S4Htw925hEdEG5K9L2pMFHcjEK4rTpT8w/20ew+0H3hPJcLikEesPnkEFXeAuX4+WeLxGvqUpR1/CkUzMOM3tk3+DfHlz83c4eEQST9JvzHW/Rr4gg2t9ePO3rgl5Gp9esJITmRj3m7AJasbej5fKmSTweYbAGo23WE7OdFGbBy+bimGhfYflVdMP8jrOUF8+bDZtmF/WtVd6DO4rxvA05j3yiKPyBn/BN+w8p0+0YJ9rQsXVwoVMiCUY7OFoRc7061Z6KbgsT5JFH+bPpbf0MVwiE4xOOqHpbcjfar0Usgd3HHcssG5HPjZf4NcA/nZ1sV3wA/Lr40Oj3K5k4hLN2OQ45g2DOqeugV/wU/z9tAPbxzsrgx/Bvep/bnX5iNVd0bCrmBuZUFXgZJL4hJx3jYY5FJzX+B7jIuZhu91qv4KLulynef4Zmy+9nD6Kl6EvLb5Y8+pEzjBEoZEErqxjNqbwBTkt6eDuBfDz/XrvNzB3S02n1rtCJn5ty8ip78Jyb53B72xwSiWtgOBu5MyUGpsU7jB3+jSNNHuwnMATyGL1n2um7aLtRc5T/0/qBbjRlOpwK+a6WW9tdlyFHLhHKS26D3mSV9d9V/DX1iHGxv3IFZZFp9+DP/7LQ8E2gFyr7Z3qXg8ykWRH8awb88SyomeB4I1rknopg8jbrL7yD4IL8DybtBxCbuVv+UTOk0w4yTj77R5GHv5OQD4BfHeWOx0J89NzMn2z4Lda6+IejSDPexIfrnONTDxhNWC9+BWbgxlHNbPBzft3RwmTkB+IlGfd4gX3mhCJzRnM6flufrcCv+3p71xARv6OfmdXFfgdRrpPbqPYXKCkaGP3hs9V9FFCegzLq5VHPl0BX6v+GLaMeVzv67F28KDEbX0V48gFd2bSiF4nE1vuXxO6PoH8pUiHbCj4VZmd9oqTyCWqjT3J4A+qZh9tYM7nL9x41Af6f+xK36sp5CuCprxp4IKcB2iDppFPneoK/Qk+URgrpT6D9b3P+X9NfMmEUqWACc035BvKA7eKwVtjhi69wzxC59xORj8ysZncePP2d2zuPD1W4whOK9ERrfcDm1/UXpeawUfKKBKZZpHbsG47KHQD6ijE4u5HzKlvLP0KAM+l+BwVP4flw+UjPYPg9mEu/qbzmO8bbDjiTyaiPPY5ciwgl2rof5kE/m3fX71ezBWuyjYuge/+syCSuoicZmauxygAzpvxv03LJWy/Orf+KQA/fmt/B+8ylicH/MXpA+G8Ldglj2DuXWLm5gB+fqXK4uEK1g//RdU1gZO+C+y4sIr8zrW9PEI3yQTHofTmPT+RG7ziCw8Ep9y//+oE5lZhfluGwT0FGrieriH/4qMUqRgE/dzfodJxHXmKho1gCvhiKreh2C/k1glTb1fB3T72jnzH/CFzt69pMJk47ZPhWPgbebadyNFS8DNLTt/d/mDznRhl2n6LTJATlRykNpDT6VLNXgIXqmEZWsT8h8SdgVbwnfVTOuV/sXWm+PeIhEC/+v2qxHMTuY50HykMfOltIovcP+RbH9//NQ6e5+/gtIZ51r02AfVQMtHgLVtTRfENzamqi+ZZ4CzMf2l8tyDPKXZJ+wcun1qro0SJ/Om+kR9nw6Du3K+GbWBe8qbOoBbcbZ63to4KeYQMQx13OJlIda7+FkCNvIb7naIPeK+izg4VGuRP9i697QXPffFOZstW5Pbrd87LRZAJgyOH9V9j/uNoCn0S+Ge2aOtb25Av3Gd/vQxOk/XJSYMW81rKCJPbZCJA7q8rDR1yBU1bq1LwdDFWl7eYDw/JESyRkBO+0J8Pp0f+SixA6jI4bfi00XEG5MHdClId4ItpufJ0jMjTbzkfE4+Ce5ydzs5WzDUHWc7cAb+i0LIYyYQ8JFg87Du4utv+Jj1m5CL8jfW6d8jEtIVNLON25K3m7dvywOd0r5p+wPx9h5E1XTSZeJZ+liWGBbnJQf03juAyD/jfGrIiP8X+Wu49uGNOpef2HcjTDpRVCcfAedsmyPsJ80zO3Trh4IqcZ2vj2JBX+lBNT4J77nU6eYId+a/1i0lasWQiJVR9ipUDud4RzRM54LZ3vrl3Ym4xmMWzNY5MWEVZrSZwIo8PvbFyEby96567KRe2jwPdg83gb6rTJtl2Yp/3RtHnffGQc2JtzbowL2be1hMK7v54oTpxF/KJQ6TpCfD9OircJ7mx9cQo0mslkImLn42vcvAgl2jgVMwB3x0t8KYb87Mu165vvUsmtn0oZEzmRf5A2qLZHjyd/NPQfDdyr+e1Au/A+Xl+3+bkQy6dlBMpnEgm0loq6nowH/PkoIoAH1IW+ZbMj9xxhS5yGty7yWi7hQByp+ch/DpJML+KxcS5BJGfOBn25hn4msEL9V7MT3lv96JPJhNjs8sm94SQ+1YLyLuAK4+MWFrsQR70qnprO7ivq9cZrr3YvguNjB+8Rya6ZqrMejFXDI/6HA1ukPVE694+5Bcj37TPgeeT5aUt9iO3bgvrMUohE37rV9i5hJH3THfPlYCzHTJc6MFcLaiUY0cq5JmRD03JIsjHZbj1PMAbtefizUWR16ezxHaBn6sptOAUw/rS6SSybBqZ6Ayl5+zBXIT+mdo9cN1lyg9JB5A/09UvWwdvMkq6cfIgds6rAqUs0yEnTNbv5RBH/m9eva4G3J86qLkL82sxqad23ycTccs91okSyA9KBVEGgmv/q18wlUTu4P6nmgR+46qiH5sUcqk52mC1DDLx8Z7GZifmp9XyLJ5k/PfvM4d8EqSR36AjKW19QCYOCG2ZOyGD/M9InoQjuAlPiSXrIczPMki1gnfPTdV/wtxNkFLlYCaZkJrM2R13GDldU6x1DHi+7ncPI1nkOqTnUQvgxhfLXzPLIb/KcvWdyUO4Fwf8pevAPHbuHWsFuDjpnU60PHJP9hfOXFkwlz+zBOsfQV7Fo9LpA56d1lPGoIC8OsP2+BD4yi2uoVbMHx0S+nDsEZn42/X5721FrK69bpzLApfrptqpo4TV9eZVSurHMPfb8sVolZGT7LaW24NTUryXfYe5nar81RZwuypzhbCjWL0f3Kpy8AmZuK9kLqt5DDlnnQdvLPiWT02i1AQ2l6NublsCL695yPkG86OS4ltOZpOJexrTf4JUkG8c86WrArcqSe1XUcXmxQlHAZ4cyNsa5cX/MD+xuaYZAL5D61DAKzXk9IOivmTwY7+5NP3VkYsHbNZqPCUTtdk21MoayF/6ezHngnNF09b+xtzzcoIbQy7cs1ZYLr3URP592mTYDdxXwJv9uhbyy4FVlp3g/mYKFXLayLnev5mUfQbns+uk4Srmry2uBaWCXxxr/Vp+HDnrmw9if8Fnm5Kdrupgz3/wYfRcHpkYrXnxXUoX+7wB1541gW9jOGg/j3nPanOASD78/MpiX6Ee8ujU+gt3wBtrtmlc0kdetHHh5AJ4dZbLUzED5IFlJeZmBZB/pnmoZjCnM3xmXwV+oJPT4qkhct4LBqG8hWSiONPy8UUj5PpBGWU3wc8nTEztMUb+82ja3Di43PeKvaOYy4tpKOgUkYkf31pOPzyBfKU3PaEQnKaTP9zaBHlfX9Zv1mKYI6SKAl5T5MavzN29wA0tIlsHMI/fVfNzANzuWjopxQx5kt/HSKKETBT5Ts2Zn8T28Vqi+BPwqJxLq+zmyO8n03+lLYX3cER0pRNzlysyma7g/m483+MskMclMLp1gh+JUB0wPIV86E6qnnwZ3L/epDYynkY+Odcvfx+81EYoqxXzrcc7ZLaUk4nXqf3XIyyxPiDsrWwP/rW47rjWGeQfeLrN2sCffm1nobbC+nz5tJ/UczLhZU/zuRHzcwFlpUn/edDF24FnkfPTHfr5GzzR9bvCUWusP4w665yrgHuBQ9Lob8xN7lnmN4O/yT9/q8oG+70VlLz/Y9NMoHL69v//KWVMksyzBoWIzOFEKmOKBslUSJKhhEJIkkQUokGmMidTqRQpZWgwZR47j7moJImG/77rvn+/vddv/e9ad73W63Wfb/d5ztln789Z9/ZNLpb2r7HqsmY+7z55C6L3sN7QaFaCsTPv2Qs3Gvxm/dHuLUMrhH5OfUau01V2XtjlXj3vwnumnex5k/UXe7QHeiwQ9o3cfv16pxRLuzYcPGawUJhzSgdV7WQ9YYa22mehN7Wtyv/Jepl11rK4RbzHb/e+PDO1WLpzftVtZ1fhOWp78dR11n1PDunYfbFwjmw7e04njT2nqxsveC30eYsW3tjBuqnNh7hIN2FdjX79vpz1a6sL3tov4d0zsk1rh2vs3OycqaHlLuwbjVpYZ7B+eEPayIdCX6WSfUg7vVhq9zBtduhS3m17j/obzPp7mxtrJnvwPqBqzaJy1n2G5W5vuox3i+pV7+wziqWOaQXhOUI/kmzslsH67dZF+7Ys571RenKD9nV2bq55FiqtEOau3XXxO1g37/50c63QH6U1dapgvc6s0D11pfD3bz3vNvNGsXSo8/Upazx5HzpkecV11pu9Oa5n7MV7n313H+lmsved635/yoT+0q0kayfrt6snZp1bJazzkUU3K1kvyGi8dYm3cG7u3np/1s1iiSwvjdZbzfvgstqSm6wb3p1UJgs95N3o9gZZxdJn38KDh9fwfveTpc0e1oNCTUbOXsv7ix2do6pZ1xu153EHH2EetkmtmJvNnver9xY+EfrXGz1n5rL+aMjX72G+wn+vk12B4S12/pZ8XW61jvfxp21t9rO+pkXe5+brec837PGhlvUheTtm3hZ69LKUwIU57P1xbu+bARt4/1HadWg+6/7VsT1N/YTncYBNlXFusfT7XplvrdBfpk7PjmZ9e4sO91I28p6krn2k0e1iqVtpW83Vm3iPvJgVspT1BYc/2wzcLJxTuoO2PWa9wCEk+LvQHb977ja5w+YHy4aU0/68bwvZcvI467lHxr5ftIX3BVsWFra4Wyxp77du6BkgzIczOqh4sz7Gvk+7t0LvuSV2wmvWvdoW6ERtFeai0Oro8ffYe02jYX3tA3nv+Fe7/hzrrtNdDTS3Cc+Xhc6KtnnFUsZAx+6FQi+t/PPDj3W7Ry1b7gji3TfgmN8n1lcs3PLTfDvvM1b37Dwtn63zDkn3lYJ5j5i45vZV1qu6xMVlCL375qNbehQUSzeOTfX03cH7joPHpwSznvM8cciQEOGc1fTT/cm6/o87FeVCN/fo39KpkO0zrQ/En9vJ+wHdlEa3WHf36mDjtktYV+mdmhneL5ZWjZn8SzuU98kX7LtGsK4TZ7j7ndCHbfQwbWA96GFGz+jdwtwVN9vL7QE7l3/VnLXfw/vpI70vP2TdYeR7Q80w3seUFyibPCyWkh8sP1kg9Fka1s5xrJ/8cLxDcDjvn/3OF7Z8VCxpHffzH7+X951JXyetZT1x+N/iBqEnGSs/fc965cP2I6/tE5477z8rJj1m78XRRcFr9gvrqjK/wxXWpcz+DwdGCOeC4eYHXYvY55fpaHwXeptDmgeCWJ9ZcNni1AHeHTK2elSwPkntlfeCg8J6bvbM2ulJsdTZ7mBUt0jhd/1rNj6H9bRHX6++EPq0Vt0sBjwtlp4nFuTvi+L9XkYbh0jWq9uNezEtWrjv/iVrGj0rlmYNMn/TPIb35Y/j45ex3rLfk+c5Qr9kaKZ4xvpHw/K8zYd4N212a8C452xOdt6XbBLLu+o7/ZBzrBuV3zj4W+iJvb2q2r0olgY38vS6eJj3M05HlvuzviY73szjCO+9Ky//LmH9guNstd5HeW/lmrDL/iXbT36E5xcLXaPfLuObrD8/bbk15hjvB9NnfOn7qljqecXH2OE47w9Clc5FsN5miM7L1nG8n+h4YKPS62LJxnaCT77Qsx9rzfd4/Z//PUvRMiie93Dj9dbPWNdqURk19oSwbhPvTRv3hj2n5au71wo9Ib3R3ATWlVu7RyefFJ7fh3rrO7z9z/xcoO55iveRCwafDGB9QHSsb9/Twtz4qZ/8g3U/m1evPgrd66FGv1nv2Pn1yn/IkTO8Bxx4vzWH9eI5e7bNOsv7xoSYUqP3bP9pULmvdY73wCDzBTGsP1e8Ub8v9HWRr740KS6WpgzsaBGcwHud/Ty/Vaz3UUvyNjvPu4fxwx7vWK8/mBhVJ/QvRwc+niQXS11rG6dcTeR9Slv/fcmsH3dMzfe8wLsxZS7spSiWvJ/cet73Iu9/in6YhbI+Zm/v1x+FfkVVfdBf1r2S3z09fIl3E5VuA1w//Of/p1pyx/GysN7GdTd5xPrj1AmX2lzh/Y6Rpv2Yj8XSg3dV4QVCHzS2etMZ1p//LncPShLmhw+FKe0+FUuWPYePHJsszIE7IimAdVP/u/RP6PXHHRzKWE8Yfvz6lau8dzvaLMPpc7E0fkn2quUpwn2pSBx4h/Utg/V76Kfynq4yOWnwFzYnX7ufXSz0ppNeWR5lPbN7ytzoNOG+GDl/bfm1WDrm/67c9pqwD+u9iVzH+mel8evU03kfHT3N8TPrVZmKv7eFvrA2pbftN7bPvE338s8Qzs2Ujqo3WS9eX1A88jrvWqO8KgxLiqWVV9tM+CX0e1VZpVGs613cFZ9wg/dl09Wqm5QWS7bbR/x1zeS97LqVxmrWm81ua9HjprAOT+4YLrOuP7l78AuhN1qXuWLad/ae7m2XHZ7Fu8HR8qR01n9VJf2anM27XXDnFn1+FEsWP8Z0Vb0lzJ+xY1ccYH38+h+jrgu92eQFskpZsXQ5LWvG2hxhv/q3eaEX69r3Up2Ncnlv2zG66h3rX3Mfun4VenKrS/unlrPrUNh0wbHbwrw3MXf8Ndav1862d7ojzNUDnisbVLD9cEW+qdZd3g0Nv9yPYD1knF2vAqEXn/l9VuVnsbQ2vOpv4D1h3tZUOeDFer/1Z++NyePdKF8j7D3rmzusDqsWevjYrlFWlcVS423W0y7k8/78pcGldNb13pmoLCngfRQNe9HnV7GkIg250LOQ95SO5q0iWd+fOXLGS6HXhdraNqkqlvZunPQ9/D7vG24vOrWadf+9LhsnP+DduY9viw+sn+vo31jlIe/7uu32m/6bfZ++cYHpQk9rfqo+k/X84rv/vB8Jz6/drdAB1ez+OpS7GT4W5q6FHwxjWf8X17bgo9DtDjV9rfaHzT8fhunHFvHu7jowcj3r2YZ26+yf8H5RZ96ib6zHRC3NVn/K+5DR4aaONWyuMPNtdFvoN7Ty+txhXdV0w8hNz3h/2qq5zrC/xZLaaS+3Yc+F6xk+rd8J1sdFzNpVJvSFSjFmbf+x+ar7oNMnX/C++0bZkq2s33KqvjbvpXBeG00+XMn6fZdTOe1f8V5x9bzCpbZYCphslntf6ONSOg17xPqVfrkZQa95t9y3O3JsHXt/6TrgnPRGuF/nW7a4yPqDQRvCqoWe4LY/pEd9sWS19eyyxLe8q+j27ryH9dW9r5kufifs/+OzUxtYVxl0unn397y/MHBfvKKhWNqWuirvqdATB3fRecf6pMcdAkKLeR+b+6LMimRp2b6IgRYy7y2l4/eus/6odcnTOqFbNfhc6a8kS3rztVYlKYT50NUpIZb1t3s1Gi/7IMwPTyYlqSvL0tCbb3brfORd86xl/kbWh9f6arwWurrF9J8/WE+aqQja+4n3SNWlvec1kqVx39r/nvSZ96kTwpfe/0+/1dZJ+Qvv/h53rksqsvS+5mVyqtDNH7TseYF1zdhFzTy/8r7ooUt4D1VZCsu+PF3/G++uBbc1w1j/sCE7/J3Qg3uOPqbUWJZmvw6/G1HCe26fbFMv1tV/da+eWsr7E/NZP2TWXz5x66z6nfde95XPzmgiS+57lw5NF/rzXhlrbrE+ZIzehFU/hPsbE2wzpKkseX6OsO5TJlzng24mJ1jXO3JtWrHQv3vOGty+mSzp+IabHyzn3S1g3qjtrDds6ThoWgXvpO8zo4b1doVWbRv/5H1EWpyve3NZinQ3KksX+ox9H8+/Yt3bLf3GqkrhOmuYVE5pIUuuz8q39fnFe1ZQvMV11n/n5o0vFvpQW93TA9RkaYXF5JoDVbzfLkzrdJT1bwuXxVn95t3W2jVas6UsWQ40slCt5n31QP2+W1k3Tgt7e03ofvfYUct6F/U9y7z+CJ9fVb52sbosjTcxqNSv4V13a/XgF6xfnOa04p3Qm9q2U5rcSpYMHXXk/X95nzly6ut01h0WbZk85Z9w/obG5PbXkKVQ/1VnlWt5vxyvknmE9fq0KqVUoec/C7yj2VqWors1mbaijvfF63q838p679T4cN163p0URY2rWdc7cD//ldAHux0ftUSTXbdbW+rCGngfPnen/yvWw6wydCZQCf/7nfY8mdpGlmokv3H1QvepOD88k/VncZn2V5R4fz3s65lBWux7bg90dlfmPX2s1C+e9ZDfd116NOL9r8vF9PZtZelyTcisp0IfUCbN3sH6u5i7E3aq8H5+REnzOtaTvm02HKfK+9b9l++saCdLB78nNv0jdE+7yP0y6ymJti8TGvP+Ky/G0669LLUxWXZsQRPex0y+PvsO60sjq+d3bCp03Xp7kw6yZFVU0fa+0A+cnT3/POttqhxvbm3Ge/yAlz49O8rSK5X+C0Y2591Pee2RfazvVfP4Vyb0Um/jZ006ydJ3Lc0d8S14X/OsVdf1rC/V69bKSY13+3VqXj9Yt5kYukOjJe8BCQZPnTvLUnLg/NococdnLp74hHVPRfjC9eq8aze6nTehiyz1c9fONmrFe/tblnPSWZ/eU6PDJ6HPmP6tbkBXWeqh4bAgWoP3BbXnE46zHjX6d5x1a963a0R4tO/G7vuFkteqmrynvT48MoT1HSuGtLgm9ITz+e0bWP+7+eGAlW14z33cRWVVd1lqVJIxSVeLd73IPQ2fWD90+Y/TS6HHTdZv7tRDloLfb1qwuy3v+cM+aN9nfcpaG+fx7Xj/ePrWFLOesmTit9SuRuhfv9/depV17+o86Xx73ndO+5XXt5fMjvCVPRZ04H1Yp/G9jrCuN3tmdfuOvKtHpgZpacvS/Wmbb+UL/UM7u9rtrHe+9ynIvxPvk9+221zHevv7wWOHduY9aESDppeOLB1zWVzxTej7vNSTPrE+d7vfgcNdeNd5PN7VSVeW0szuGdt25f1Y3DG9B6yXHpic27Qb732N9H+P15Olf0ENVhlCP3j9SVEq6xfafSjw7M77qoNns/r3lqUTFtXj9HrwrtT4zI3jrI/qNOz8S6GPnPYwr4O+LMXuPdpqd0/eC6/1/LyL9Zwrgxeb9RLW597o1o0MZGnlph9XqoVu20Wa7MO6flX+n7PavBvHqu37zvqE9oWD5uvwPnGeSqlLH7bvfSpz0dLl/XG83oznrNctNAq+I/Scq6vuTu3LzovwXfEb9Hi/+7LEKpv1ZitUU4x68y7Z7lYM78fu77/9mR+EPmrJ3KDzrO8bPvrGQX3eQ+Y6jtQxZNdHt+byFAPez/lsro1kfcnN27HUh/dn/x4XtOrP/o7ayU1XhF7d1/Z8IOu1qvvt3foKz9EUpdh/rJ88t1u7Sz/erY++ivEcwPaThn2f7gv9u4fizGfWP9ceOxxgyPv4nx3uzDGSJf/jV62G9Rfu16oNvx6zvrziQeU3oV8xVjeaNFCWzn8oDY0dwPurVYXrMllvtr5Zj+lGvD9dnVE0dJAsaV3SOak6kPfKda9GJ7DeN2iUTqrQjW7pJ2sby9K6aqsDHoOE7xkePzqK9aoGR+phLKxb3elFGoNlyemQ07zHQp9yvf+6INaH5ttc2TZYWD8xJgPqWX+5fWTDiCHC9a/3qfQeIktu99uYfhe6t+7n3BLW70a/WnNkKO+1VttOuwxl59rX3cdnDBP21TT76Besn7jSP7fxcN67xs+MsR4mS+XVSW9Thd7Daue526yfPK/93WME7/LPirwxw2Xp3OPVFd1H8v7mQfDfJNZPO58peST0Ubq2ww1HyFKHGTdeBZrwXtzPJjCOdZNjl24OH8X7PB3/4s4jZanXxC2HSoSuNOHDlL2sHx3bb0XsaN6zH6+73dxEllwCzw+1GSOcU43Mbbawfr9lk1+NJOF3aZp9q2Fdr8j4ZLLQR5isDvccJUseDwdZLzHlfXnqq4lfWV9er1TWeazw3N1eo+E8WpYKZxwOKBS6Itbi03PWf9xtqu4/Tvj8usl51mNkSdlxVKixGe/l4YE37rDerGaYyiehW/SqyjKVZKngaM2Kg+N5H+cc9SSFdXnSpoeTzHmP2b662shUluJKcvXrhJ7xYJv+adbN1xeuTrTg/aZnoVvPsWyeKd+b4mzJ+/rjU1IiWb82rm1Fmwm8exxSaq85TpaKF1t3zxV6fsT3rTtYD7Q3M/OZKMxFuRrKjcxk6Y5K6ew+k4R1vmBp6HrWo9wmeLwWuv7xOoNfrKeutfcMncz7ovTbRR7jZelUby0P0ym8H/1wN/Qj6xnLNs3+KXRzG5WZc83Z+SVFjIubKnz/YWuNnrEes8e+m72VcP7m9epgbSFLTR2ulzWZxvtAsyat7rL+bFtecqrQtzzUaTvOUpYctTasWmrNe9aZ9X2usX68skC3qw3v25TVpg2eIEtHOtwoKBR6Z7WnWxJYr1kzdenm6bxv/vsiR2+iLA1UXls/cIYw51CHDkdYD04YEaQQem/rPb4dJ8lSR4+9qvttheers9m3cNYzjbb4WtjxPnO/kbvaZFky+NFIUS101R8zawJZz49oN+60Pe9tHNIPNLD+rUtKxCwH3ucrOZn7TpGl/V6f3reYybtv1yHKlayfCj7cI0PoR19NKvSYys7ZGcV2yx15z1sac/oT665Zpzd3n8V7dJ3BvvlWsnQ79/eRB0JfnFm56yXrVTa5yf5OvA9X1ETYTpOlLNt2WYNmC+fmvlGJhaw/v/EhSyH0gEbpTydYs+clYEDqvjm8B87xaZnN+oI9v+LM5wrP1wPPGaNt2Lp6OnDbb6FP2nHq1FXWo8d/nH1yHu83rnZpOWi6LO3MUzOYOV/YJwMLN59j3WHWiW9NnYX9p+f1Rr1nsHP/feLRVKG3Ty7Zf5R1gym9rdxdeF+x0mFYF1u2b+xqXt5pAe+f1it9iWB9eZhDUJ7QnzX6drK1Hbv+lmpaGxYK84lx67U7WTeL1Yvot4j3P4PX2jWxZ3PalriWb4RuZdzFbAvruxUB63a5CvdlJpnWsZ6bkPV69GLeWxdqT/FxYHNC4dzBP4R+J2Pb4krWXQbb+8e68X7N2iB8+Uz2+Xsnsq2WCJ9PbJH/lfUDm6z+1Qt9c6P+bRc5sn1+zGT9RHfee3rvWfae9SZVUZPmLRXWlYHxE6dZsrQ21MSllQfvuye3m/KM9U7VfVbcELqV0shH053Yuuq02HPFMt5fesYuLmS98cfvbt2XC/t/tpnapNnsfW1sht19oed17ZOZw/rdTo+HbVohzMPxNgFj58jShtmGrQas5L2ff5pdButGFXdfvRX6qycLh42YK0sbs08cCvXkveCOtX4S6/czbtqO8RLu+8aN+gPnyZL9vQ5KP4Tu0+XHsATWWz4+fezQKmHfyDlsbzCf7ds3vUZM9ea9Knbv1njWu232zKkV+ri8uzd7OrPrWX3c4txq3psuH6cey7py66YZTmuE5/RM3ZJOLuy5TorWb7GW95XH/hVFsB5aODs4Tej1PqOmtVnAnnezie+W+PD+flrm892sL6if26ejL++3JgR5qi2UJbVP0e53hK4aGNYxmPVKue7w2nW8n9d990B1EZs/X2+5p7ee9w2TVx7Ywvq2a/rfngj9WTvzZQ2sD3f9Xr91A+/PT86ZvsGVPb+3CpsO9uPdsluaRQ3rG9PvNVEIPTpy1qQ1i2Xp65B3/8I28l4zXJpTybpm++YfTTfxPrSz26aVbrK02GJidpnQi+Y+ufCd9V5noiJiN/PeuFdQhfsSdu7r186d6s/72S1+Y7+wfvrE0i61QreLTTmyyJ3NLc0/F57ZwvuY8OGtFKxvG+mxxjGAd9v1dTvnL2X7fKcazaZbeR+0pkmnt0v/s3+GxCULvcdh+2QnD1natbln30WBvLfVLHF+wXre/ZQTbbbxnvztVheHZbIU7jKtfZbQZ47/8KmI9e5dFRtWBglz74iJmdOXy9IWheezbtt5n/6p8tQD1g9E1ugVCP3qgg9HrFbIUnNtn6Xrg4V9OL/TqXzWpy4oiTPYIewPIw5cn7SSzcOjbR4/E7p2juOHO6z333/yd2AI7822u3S09JSl9Cml6oN38t4o+uKcHNabWXbtIgt9WzvLi2ZesrTddXi3Pbt4P6eprZXF+rZdJm3HhPJudtJ8m+kq9jzG6iiVCj235HyTG6wbr6sojtzNu2P13IOjvWXJp9GRq5Z7hPXz3m54OuuenftvqRJ60vW9n0euZu+/xyPHHg/jvf/JDidSWd+94X2VdTjvnS58WDV8Dfu9QXS4XuiNyqqtr7J+Mb561Lm9vHf3nT566FpZ+p2cfd9xn7CuFvwansR6cbSLQ5P9vBtlvTEb7MPu4+BHj68IvfK0+tzLrDd31jB3iRCuZ/+goEG+7P2aOp9tdYB3/wWWmRdZr68sU80Quv7saU0HrpMl94677NwP8r6s7+F5F1hfZl0e2T6S91LF0NwB62VJxaf941tCrzjQblQi6z+Xk5JXFO9ejmNu9t8gS0VtTmt3j+Zda+R5u/Osq5m3MskXuu5k1xpDP/Z+8d7I0jdGOC8OuZ5LYL1rTosJeoeE525c4nLDjbJ07/6h0Y+F3m+iqWkC66vefui9OZb38KyOPQ03yVJQ4dvGhod5V79u0jqB9fF+wS9fCP3fpBMahptl6dJt+di2I8Ic6OPYPYH1hB1f5hkfFa6Prd1oQ39Zen3sYOv3Qq//EemewPrV0vKrO4/xfsi290nDLbIUML5s+ojjwry9t+5nAut228Lkj0JvkdrFqn+ALLUJfeIaHifM/4+2ppxnfemw1Hdj4nn/VjJk0ICtbF3NGTm1ROizNY2uJbKe+do+8cAJYZ+0WTXDKJA917vVGo8/yfvepIa/F1hvZ+1oUy5034lPLg7cxub2vyPDYk4Jc1qHX2svsd7aLTFnwmnejQ1nTzUOYvuA95Ufv4TeL7zloCusT/5jqXb0jPB3bJrqDdnO9snCxd2mnuU9zXuKQTLr1g9b69YI3Uf1pcmwYFnyemHWI/4c7+lqF+eksB6V+a+VTYJwTu19GDpihyz9nTfsV63QA46a3E9j/eCeX/mnzvO+XSrrNipEliz6DoyyTeS9zepSvwzWzzYtcaILwnqbaFw6ZqcsDVHqoXlO6J1uZS/JZL3394J0h4u8e5Qc+j12lyzti/vp1OiS8Lzn3AzPZn1WQ0jZeaHfchwwxjyUzclPDqyddZn3I+c+/cllPaCuzS/VK7z/zP6cNWG3LF2eVr/wotAL4wbF3GP9xTHbe7OThPlnxu2tU/bIkqJAS6dpMu/3n8RvKGQ99OQor8tCX9m/MMA6jJ3Xje9dmXuV9whn06hHrN/LTCtplsL7aa/aG7bhsvTxnFr7JKGnL1Suesr6pSMZQ+en8h48cvoIx71sH/PMm9QiTbjvv0t2vmJ9wW/jGclCPxB1v2zOPnauNaqa5nyN96P6dc7vWf+1TG2sWrow/x/1Vrjsl6UlLXz0rgr9TJOh3h9Z33JhCLlkCPvkrLFabhHsPXGgWaHadeHvR0Vkf2O988LYPVeFbn1nyJZlB2TJubO5pcsN3g0V3azLWX/Sd8hPtUzhun2zMVx1kP2uJR5hV4W++01hx9+sZ538ouNyk/fbafvb+kay75l28pxaFu8HN5/oUcv6H++T+leFrmyoZLIpSpamnfl40Dmb90sZ8QuVo9m5bDi/rsUt4foM2HcokPUlD7Xsk4VetDn/Y9MY9t7npnR8fg7vJeesRu9k3TlH+0PzXN5DLnSKa3WIneNpvh2ThH4uyKjTXtafdlAym3eb9++Gew63i5WleZevzm92h/fI2BGDo1hf6hTtdVnoR4r6Pe96WJbWyKd95tzlPebekpCjrOd1LPZqco/3h+vKp+oekaWQR2OcLwrd4F1m99Osn3iTaeaUJ8xLFS/J8Cj7ni0WdVLN533UmTEVF1hPNDT4eF7o7RqVlg8+Jkt72rSIm1kgzJ+/5IYU1k/vauqgXCjsh2u0u40+LksNS7vXnxX6+s0Jk2+y7rxxaqTdfWEfaO6/3TxOlrz37dFvEPpQtdiiu6yf8ft09tQD3uPWqxhZxcvSxGZTtac/5H3XtCtRj1h3a5wV+k/obTcmaDmckKUvZmY/4h7x3ryu7NAr1rfvKRxr9Zj3dzfXD51/kr1PpTkHVwv9wk3rtx9Ybxr299aRIt7HVSzfv+SULHkUR/ya+IT3hvFPnX6w/tN3cIdKof+7sG3gqtPse+o/HBDzlPcy/c3t/vynp7mbmD/jXTqS1dzvDFs/dfUjfwj9ZzMrdeWzbN6+HtL/wHPhfJnZq2cQ62p56u1MXwjn+0bJTO0cm+vKAiu+CH3H8njvMNYH1/zIDHsprJOOtkntEtj79RXLrSNfCef1ysmqMawnl+4yUQj92MKQhT3Py9KgFTc+hbwW1v+nNo9PsB7Y5GXg4De8L/r8wbpfoiyt9n/V4Y3Qf9vVv7nIevypm4cD3wrrqtf8dcMuyNK6CTs69X8nXB+T5noZrA/pZxz8VOgt99S+H3eR3fduaSUb3/PevtWws3dYX1HSZVzvYuE6nEjdanVJljbNdtx5X+jG47cuK2L98Khl99bKvO98ErFo1mVZ6mlvX9tdwftFywqP96wPWKXZ647QXYP2BrhekaWbcw6brPwgrE9/v9OlrB9793dCh4/CudYj8a1XEvueWb0mZQp9wnR97RrWo+9rSW6feH9LX9dsSpYllweFvTU+876vfcUL1auy9HyXlUqK0Nv4m07ZyfrbB2FF877wfqL3swLNFHYfXSIONvnK+/iqK3MjWbdrPss6UehBj1/Ud09l9yvs5T/7b7yfP2t+/gTr0zLbRtcL/YjrHw/DNDb/zG3W/0QJ759KK0ZeYX2d8eUrU0uF66k3qIPJNTbPN2k9oEroz/+lqGSxfuxoj0Mx34U+YxtNTJeluXff1Zv94P1B26gWD1jPMJ9iWyL0IP1fug4Z7Pu/WXAovIz3pV77pr1l/ZWDzssR5cI5/mLd9kXXZen7upDmxUKPMjv5oJT10S0P9N9eIZw7+zvqe9+QJXoy3mLAT97jkx6G/mPd9GC4zVOhmwfdVwnIZPtzl43WfpW865Rp7mh+k73f6aua6fzivf/D6G7hN//znq5rkCf0vxruWR2zZGnjt9fKXlW83wzzW32U9SV9DR50+M37vKFPhxlks/mwadOwG0K3L17V7CLrb8zXmrtWC3OUt/234bfYeXTK+7vaH973P/J7mcl6QFXd9stCb/v664sJOew9pVyjw6wa3hd7RX15wLrunLNR9Jf3sWt2N3bMlSV1ytM4KfRGd+4YF7OeFrNs3dR/wvlrabFyyW22L/3e86xS6HJRk/QK1hc9HKQfVSvst1Yt26+7I0s1ZdYepnXC9dln7698V5bWt/16/JPQv25V/N3B+i2VmsKd9bzH1l0OaHOP/d7NG78PauA95fXtzjGsD5u8tuG50JMbumXr5LH3/d7FKpuo9H97qlmqbwLrx56m1uko8b4tMEIami9Lvp0bvt4TetDRZK0brIdcPX93pTLvt1d1rLEsYO8RHrkx7Ozm++qz66UPWD/9z2xButCXnD5R5ljI3jf1dLu6qPDeLvuBkoL1nwmL7zVR5f1Awyhtj/uy1GJGs6UJQu8zomRGFetBT5s0TG/M+8WJr/ZufCBLtX/mb/sj9uYtFU0esvfldZpKsU14n2a3eWwY66ZdOq0wa8q7g/KQxE6PZGn+odUPvgh96Lc+/eJYb329l25oM94bPjinGD6WpZZjui8zbs67y70XM66yXvza7dRzoad6htebFsnSV8e6p34teP97MSTlHutO3i//9FLjPds5x9/2CfueJXUt7wjd1kGa9Zb1FX6L2i1ryfsut5qxbk9l6dBXdU1Ndd4r3CuH/2Td8kc1XRX6aWNDacMz9nxN7KZwasX7xgMnbBs/lyWrtE0ppMH7C/d5vntYf1LX0T9e6Pf8HRI6vWDvuY++jZrUmnelC6Hlcay3qCor+SH0h3dUzAa8lKXX2r1D92rybng4NS6V9T+dQ7WHt+E9QTWh7fhXbP1H9Tr3Wug7Ct/uL2R99Wy5t78W74fzrHQdX8tSTLe8CN22wjosrM1WsB516OWfu0JvfOqL5/I37D1uv7rV8na8jzDQHFDDem72wgjN9rw79/L9F/CW7f+Klw+ThR64oOsz9Xfs+bqwnJw68D4pvf5mJOszP3ft1SD06n9d0nXey1JXs09Dj3fkfU3F2pxE1hduyhlj2Yn36UtbvR1ZzH6vQ+qIEqEnD1Oo5rLuuu1G792deV+pUznKRpalfrefNDXuwvuP+jEBr1nfXlTz+qnQx+3Lfb5YIUsdlhjErevKe5eLwaMrWTeXXOZ268Z7Yc/tFzd+kCWH1sdaZAl96qWbg5t/ZN8/8tPZRd15799/6O39rM8KM5Sa9eA9bv5Ht56fZOnvJe+cc0IP1rrfMYH191dTx1j35N1Gq/LF8M9snnf8e6ZS6O372Jy+xXqN9eDmB3rxvrf71yDrL+z3OiyaPVKb9+7X01a/Zr2FXsjRN0JPLszxcvvKzpHVx19s1hGeo47NN/1iPa/urIqOLu8t3YKiNn9j87DPsV63hf558+gctRL23MVsNXbX472mb7+Gg6xH9LIe1rK3sG8YzZigW8rWYZZy/wtCf2t76chF1ssGR7WfoS88d/MmNh3zXZbsjbR+VQldr32HTfdY3+KxPPugAe87TbupOvyQpatHTgSa9OF91FGnKAXralvTRr4Vepv6+2NWlsmSZ8FJeXNf3vd0Xv+zlvWzxh5+2v14v58xOym4nM1dy1Rb5Ao99JR3ULsKWXps5BniZsh738NZbsdZ9xmcUN+8P+/HFlo4Gv2UJcf+VxcmCH33tYaZGay7F+3MmDaA94GuPxZPqmRzy+u+zX4K3VlPc9sz1pvXhlnuM+L9UIb75YW/2Hvfl3SfoQN5ryutLqtg/ZDDmZjnQh+9OtVkU5Us1dU5XF43iPekdokRar/Z/rAnO72LMe/zwp5TFOvXb31LuS70x3FD1vWulqWdVnkn5w/m3VIjVzmJ9ZOyS7DyEGHdhgdHjfvDzoUhiXPihN7n26axD1h/8jdBx2Io772enKqeU8PeHz/PfvtZ6P1bq2SUsJ6XkLojeBjvsU5hYb5/ZSlHOcug73DeF3tar27yj80Dkauu5Qtdq9VYt/2sj9DNl5aP4P1puYu7di2b5x3vJrcaybvPo6T1F1lf8sWtx0WhL1kxIkaqY+sw8NSG6Sa8J275nlfAep4iMK9S6FW5D5vPrmfvO0n1avtH8b7598eZ31gfc05j7NDRvA/LM0j2aWDvm+tTFz8Tekx9TK8mpJDaFv3e7DOG90cTpdj9rN9xy93ZUeI9apGGgY6SQlIt0Q1JE/q05hrZl1h3UWuzwcmU97Ky0R5jlRXSuI0h82qF3qYwUucB658qdg45NFb4XU7apXMbKaSFHdrWjx7Hu7v1y6zvrJ851jP1rdA/OF8/tUFFIW0Ye8F1kxnvay3uH2qhqpB846837jFe+F2X1Y5Fsa65aVJkptBN561JMmiskMI22nRzNuf9fF2L5ymsd7J9uF/JQngezQqaTWiikE4l3m44KnSzj6mTnrHebOyg2eMshfkk4mGUa1P2e6+qn5WFPri51t8q1m9lzyrdMoH34srNboHNFNLvNlo9tCfy/ke1wyet5gopwWG4RbbQz/987hXHevnonLkLJvH+cmm2+uAWCunI6pQljSYL96XXs9Rs1j0TWi0+LvR/d9p4z1BTSJV779ibTeH9rLrvaAXroc/eD1cI3TKucbtVLRXSRj37lgFTeb86Ir1OWV0hveqvV9TLSpijNkb+Cmd9b6zVriyhp/aM/durlUJapl0w3GUa770f3W11mXXVpYefKlkL59SYLoPNNBTS017ZrkeFfrDN/sWPWe/zZ8hXUxvedWjwmQWtFVL/g1Vz3gu9/MKff5Wsv0psuLVpOu93Hsmzt2oqJPVSm27dZwjrVvNnvlYbhbSq5uuS60J/0klvSjzr+7bmnJxjy/u5gxtfDtFSSI9GyM9qhf506L+1uawvzBn9N9qOd4Mj0ToObRWS8+Mn6ib2vHfaNO/9Z9bPtzrV9qXQU/0szvq0U0it9S6p+zrwfsncOrBZe4WknVVR034m71M2b1gexfqc3QufJQt96dN7rn07KKQmI5qetHMUzrXykcvTWbdwf+n2S+hFa/K3Tu2okLoXPu+ydxbv3zU2nXnLuksrpeyBTrwbuU5/t6KTQsp9bu30QOjBXS20lTorpAdFOR+Xz+Z9yxvHNeGsf0iY49JyjvCcTtn1XLuLQhqt3u7hWaH7t3o/MYn18sOlAyfN5f14vs09i64K6Yvau61fhB6jLzs+Z72i/tvdbfOE8+72nj9Luimk+O7qSrrzea+0mnPiH+sbO1j0yRa6hbPlgl3dFdKT8D3mzs68Ox6zGtC9h0LKH1YyvUHofZO8ml9kfdWFGdMPufBuN+ryr3E92XMaf9vMZAHvTV+2+lHEulrm+N4vhN7OaPtv114KyerUndo1C3n/9K6zeg3rBY1tbmkt4n3DjnuDQ7TZOgx45XdJ6D4P9rp31VFIq28vMrB25V1j+trERNYv+37P/S70zonejcbpKqS541bahyzmXTUoxLWI9W53S57pu/H+zOfac1c9heSXNGdyrtCNtVVm1bD+7Hz2hQVLeJ+ps+hbSG+F5Da7c1Mld2H9d3ob3E2fnSOLXGxihf796PLhF1m3XRmx02SpsO/NbPfbzIA9XzpJqc+FHvyqKOsp623005+v9uB9eO7p2CV9FNK7nqe/ai7jPfPKvuBa1jun+JYmCn3fuP0Bu/sqpL97+hZPWc57dvOzO3v1U0iB09NvfxX6z5NP4pJYP37M4Mi2FcJ8e0Urf4KhQmrZ29NdeyXvpXcXK79mfVHgHr1MoatuKbRc0V8htV8QWDTbk/e01RNilAew827RVO8aoV8Y/aRhP+sXBn5SjfAS1qGXt5eBkUK66TE1eNAq3hvO6P5KZz342ub6QqEf3/Rlq/VAhZST5bdoqTfvPYLSdT6wrtx73PUmq3nvNvPo47WDFNLVnXlN44T+YntEWAtjhWRwsL256Rre9ROj5x5mfd137VWvhb5h/oWRxoMVUqLRj3Cftby/G1ike5v1w6recVo+wnW+2riH0xCFpKRx+eQFoZdvszQoY92l8lTMFF/eEwZFjA0YqpAGzZgR8EXo+61+urUfxr7/o0SnreuEzy9zOnyWdY226bo91guf7/XwgzRcIY3JWF18TeibGqaPKGK93fKXoQ4bhPk54n2M2wiFNO3eZ8NKoQ/28W1Vx/pa7+jroX68LxraNSxspEL6o15p2mejMJc65/XUM2HrYVTplRyhuwcH3Exj/d+hrZ2cNwnrfIz5ymmjFNKhp6metULv30qj/wfWnwUFpx3YLJzvIYq/PqMV0rwZFb8G+Qvn4NgbT1uOUUjZL3/0KBR62vVjN4+x7nVj05glW4R9NWzXtWGSQrp07OhUlQDh907YdCuf9ZO6060OC33a8rWvnU0V0oyvoaYjtwr7yZ7VjapZ3xNqp/NE6F9NfEfsHMvm2OTjNSsChev8z39jz3HsetLazObbeO81a/ejZNb7qBf4xAt9k+LIkClmbH/edLyXaRDvD3omnyxm3e9XdcZLofc9XKi/drxCmt7yzqTV23k3+fg1Rc1cIeUtaX23VbBwPf2azDzG+pnTD4efEbpeuV7j4RYKKcijcdT4HbxPzrXMLmD9hU1C6Vuh3wxasnuBpUL6+SfbyDdEmJfSQ9xrWFdRmuDaZifvV74l2O6ewNZJs2G7EoQ+JOr+VN2JbH1eCI233CXcX5tyu2us39o3JbFY6Ob7Wy2zmaSQbtstP7M+lPf5pf32fmY9Mqwiou1u3ne9srzjN1khHfz02DtR7J/nqWlNUUi1PzXHT9wjfM993vPOsP7a9pyKQugVroE3TacqJL0zh5I3hPF+uzhs0DPWL+z54NgunHeb7ZGXllkppJ4nNv5IFPqYN9FjVaaxeXL7Eu+Je4X5zeXguyjWbz4+ViIL/VdU6M6B1gopRk/fdsM+3tWabJxwh/XkrtUJbfcL85u+a5t5NmxutG9Zc17oXzZafK9ifZOH25AJEcJ6C+n2dOd0hZRVp7qgWOhpBd8LtGew+fyEwn/dAd7/3rpclMZ6rXJDWJuDvA8tX/HNxlYhXUu023tO6P8Kerb6yvqrCR8DzSOF/eH1nXGb7RSSq/vZJW+FPjpyYWB7e4U09UL8mLVRwrnm/+vpedZtkx+qaETz/kbTZ5iFg0LS6WCYfkroje/+OPGG9fGeSQvHxvA+qcdM3dUz2fk7x63+hdCt912+pOaokB6vMQv2OsS71RGaFsf6Ecfxqi1ihTnkxpi/JrMUks8RN6/jQv/tvuzKY9YnfUp4YHJY+L3ddvotdVJIK3Ja9ygS+hvrKLtGsxXS9xdh8z2OCPcl4MCoaNafpPQNVznKe61GwCDjOez51XhzJUbozy20Qg6ynq7r3F75mLDO97wYkce65wq93MFCV+k+Or9hk/Lm/72vm5SpjpT/e88alEkLvWPrxLk2LYpa36gnjQClXuWTOvm2r2X/eQ4+q9Hof/4g+3cjDfo//yqX/m9Bv/F/i+r//rNupv8/bv4fV4KDpAwHqREcJBU4SKpwkBrDQWoCB6kpHKRmcJCaw0FqAQdJDQ5SSzhI6nCQWsFB0oCD1BoOkiYcpDZwkLTgILWFg9QODlJ7OEgd4CB1hIPUCQ5SZzhIXeAgdYWD1A0OUnc4SD3gIPWEg9QLDpI2HCQdOEi6cJD04CD1hoOkDwfJAA5SHzhIfeEg9YODZAgHqT8cpAFwkIzgIA2EgzQIDpIxHKTBcJCGwEEaCgdpGByk4XCQRsBBGgkHyQQO0ig4SKPhII2BgyTBQTKFgzQWDtI4OEhmcJDGw0Eyh4NkAQfJEg7SBDhIE+EgTYKDNBkO0hQ4SFPhIFnBQZoGB8kaDpINHKTpcJBmwEGyhYNkBwfJHg6SAxykmXCQHOEgzYKD5AQHaTYcpDlwkObCQZoHB2k+HCRnOEgucJAWwEFaCAdpERwkVzhIi+EgucFBWgIHyR0O0lI4SB5wkJbBQVoOB2kFHKSVcJA84SB5wUFaBQfJGw7SajhIa+AgrYWD5AMHyRcO0jo4SOvhIG2Ag+QHB2kjHKRNcJBd+P86SP5wkLbAQQqAg7QVDlIgHKRtcJCC4CBth4MUDAdpBxykEDhIO+Eg7YKDFAoHaTccpD1wkMLgIIXDQdoLB2kfHKT9cJAi4CAdgIN0EA5SJBykKDhI0XCQYuAgHYKDFAsH6TAcpCNwkI7CQToGB+k4HKQ4OEjxcJBOwEE6CQfpFByk03CQzsBBOgsH6RwcpAQ4SOfhICXCQboAB+kiHKRLcJAuw0G6AgcpCQ5SMhykq3CQUuAgpcJBSoODdA0OUjocpAw4SNfhIN2Ag5QJB+kmHKQsOEjZcJBuwUHKgYOUCwfpNhykO3CQ7sJBugcHKQ8OUj4cpAI4SIVwkO7DQXoAB+khHKRHcJAew0EqgoP0BA7SUzhIz+AgPYeD9AIO0ks4SK/gIL2Gg/QGDtJbOEjv4CC9h4NUDAdJhoOkgIP0AQ7SRzhIn+AgfYaD9AUO0lc4SN/gIJXAQSqFg/QdDtIPOEhlcJDK4SBVwEH6CQepEg7SLzhIVXCQfsNBqoaD9AcOUg0cpL9wkP7BQaqFg1QHB6keDlIDHGQD138dJCU4SMpwkBrBQVKBg6QKB6kxHKQmcJCawkFqBgepORykFnCQ1OAgtYSDpA4HqRUcJA04SK3hIGnCQWoDB0kLDlJbOEjt4CC1h4PUAQ5SRzhIneAgdYaD1AUOUlc4SN3gIHWHg9QDDlJPOEi94CBpw0HSgYOkCwdJDw5SbzhI+nCQDOAg9YGD1BcOUj84SIZwkPrDQRoAB8kIDtJAOEiD4CAZw0EaDAdpCBykoXCQhsFBGg4HaQQcpJFwkEzgII2CgzQaDtIYOEgSHCRTOEhj4SCNg4NkBgdpPBwkczhIFnCQLOEgTYCDNBEO0iQ4SJPhIE2BgzQVDpIVHKRpcJCs4SDZwEGaDgdpBhwkWzhIdnCQ7OEgOcBBmgkHyREO0iw4SE5wkGbDQZoDB2kuHKR5cJDmw0FyhoPkAgdpARykhXCQFsFBcoWDtBgOkhscpCVwkNzhIC2Fg+QBB2kZHKTlcJBWwEFaCQfJEw6SFxykVXCQvOEgrYaDtAYO0lo4SD5wkHzhIK2Dg7QeDtIGOEh+cJA2wkHaBAfZhf6vg+QPB2kLHKQAOEhb4SAFwkHaBgcpCA7SdjhIwXCQdsBBCoGDtBMO0i44SKFwkHbDQdoDBykMDlI4HKS9cJD2wUHaDwcpAg7SAThIB+EgRcJBioKDFA0HKQYO0iE4SLFwkA7DQToCB+koHKRjcJCOw0GKg4MUDwfpBBykk3CQTsFBOg0H6QwcpLNwkM7BQUqAg3QeDlIiHKQLcJAuwkG6BAfpMhykK3CQkuAgJcNBugoHKQUOUiocpDQ4SNfgIKXDQcqAg3QdDtINOEiZcJBuwkHKgoOUDQfpFhykHDhIuXCQbsNBugMH6S4cpHtwkPLgIOXDQSqAg1QIB+k+HKQHcJAewkF6BAfpMRykIjhIT+AgPYWD9AwO0nM4SC/gIL2Eg/QKDtJrOEhv4CC9hYP0Dg7SezhIxXCQZDhICjhIH+AgfYSD9AkO0mc4SF/gIH2Fg/QNDlIJHKRSOEjf4SD9gINUBgepHA5SBRykn3CQKuEg/YKDVAUH6TccpGo4SH/gINXAQfoLB+kfHKRaOEh1cJDq4SA1wEE2YP3XQVKCg6QMB6kRHCQVOEiqcJAaw0FqAgepKRykZnCQmsNBagEHSQ0OUks4SOpwkFrBQdKAg9QaDpImHKQ2cJC04CC1hYPUDg5SezhIHeAgdYSD1AkOUmc4SF3gIHWFg9QNDlJ3OEg94CD1hIPUCw6SNhwkHThIunCQ9OAg9YaDpA8HyQAOUh84SH3hIPWDg2QIB6k/HKQBcJCM4CANhIM0CA6SMRykwXCQhsBBGgoHaRgcpOFwkEbAQRoJB8kEDtIoOEij4SCNgYMkwUEyhYM0Fg7SODhIZnCQxsNBMoeDZAEHyRIO0gQ4SBPhIE2CgzQZDtIUOEhT4SBZwUGaBgfJGg6SDRyk6XCQZsBBsoWDZAcHyR4OkgMcpJlwkBzhIM2Cg+QEB2k2HKQ5cJDmwkGaBwdpPhwkZzhILnCQFsBBWggHaREcJFc4SIvhILnBQVoCB8kdDtJSOEgecJCWwUFaDgdpBRyklXCQPOEgecFBWgUHyRsO0mo4SGvgIK2Fg+QDB8kXDtI6OEjr4SBtgIPkBwdpIxykTXCQXdj/Okj+cJC2wEEKgIO0FQ5SIBykbXCQguAgbYeDFAwHaQccpBA4SDvhIO2CgxQKB2k3HKQ9cJDC4CCFw0HaCwdpHxyk/XCQIuAgHYCDdBAOUiQcpCg4SNFwkGLgIB2CgxQLB+kwHKQjcJCOwkE6BgfpOBykODhI8XCQTsBBOgkH6RQcpNNwkM7AQToLB+kcHKQEOEjn4SAlwkG6AAfpIhykS3CQLsNBugIHKQkOUjIcpKtwkFLgIKXCQUqDg3QNDlI6HKQMOEjX4SDdgIOUCQfpJhykLDhI2XCQbsFByoGDlAsH6TYcpDtwkO7CQboHBykPDlI+HKQCOEiFcJDuw0F6AAfpIRykR3CQHsNBKoKD9AQO0lM4SM/gID2Hg/QCDtJLOEiv4CC9hoP0Bg7SWzhI7+AgvYeDVAwHSYaDpICD9AEO0kc4SJ/gIH2Gg/QFDtJXOEjf4CCVwEEqhYP0HQ7SDzhIZXCQyuEgVcBB+gkHqRIO0i84SFVwkH7DQaqGg/QHDlINHKS/cJD+wUGqhYNUBwepHg5SAxxkA9V/HSQlOEjKcJAawUFSgYOkCgepMRykJnCQmsJBagYHqTkcpBZwkNTgILWEg6QOB6kVHCQNOEit4SBpwkFqAwdJCw5SWzhI7eAgtYeD1AEOUkc4SJ3gIHWGg9QFDlJXOEjd4CB1h4PUAw5STzhIveAgacNB0oGDpAsHSQ8OUm84SPpwkAzgIPWBg9QXDlI/OEiGcJD6w0EaAAfJCA7SQDhIg+AgGcNBGgwHaQgcpKFwkIbBQRoOB2kEHKSRcJBM4CCNgoM0Gg7SGDhIEhwkUzhIY+EgjYODZAYHaTwcJHM4SBZwkCzhIE2AgzQRDtIkOEiT4SBNgYM0FQ6SFRykaXCQrOEg2cBBmg4HaQYcJFs4SHZwkOzhIDnAQZoJB8kRDtIsOEhOcJBmw0GaAwdpLhykeXCQ5sNBcoaD5AIHaQEcpIVwkBbBQXKFg7QYDpIbHKQlcJDc4SAthYPkAQdpGRyk5XCQVsBBWgkHyRMOkhccpFVwkLzhIK2Gg7QGDtJaOEg+cJB84SCtg4O0Hg7SBjhIfnCQNsJB2gQH2YX8r4PkDwdpCxykADhIW+EgBcJB2gYHKQgO0nY4SMFwkHbAQQqBg7QTDtIuOEihcJB2w0HaAwcpDA5SOBykvXCQ9sFB2g8HKQIO0gE4SAfhIEXCQYqCgxQNBykGDtIhOEixcJAOw0E6AgfpKBykY3CQjsNBioODFA8H6QQcpJNwkE7BQToNB+kMHKSzcJDOwUFKgIN0Hg5SIhykC3CQLsJBugQH6TIcpCtwkJLgICXDQboKBykFDlIqHKQ0OEjX4CClw0HKgIN0HQ7SDThImXCQbsJByoKDlA0H6RYcpBw4SLlwkG7DQboDB+kuHKR7cJDy4CDlw0EqgINUCAfpPhykB3CQHsJBegQH6TEcpCI4SE/gID2Fg/QMDtJzOEgv4CC9hIP0Cg7SazhIb+AgvYWD9A4O0ns4SMVwkGQ4SAo4SB/gIH2Eg/QJDtJnOEhf4CB9hYP0DQ5SCRykUjhI3+Eg/YCDVAYHqRwOUgUcpJ9wkCrhIP2Cg1QFB+k3HKRqOEh/4CDVwEH6CwfpHxykWjhIdXCQ6uEgNcBBNkD910FSgoOkDAepERwkFThIqnCQGsNBagIHqSkcpGZwkJrDQWoBB0kNDlJLOEjqcJBawUHSgIPUGg6SJhykNnCQtOAgtYWD1A4OUns4SB3gIHWEg9QJDlJnOEhd4CB1hYPUDQ5SdzhIPeAg9YSD1AsOkjYcJB04SLpwkPTgIPWGg6QPB8kADlIfOEh94SD1g4NkCAepPxykAXCQjOAgDYSDNAgOkjEcpMFwkIbAQRoKB2kYHKThcJBGwEEaCQfJBA7SKDhIo+EgjYGDJMFBMoWDNBYO0jg4SGZwkMbDQTKHg2QBB8kSDtIEOEgT4SBNgoM0GQ7SFDhIU+EgWcFBmgYHyRoOkg0cpOlwkGbAQbKFg2QHB8keDpIDHKSZcJAc4SDNgoPkBAdpNhykOXCQ5sJBmgcHaT4cJGc4SC5wkBbAQVoIB2kRHCRXOEiL4SC5wUFaAgfJHQ7SUjhIHnCQlsFBWg4HaQUcpJVwkDzhIHnBQVoFB8kbDtJqOEhr4CCthYPkAwfJFw7SOjhI6+EgbYCD5AcHaSMcpE1wkF24/zpI/nCQtsBBCoCDtBUOUiAcpG1wkILgIG2HgxQMB2kHHKQQOEg74SDtgoMUCgdpNxykPXCQwuAghcNB2gsHaR8cpP1wkCLgIB2Ag3QQDlIkHKQoOEjRcJBi4CAdgoMUCwfpMBykI3CQjsJBOgYH6TgcpDg4SPFwkE7AQToJB+kUHKTTcJDOwEE6CwfpHBykBDhI5+EgJcJBugAH6SIcpEtwkC7DQboCBykJDlIyHKSrcJBS4CClwkFKg4N0DQ5SOhykDDhI1+Eg3YCDlAkH6SYcpCw4SNlwkG7BQcqBg5QLB+k2HKQ7cJDuwkG6BwcpDw5SPhykAjhIhXCQ7sNBegAH6SEcpEdwkB7DQSqCg/QEDtJTOEjP4CA9h4P0Ag7SSzhIr+AgvYaD9AYO0ls4SO/gIL2Hg1QMB0mGg6SAg/QBDtJHOEif4CB9hoP0BQ7SVzhI3+AglcBBKoWD9B0O0g84SGVwkMrhIFXAQfoJB6kSDtIvOEhVcJB+w0GqhoP0Bw5SDRykv3CQ/sFBqoWDVAcHqR4OUgP8/5Fd51E5tf3//9+VIaJE5sxTiSiFKAdFmSWziKgoigzJVMpccplDZEqaNJhL5iKUyNBIOPcuhEpFZPgdn3W/1ncfa/3uf57r9VjXuu6u89zn3sdG+YHpfxslNWyU1LFR0sBGqR42SvWxUWqAjVJDbJQ0sVFqhI1SY2yUtLBRaoKNUlNslLSxUdLBRqkZNkq62Cg1x0apBTZKetgotcRGqRU2Sq2xUWqDjVJbbJTaYaPUHhslfWyUOmCj1BEbpU7YKHXGRqkLNkpdsVHqho1Sd2yUemCj1BMbpV7YKBlgo2SIjVJvbJSMsFHqg41SX2yUjLFR6oeNUn9slEywUTLFRmkANkpm2CiZY6M0EBulQdgoDcZGyQIbpSHYKA3FRskSGyUrbJSGYaPEsFEajo3SCGyUrLFRssFGaSQ2SqOwUbLFRskOG6XR2CiNwUZpLDZK47BRGo+N0gRslCZiozQJGyV7bJQmY6PkgI3SFGyUpmKjNA0bpenYKM3ARmkmNkqzsFGajY2SIzZKc7BRmouNkhM2SvOwUZqPjZIzNkoLsFFaiI2SCzZKrtgouWGjtAgbpcXYKLljo+SBjdISbJSWYqPkiY2SFzZKy7BRWo6Nkjc2SiuwUVqJjdIqbJRWY6Pkg43SGmyUfLFRWouN0jpslNZjo7QBG6WN2Cj5YaPkj43yD+p/G6UAbJQCsVHajI3SFmyUtmKjtA0bpe3YKO3ARmknNkpB2CgFY6O0CxulEGyUdmOj9B82SnuwUdqLjdI+bJT2Y6N0ABulg9goHcJGKRQbpcPYKB3BRukoNkph2Cgdw0bpODZK4dgoncBG6SQ2SqewUTqNjdIZbJQisFE6i41SJDZK57BRisJGKRobpRhslGKxUYrDRuk8Nkrx2CglYKOUiI1SEjZKF7BRuoiN0iVslC5jo3QFG6Wr2Chdw0YpGRulFGyUrmOjlIqN0g1slG5io3QLG6Xb2CjdwUbpLjZK97BRSsNGKR0bpfvYKD3ARikDG6WH2Cg9wkbpMTZKmdgoZWGj9AQbpWxslJ5io/QMG6UcbJSeY6P0Ahull9govcJGKRcbpTxslPKxUSrARqkQG6UibJReY6P0BhulYmyU3mKj9A4bpffYKKmwUZKwUZKxUSrBRqkUG6UP2Ch9xEbpEzZKZdgofcZG6Qs2Sl+xUSrHRqkCG6VKbJS+YaNUhY1SNTZKNdgofcdG6Qc2SrXYKP3ERukXNkp12Cj9xkbpDzZKf7FR+oeN8gPS/zZKatgoqWOjpIGNUj1slOpjo9QAG6WG2ChpYqPUCBulxtgoaWGj1AQbpabYKGljo6SDjVIzbJR0sVFqjo1SC2yU9LBRaomNUitslFpjo9QGG6W22Ci1w0apPTZK+tgodcBGqSM2Sp2wUeqMjVIXbJS6YqPUDRul7tgo9cBGqSc2Sr2wUTLARskQG6Xe2CgZYaPUBxulvtgoGWOj1A8bpf7YKJlgo2SKjdIAbJTMsFEyx0ZpIDZKg7BRGoyNkgU2SkOwURqKjZIlNkpW2CgNw0aJYaM0HBulEdgoWWOjZION0khslEZho2SLjZIdNkqjsVEag43SWGyUxmGjNB4bpQnYKE3ERmkSNkr22ChNxkbJARulKdgoTcVGaRo2StOxUZqBjdJMbJRmYaM0GxslR2yU5mCjNBcbJSdslOZhozQfGyVnbJQWYKO0EBslF2yUXLFRcsNGaRE2SouxUXLHRskDG6Ul2CgtxUbJExslL2yUlmGjtBwbJW9slFZgo7QSG6VV2CitxkbJBxulNdgo+WKjtBYbpXXYKK3HRmkDNkobsVHyw0bJHxvlH8z/NkoB2CgFYqO0GRulLdgobcVGaRs2StuxUdqBjdJObJSCsFEKxkZpFzZKIdgo7cZG6T9slPZgo7QXG6V92Cjtx0bpADZKB7FROoSNUig2SoexUTqCjdJRbJTCsFE6ho3ScWyUwrFROoGN0klslE5ho3QaG6Uz2ChFYKN0FhulSGyUzmGjFIWNUjQ2SjHYKMVioxSHjdJ5bJTisVFKwEYpERulJGyULmCjdBEbpUvYKF3GRukKNkpXsVG6ho1SMjZKKdgoXcdGKRUbpRvYKN3ERukWNkq3sVG6g43SXWyU7mGjlIaNUjo2SvexUXqAjVIGNkoPsVF6hI3SY2yUMrFRysJG6Qk2StnYKD3FRukZNko52Cg9x0bpBTZKL7FReoWNUi42SnnYKOVjo1SAjVIhNkpF2Ci9xkbpDTZKxdgovcVG6R02Su+xUVJhoyRhoyRjo1SCjVIpNkofsFH6iI3SJ2yUyrBR+oyN0hdslL5io1SOjVIFNkqV2Ch9w0apChulamyUarBR+o6N0g9slGqxUfqJjdIvbJTqsFH6jY3SH2yU/mKj9A8b5Qei/22U1LBRUsdGSQMbpXrYKNXHRqkBNkoNsVHSxEapETZKjbFR0sJGqQk2Sk2xUdLGRkkHG6Vm2CjpYqPUHBulFtgo6WGj1BIbpVbYKLXGRqkNNkptsVFqh41Se2yU9LFR6oCNUkdslDpho9QZG6Uu2Ch1xUapGzZK3bFR6oGNUk9slHpho2SAjZIhNkq9sVEywkapDzZKfbFRMsZGqR82Sv2xUTLBRskUG6UB2CiZYaNkjo3SQGyUBmGjNBgbJQtslIZgozQUGyVLbJSssFEaho0Sw0ZpODZKI7BRssZGyQYbpZHYKI3CRskWGyU7bJRGY6M0BhulsdgojcNGaTw2ShOwUZqIjdIkbJTssVGajI2SAzZKU7BRmoqN0jRslKZjozQDG6WZ2CjNwkZpNjZKjtgozcFGaS42Sk7YKM3DRmk+NkrO2CgtwEZpITZKLtgouWKj5IaN0iJslBZjo+SOjZIHNkpLsFFaio2SJzZKXtgoLcNGaTk2St7YKK3ARmklNkqrsFFajY2SDzZKa7BR8sVGaS02SuuwUVqPjdIGbJQ2YqPkh42SPzbKP4j/bZQCsFEKxEZpMzZKW7BR2oqN0jZslLZjo7QDG6Wd2CgFYaMUjI3SLmyUQrBR2o2N0n/YKO3BRmkvNkr7sFHaj43SAWyUDmKjdAgbpVBslA5jo3QEG6Wj2CiFYaN0DBul49gohWOjdAIbpZPYKJ3CRuk0NkpnsFGKwEbpLDZKkdgoncNGKQobpWhslGKwUYrFRikOG6Xz2CjFY6OUgI1SIjZKSdgoXcBG6SI2SpewUbqMjdIVbJSuYqN0DRulZGyUUrBRuo6NUio2SjewUbqJjdItbJRuY6N0Bxulu9go3cNGKQ0bpXRslO5jo/QAG6UMbJQeYqP0CBulx9goZWKjlIWN0hNslLKxUXqKjdIzbJRysFF6jo3SC2yUXmKj9AobpVxslPKwUcrHRqkAG6VCbJSKsFF6jY3SG2yUirFReouN0jtslN5jo6TCRknCRknGRqkEG6VSbJQ+YKP0ERulT9golWGj9BkbpS/YKH3FRqkcG6UKbJQqsVH6ho1SFTZK1dgo1WCj9B0bpR/YKNVio/QTG6Vf2CjVYaP0GxulP9go/cVG6R82yg9A/79qNOOP0T35Fo/nqpj3sp73zU5/ZoT/WReEf/jDvWdy2apFgk8t7zpuoZOKqZVvyMoU3MDuhWcdd78Ni++5nFFct6fXif3zVKxzgmvMb8H/G/K12Gi+ih14tzLwQITil9o69Evj3vDgvnF9ziq+bV5oyBxnFXs3/E79NMHnRF7/Vc09ad6/RMdIxfvsTPUJWaBi55eMn1Al+KfToWo9F6rYxeJzBUHnFE/ePTbsJvfagbqzukYpnl+aYzPDRcW6fNmekSx49BjjunLuQ/20DCdHK540afadHa4qdtstbN0HwQ8fnHqoixv/7+026IZ/jOLdrrZbl8Jdw/RNRatY4fO3j1k6ZZGKPdDZ0zJecLU/5PWZu8bQ8Uaj4hQPmaXvt3WxitmYNjctEtxS/dexju78e1n1znDlecX994c+usq9VUBy88bxildEf2sw2UPFXuQe+XxS8NHvNR0+ca+sDbg6KEFx5/zc2M1LVKyRq/fKJ4Jb9pmr12GpihkcX9TZNVHxn2sOBV/hfrury806wV/PCtC19+Tf1xq3CfuSFJ+0rH3kR+6DOnplGVxQPG/agjGbvVSsyZF1w24J3i12Sp3+MhUbtyT45LSLiqs3/XL9CnfvNierygR3a9sn2H65ii3vfm1Q4CXFXb203T9xD2/xfGmby4oPjtk7bYu3il3zqNgXL/qSi/YdV6hYWbxOzMgrin+Y5D37GvcM1/4XCgQv+Z6xwmGlio1t6RC7/Krw+fy9euQz91c2qw42uKa4VkPL7G2rVMzS99DyY4J3j3do0WW1il2wuGZpmqy4z/6frte55+nk/3wg+NTpxg+m+ajY1cDac3NTFB9w6OvACu5327WyqxI87tugy0FrVCxnvknujuuKb9LStO7hq2J934yZ2TFV8eBNc17f4u6vP+/RRcFfVppun71WxYrOLu875obiW//tYDXc79TzC3gj+IcxcxrsWadiemnb7q+8qbiXd0xh7/Uq1mtZ0G/NW4rHtvK+lc49fu+ObuGCzyg4nzR/g4o9vLpp6IDbio+f63Shjrua14qRGYLvGr7pzqGNKmY9Yu6wuXcUH9pDt9jEj3+/N4cbfhP8RJy2Vhb3K6v062+/q3gvX59Ri/1V7GlF+bP294Tfi6Htbo1NKnb/Tsp/iYJrLFgvh3Pf77Nh2Kg0xeV7LcYNCVCxQ+Fmb/IFb1DZ5NZL7ocfvvfySld8R7DLCO9AFXu0fVuF+n3FE8zb5DTZzL9f904LQwX/sLeHdxR3fzp/3+iB4nesgzqO3KJi7q+N298W/Msnm4Ji7vb7IuZPzVDcrq99xPqtKrY4qWnoB8Ez4+I2tN7G//ks95sbHioe1mTGwovctddee9XskeJ/y8fPnLRdxbRG/yyOENzpV7BjGfeOT4wKBj8W7g/Zup7bd6hYwIlJ6ZmCb25etKvbThV7ae9yan6m4q8WfUi5xb3HGnevasHtVpr9cAxSseJzTn12ZClel3djRC33N742he2fKG5hFXj0QLCKOW5qvT5B8FUj/dVMdqnYn6kFWjbZilvtv+CTxf15SHDIK8EnPmn7yz1ExSbc7U0eTxXfcvRCcIPdKjYy6OrCP4KXHFtndIb7z40m1/Y8U/zIumX57D8Vaz7w8J9uOcL9PG/3wSLux8aVDbgq+Jy5r+at3cM/55m9Hcc+V9z3vM3gVnv5c61m6srXgtdb9qLjRe7uNzw2LH+h+Hu7bS3s96mY1bglPhovFe/0ZnqrL9zTLaY7HxK8LNemV9B+FVvd3cjK8JXiRwvH2vY6oGLdzn1slCp4zH/uK9O46zrtfTAxV/HrR4/HOx9UMZXcxeed4AfPSD/+co8sPNpyVZ7we5xsOenYIf67KKo72yBf8YCxpy9ZhPJzzvaRvY4IXjxQzyCXe63vqiNGBYqfuvFf9KrDKvbePvj3DcHHbmtu0fyIin09v8PevlDxnYOPvkrgvrXf0oPvBe+7oXvghKP8ul1t/nhVkeL9f8YPLePeurNU2eC18PudMUhjZ5iKfcxe0+iI4BXsel7PYypW3aNC1+iN8HuZPTg1jXvUvfFaNwQPnhR3fsFxfh2ODamZWKy4SYbeeQpXsTNzk56+FdzQc1lKOPdr4deOrXgrnB9Kk19anuDXT9LpWfXeKT7rbeXfAu5qg5c1PCR4U7WWA9eeVDHn3A6Rvd4r3qqq8/rWp/jvaEC8ebLg2vNbPLnMfUNFpytjVcJ9qfKj8dTTKnbz4opeRYK3czh9/Bv39V0jd3pKwudsNKTd3jP8enufXPRX8MG9EiL6RahY1pHznffIwn2p4q/lE+7NyjdN61IiXA8mvVRLz6pY750D1l8Q/OrBHqFakSrmpZO+16ZU8dr7P2bGcN9raH7kheCnlocZjDnHz6v+m/e6flC80Eq7wQfu41IS1n0X/HP+hMptUfw+EJg8dftHxe0rZnzqEc2v/00nO7X5pPixPr0r07i/nOdSGCX44SF367vE8PPYw3o7LMoUN7rfwUAjVsUmLwro8Uhwj/VDZp7mbijnX5z9Wbh+GrQ6NCKOPwe/NB1QJnhFi/h3b7mb9+1wZv0X4TxmT0M3nVexppMa1mvyVfHsRY1Pd4pXsYJ/j6cdE/xFw0etbnF3/exxuE+54gavLY84JfD78B3V41TBaw/MN/zLPbfvwIrxFYrvKTJ9cDxRxUa9ca7/WvAlzkkrrJJUbFOAm5ZnpeJdn+UbveZud99G/Y/g/vnR3zZc4Oclx58fd31TfJlBpwf6F1VsSuW2u/pVijdeOig6lbvGoM/BcYKHOFQcnnOJP+9eG9haVgu/0yC7Q7+5dztgWflY8KZ3h5w6dlnFJjXtFeJYo/jkqAfJlldUrP6v0rZlgmt+Lisu4t6hiX/ouu/Cc8rybIuNV/l9r6asfuMfirceXTm1wzUVi3E3dj0ieM3NrDM3uKe0s71sUKv4dPvB5JSsYnNSTb9fFVwVa+zxl7u9enUvu5+KewbEvwtP4b/TkzvHvhL8y6bLbuy6ivUZXzXX9ZdwDpw94mcx9+3J/RdUCx5wc9KRTakq1jZ8xIzNdcI5du4b2y43+PtUQg+r5r+F50jpJ7W73BtFFLU4JXgb7ZWPFtxUsU8mboX9/iieGrDqpMYt/r00u7v/puDHqj5vjuCeUFNuOeGv4j/0ClaNuq1iLkfLXxUKbh5qsbKEu9GV284e/xT/aNTIf/sdft9TW/i6VvBHW2wPG9zl73dmr8Zspy//z29NKb/5kPvGRu3OtVRTPHusWpXHPf7fZWFcc0bwAfrrzJqkqdjEjc3NTNUVt1s3Y/N57gf33F94W/CDrUOLJ6bz51HfsVsmaiieGTlwTAV3A53jB4sETy8YcHvvff65VdwM9ain+Ba3XSMHPFCx0N0JQbWCD/5j9eoFd6cIL69t9YW/08F2tU+GimV/rbPWa6D49zZnurR5yN8Les/QPC24YX2HwmTuL1puutmvoeKnH9mfdnykYks8fVxvCD6jw3GfP9yvlFv8Gaup+Ioks5knHvPvxfHR1jzB2dCWdiMy+fudV69/ro2Ev3+ZpY2K+5iP9u5VgpN61PitWfy9Ncg2bVNjxZ2jpi3s9UTFqIVmM20txae0ttn+kLuz9cHxYYJXa3hdW5LNz2P5X9YaNFF8d7cX35s+VbHMI7qHLwt+wGildSJ3r5F0zrqp4mefjQ5zeMZ/j2HJkdmCb3/soFbD/fl8q9A52or3zt69KjRHxZbNCPb9KHj8vl/VFs9VzNj6zFgfHeHvz9wfWMTdS9rSVKOZ4sGmMzv4v+D3f7X+d/4TvHL9qPQuL/l7nFOEq76u4rbzZq1L4+59692vKMHX799ruegVfz/9ULrJvLni57LLtBrnqpjZySs/7giu/dj1Qxz3TrET5k1soXh7qz/PJuWpWFh23NUCwRe/Tsj4xr3+i+e0SE/xKwvXZx7MV7FW/neHVAleuX3u68EFKlYe6uvq31JxU/WpdYXcm5TUbNJqpXhK0Jye/oX8OjEZEhIqeFX+KqeuRSr2esSooG6tFfeJOnomnbvH21a+CYLXS3hcs/i1ipW+jJ8+tI3iQZH1pzV5o2JxZU16PhC842jbOwncV5f1L3Foq7jGhOAhU4pVbNaJdqFvBD/jlXP7O/enzx4O9min+FG3tlOPvlWxxAnDHtcIfu7r3Gqrd/x6eLNmYkB7xZNvHz/1jvu7iT53m+grXnrolePW9yqWusSi12HBVxs16GaoUjEdtTsbunVQPGdw7x+Z3EMKm9yLFzx07fC85ZKKjc7Q/2XRUfGdUbb39WQVO3+goku64Ec3DblzjfsO7R1D7Dsp/i617cM5JSrWoJ7KplDwyDbvX1Opil20URvm1lnxOZP2/ovg7nvsvUGl4Cf1exiP+aBix19vq7ehi3B/sAxz/8I9/dWXpw26Kt7OozJp70cV+z6j9e69grss6NFw4Cf+nDLRsNTvpviCd2buBdznmiUVRAq+80yHPL8yFVth0sXDpLvwe3F9PaXbZ35O++Xw6brg9SXvogfcn863dbTtoXjXojzvpV9UrO+gutSngn9r3ExP96uK/Z7krePYU/Gsvi3vXeY+wC/KQRbcQL3Eb3Y5f18+eHLbsl7CfWPUJrt/3DctnhX7U3DTK+/0IypUbFpmzu3NBsLvTlfz3+hK/js62ORBU0Ph/tmq8ssX7itCG9wMFTwk8OjHfd9ULDrq9tkuvRW/qaf+bVCVilmED/GLFfx0cI+Gr7nXm7jKztxIcb1IdcPAan4O3O2pdkvwDt1CZ/Sq4fdh855xo/sI94E7b/dlcv/XLtwuR/DPI14XeH/nz+uWL5879lU8fEFQv9Y/+Pvmn0f2suA3VPKeVO6JMf43vYwV77f1y1/nWv6+X/NNv1Zw9YYn1jb8yc//V7ovDegn3DcMa+k89xf39eIa9xfuM3HfDzj8UrFFdK9ov+BNHA6b13L/YNnvr76JcD/JL3h/vI5fh9NnNYsUfGq91GM2v1WsocGIFv1MFd+132LhR+4Dd5U0uCb4qtGTB/73R8XWOI0pGz5A8a0StTL/y32d++2Hgs8xtFUv5D4q1Xabg5nij/I61m36x3/v9M6yUPD7l3ZQL5LYqG6DpYXmwvXvH9A8i/t89fEbPgs+pK6ByUo1ibVcr19/9UDFAz+1mtNWXWKWS6L9/ghev1nC/lvcdZK+fdg6SPHDxlm5rhoS0zeqtdEerPjoRssMmtST2ORryf8dEnzkwn1bL3CvGzQos6OF4hX/zMpn1pdY6s7lPyMFzz891fUf90Mhrq37DVH8mk556dkGEvvYrVXPq4Kvb6y+ZnxDibn3DezBhgq/rxnBzau4GwdHt3wgeJeUHSlHNCV2ruOu7xMthX//jx9ewxtJLPyhYcYrwQ+8eNWvlLulV2CQk5Xi/i27/QlpLLF65QetSgT39i94ZaYlsWxjl3eew4RzS+6v1ELuBc2+rK4RvJcqICGwicSSffvXbWDC73eRZ7xhU4nNGmvsXW+44n97X09+yr2+R0lusOB3vi1+tkZbYi6pM/u1GKG47tZVNR11JLa659Y1RwXvGlXY4z73AyFLErtYKz6z67EFns0k5pOrVRAl+IiUi7F6uhLr+8m1up+NcP8f2FktlXvPuLX/rgg+x6l4wcLmEutRz67OaqTie2q/Pm3cQmLj87NK0wTfkjl+3AXubVtop48bJdw/T31/NktPYk5HGu7PEZ19clFrKTH7qSmTZ9kKf79Xj3rR3H369FR7K3hUzdkE+1b8c2487pSbnXCeP+6+qJb7zDwD0y+Cd+rnZXSytcTK/G5dXDla+L5WJNXZtZGYxwftnr8ED+tnklfOveO/Vjs3jRGeX/3Lboe2ldiV87lFDcYK14PV68usncT6F9t3CRF8duf6V0u5f/ALnN5inOLDTs9P+6+9xEJ9l244Inj2ri+vB+lLbMI17f2dxiv+Ojpa4y33Fb3dj54V3OnePvMdHST2+Pr6fUYTFPc7E7myf0eJrZpluz5J8P/0VDfyuJdWZEwdNFHxVu9G6QV0kljFMo1ONwTPeJ7pY9hZYrfSavKtJwnf79XV8jPuOa9PbM0QfNaMYfPXdZGYZoxa14n2iu/w617atavEjrRpn/BccN/aHusec9dt+7nPrMnC97hneNtV3STmGLYq7I3go1usSNPvLrFr/136tdBBcWnctfXp3NNLYsd+FPxhA13m1UNiK/fODvaaoviEZuu0W/fk/78Bt1OrBP9mVvnxFveR516/8Z2q+NIRq54t7iUxre9JlX8EP6Gulq5rwD+feVY1gdOEc92og2kp3LVz/T82nK74oVzjpwsNJaY+ae2TXYJrbXtc2qS3xP6lGEbozlB8b0d3rSvcU7X3ehwS/IdX/aHzjCQ2cVhCl/YzFR84KtxHsw+/bodteXhCcJ9lJjeTuFepN1vQfZbiLVNTdR378uszwKEsSvBDP6286xlLbHniONe+sxW//P1C0Xnus7fUZScJPiWw7dQZ/SSWUeVsNNBReP4uWZZL/SU2pMZvTYrg4QEX3GK4B/o7XBo2R3E68FZtqonEnu0sendX8GkrfkT94R6l1YHs5iru9bna8Zwp//t/t9B5LPjEnFftJg+Q2J1pd7QnOQnnuuqj8i/uado9/uUIPqsrS40wk9iLzuzt9HmKr+h7J3yiucT6bNW5UCD4gJKOIbXcnc0PrXKaL1znHaZvPz1QYnONnvd6L/i+CJeQ8YMk5up8/7Grs/A5jB994jv3ZjnL5n8U3KD0b+rJwfz565stL12gePGobSVjLfh9YJLsWCF4+JCi9jXcm09JurtyofD3h/6dc2KIxAz8B7T7Ifgh47LoMUP58+7pkgXrXBRfnXNCvZr7eOvZYX8Ej5/WblG4pcR+5/xN2+QqnCuCZ+aOtuL/Xf6zijXcFN8wauaUKu6DRnl82ib40JmtC48Pk9iyriYljRYJ99tD+71GM4ktahmfs0twwxePmlZxf6r/LkFnseLHpJRrx4dLLH7Qo437BFeFOS8bPUJic1zdLVu6C+fhJ6kmVdz3nL1ZFir4hkmP/h23ltjU2ofB7TyEc0L19vzRNhJr4BSsf1xwzX1VN6u4z81VD++0RPGk340Tw0dKzM21f7PTgoc1yowbM0piWxvprey+VPF/IWaXq7mvSj9/P1LwcfOsH56wlZh12J/Ghp6Kt5lS9WGsncSmhWgMjxXcjI3S+859cfgt175ewv3np/m4U6MltvuZyYYEwZfPvBcyfozE+vWevdlkmeLtTMsKf3DXjBu8/qLg3efGmp8Zy89djlkLzZcrPj5RLWziOIk1sWxjdVXwdeqftX5xnzulbUMLb8Vf9l684+x4iVlEPr2TIngErWo2eQL/9wwZ5mm5QnF3x6YRv7nv01vQ6Kbguc1NbaImSkw11PIQWync5/8Wf5kySWJLr2S2uCP4lB96Ef+4fwpqEWi9SvErL564xtrzc9TtZu/uCe62TGvAjMkSW+eU1n/UasXrnczQ0nDgz/2lxt73BXdh9SriuVtXTTxt56N4cM/U4tlT+Pf+q0dahuDxxl8LGkzl/3zwxVdj1gjfo8nhdxe4747/kf9I8IsNr1U5TeP3Q89vWeN8Fa8OHqerNZ0/93POXMgU/Euo/ZCr3HeXau2YsFZ4ntZP91o4g/89V3pPfCL4x4TIeJ2ZElsylupPWiecQ5ZX/bzOfUr8rrhswa26RdsvniWx01+yR9qvV7zj6fQLerMlpqf3KOup4PszbDvf4X6t73q7yRsU/+Td+4inI38e2aqSngketdarQ7s5EtuwVL2pw0bF119vdv4+93mxeTNzBLdroTN65VyJka7bQQc/4Tw8d9HXTk4SaxEbczdH8MmrW5/M5B6+PfKtg79wPQ/uMHftPP5cvjyrPEfw5ECfHj3n83PRiLSvDpuE56lJl5853JdalbzJETy4S/s8f2f+fV25dcshQPh++y+422cB/75u2O/NEfzdkOqr+dznLDgyxSFQ8f6dsq9tWyix/EtHGuQI/i2lIm2AC39vSp8cM3mzcJ/8PL3oLfegyDvDngmutfff3xBXfm5Z/PGe/RbFf23/0GeoGz//6D+0eCr4ngQdtw/c972Yf3LSVuF7LFkRc3CRxF6eSfzxRHC1Js1+WS+W2MZj19jEbYL/k6ZWcF/7zNc3S/Dq8PKU4+789z698tT47Yovety3zzgPiWVadU19LLi+y/GoWu4xx7QejN0h3IfHWPaPXCKxN9vO330o+ITZmvemLOXvp800E0bvVHyE77/5ap78vjGp/a4Hgntt7tQ4gfvTmaWzbIOE8/wct5tzvCQ2dsTSNumCB0vPNjZeJrHenWIe2AQrvvX3vNHXuJ/VPLXoruCPt2p3dFsuscF6k2uH71L8rXPh3xbeEkuZmbL2luC+K9I+3eHu8KWozCpEuN6OPHi3bIXE1ny8NjFV8O/X3qs6rJTYT5eJp4fsVnz4xRaVj7nXrDleck3wpx4zG61bJbHCIZHtB/2n+Iy78X0MVvPn8v3FIy4LnnRMz/EV9/QB8owBexSvKdp+YIuPxEYdaz8vSXA3twb5pmskFtu2yYx+e4Xfr/5ug3fc1e9fYecFL36vv/k/X/65XW/f1mif4p7HEz9YrZXY6JZDVVGCD+hvN+sz949f9MJ77lfc2//Ni6Pr+PUwP3pMhOBhy1Y5jlnPf3c7a+UuBxSfLjf48oN7zBb1lScE903fvzNyg8Ruez6o0D+oeLOaNibTNkos2tlu3lHBp846oNLw4+e0jYE3Wx8S7hu5GqcucK997at9UPCiaa7uzv4SMzzVe1LzUOF5nXzFstkmfn6WQjf9J/jnDzXtbnGv9+D26SaHhXP7o871vAIkttDt7OWdgm+yMa/VD+TPqXejkhscUfzRUJMfj7n3mHn6/GbB7x9prrZ+s8R6fUzZR0eFz2FkbsveWyQWcOm/xRsFb91to3k+94kFnfv9ErxxB/X5O7by63CdV4lPmHC/autycNA2fv6/6ru7SvAwtVMvS7h3TGS9lh8TftepVzof2s7v59vvJX4WfLnJGZ9RO/hzbW49I/fjig8a65JbzT19mvohWfC6rz+sI3ZKrHrvjUrncMW3a85JnhIksetmA4e9Efyt/+4hGsH8/OO8dP3sE4qbDwu5f4F7+yHzo18JXtFn+twFu/jzVKWb4XBS8Wjz0r+6IfzzDAjIfSJ4P+thsXe4mwxKyB17SnF/y1kLvHdLrFvvsIz7gmdpD+ze5T/+fu03Ksb6tOKbz+RUPOU+e3b8hpuCm8l9MjbtkZjZ+5dsyBnFE29ax/Tfy/9+y9Sqy4LXtmse+pZ7993Oh00ihPO5fHj3nn0SS/ib3ve84JLmyz3D90vM69LHiwZnhc/TO+14BfeFrzJ7Rwj+o7Hr5ZMHJPY6eNm+TpHC53DnUq79Qf68+P3s01HB3TYl1VM7xP9+++oBrc4prm4+yzKJu3XCK8+9gh97HO3nHCqxgdZrDzeJUlzD5NRj3cMS+2xSdHG74IMdrLrd5X7o3L9b6tGKL9PfsHXFEYklZqpSNwrefKPjt65HJdbw8Y6YWsFTnPPdn3O/nPl1x8oY4d9/rapsc5jEev5uOfOr4P95RfmaHZNY6y1/W7vHCs/BFTU6Mvf//ovKUAn+8mJe0sHjEisdo+fhFCf8fjvZO9mG8+v8zYjfeYJHnZ3V8gf3zutM/KecV3yFWdWrcyckNny06luW4Auvtzsz86TELq2eMWN0vOKlhk/WNjrF32f77Y67K/ixZVqOKdx9T2//Zpmg+OwNT22XnJbY+t82hlcF7z68vZX+Gf69LLlnb5IoXFexH62yuN/Xb+AeK3ijeIsxfhESC2VNVvRIEn53Fo3m9TvLryv1V0tOCB5qNd3/LXfTAwunt70gfP5xHWP2RvJzVPfLJvsFn+Ezv9j6nMS2vH/0p8lFxd1D2naq5n78b0TKNsFbqOzcz0ZJrCzKZjFdUtzU/eON6dH8fq57rsE6wV/o/tbXjJFYpEf2wSrBrbI3bkvm3kFKbel5Wfgd7V/6yyNWYrkJy7aVCL7a4b6vfpzEjv0rLZ13RbgP/Nmh9oS7X/2eQ/IFr7fzwgH/8xJ7X2W40eGq4k6lw01N4vn39acq8bHgs5uYFrznbjVty8uR1xQ/W7Z514EE/j0aF366IXjPtWZjbBMllpVaWzEwWThvRI1oVsu9jdnr0gTBnZdFv4tOktjejB3ZBinCdXXb/YbjBYklx9edOyX4iH2bzjS9yL+v9gO9210Xnst5ZftvcQ+1GWy0X3DbHdG7vS/x8+cc9VdaqYq7hF7d3+0yf74fO+C9RfCBdS3OvOTua1H+57fga6NTU7df4fdh9+brV99QvP3hhLcWV/nfv+Dvhy+C29z4pP2Ze+Cci3ZuNxUfo7PULvyaxCx3m4S+ETx5i0mQfTK/X/Vbmzv9lvD561nkqqfw63lNkGa24B0ubzK+zP16uGtvu9vC+d+pwZ5F1/l70+vGVrcEr26QUdc2VWJNPdcNH3RH8d+R97wzud/aesksQXCdgT8q/W5ITN85uW2vu4qbxM3fYHJTYjcH7ywPF/w/tb/NJO57bLtfaXVP8X3GWQmHbvHfb1qQ527Bc40yZ465ze/zX1JbNkhT3PhbrdZv7ud+p8RvFDxs3eSH8Xf4eaDP1sE1gs+5+XyP812J/bna/uLSdOG8dGXjAr17/H2t0K+jJPjduROGPeCu/zx+neN9xUvihndflyaxuwWxD3IEnx4+Ta9vOr9P9vOpP/aB4pP7BGm/5d6+qbbZHcFnTC5qvv8+P08mrZwyOEPxpppju9g+kNi72ecWJgg+Y9wzi5/cS0dFu/R8qPj4VsvnxGVITC1p7fTjgpu7dN8576HEdha0sdB7JNzf+n++1fwRf46obW8SLHj3Nel0n/ujhWlP1R4rnjEgftzaxxK7MOLZVl/BTy+IONknU2JuBeeNygXXpMh/xdyve86+65opnCs0kxbvz5LYk6G5Y4oEf+57r9D2icQab+1+1yFL8U8TCmf+4t4ryNrooeDVW74Xn8+WWNddJlvZE8UntW/h7fyUn+czK7MvC75Hu1+Tls8k1n/XZq0+2YpvnDM6KYN7StPSQacFb6Uxd/6GHP7eul9/Wpuniu+nJW37P5fYeafuC3cLPn3K8iIVd/uLf53rPRPOFb88okNfSKzBi9jJ6wR3r5q5adxL/t9Vr49pheAHhw12/sd98nZ/Dbcc4TosaDD+4iuJrTwVmV4ouPuDu8MX5fLr8NAp38nPhfNPPQ/WPo//7mKX6z8QvHrPL7ts7uY99JIsXyie6bli9uZ8iVmM3jXwguBqYdk+gwr4e+js/LheLxXXa9vseBn3yyfrWhwX/PIHk6wThfz6ca5a0vyVcN5oPKDh1CL+XqO6fWm74CGbdMdpvubviUtdvv4W3GLc48Op3I1HvmmzIlfx+UudKpa/kVhaorFZqeB35YzJPYr57/rntOFz8hSfmax5I5970KKpVs8En/ixvenutxJzHdHbyDZfONf5UpL1O34ezs5tdF3w5osvWfzgPsdxbn6/AuG+nWqeGfteYvl9rh+JEPzkmsDF81US8wipHNu2UHHH44e1W0r8/fo+fQkRvKS/z82H3C92+eivXqS4yrytr58ssXYfYzTWCG6c6D90QInEKtxsfcsEzz1zTvMD93T5+ut5rxXv0vK/4mOlEvNO1DJ7IfhOTbPbkz9IrFXzgetHv1H8XuCBmAYf+f/v9KEXUwVP3BEffp27SUb7ov7Fwrmi06Zjyz/x94VLuTURgs8f3zCiRxk/h7gto7ZvFa/Ts75cwH1QH1XdLsHr+xs//e8zv/4nD/hA7xRftedR9cgvEhvZbX76KtEn6XX7xd2n3H3/B8Fd7jZyTPgqsTCNyQ5z3iv+ujzqmEs5fx8/31L9qeBxb8pL21bw++rQa6dtVIrnHCyyzOZe8Huw2VXBd+l7hm2plNhMdvhKb0lxu3UnNIZ84+cch1eG4YLHXfFeXc793NaqEF1ZuJ/kv6uIqOL3Z4OK91sEb1b2ZfXsan7/Cc40qBV8SdX+es1q+Pvynx3zlpQo3rXu2bF07rOe9tj+RvCyxpHD1n/n9+epZ05MLhW+RyPtT/1/SOx2gVp0muD73DRPlPyfXxpxZtAH4d+Ttm/usVp+fzZbuDtGcFv72B4OPyW2K8bNo8NHxd2a2/9o+It/Dh7jB+0RfExL/5wb3Cfd16tR/6R4x4UDr66s48+FZrfPrBZ8fINVZw1/S6ze8Yk2HwRf0Wjg8WLu1jdvP59dpviCNevCD/7hz4WMVtOyBO/lyKLH/ZXYNu3JD9hn4Xq7HXhD7R8/B8rLel8Q3DPJuvAq9/unVvp1/yKc24duVPcimT0KnXPvkOB5i/sP6K4mszP6Rj81vyr+yna2ZwH30K3FndYLvuBdbeIedZmZGKwb9EXwfyMb/7XVkNm42XVsXrniy/x2Tf3Dvc57ocUzwSOPbrx0sZ7MItMvdLOpUPxZZGEHj/oy+x778e8lwccnRuzp3EBm+es1H/esVDwl7VWTXO47dunsOCz4u8pl+0IayizQ/J9542+KPx7l1WWkJv/nn+S+WC/4lSfZyb+4xyQccfkiuF7YPsekRjIbaDJKdqoSzoHJlxosbiyzjNiC6U8Fb2hhdr2jlsyG+s5OHlEtnFsMdNa+5H6tPK3JRcGDQm2G72ois7gl7SZ3r1Hc9WB2M5umMksb5bjtoOClJkmffnL/k7s9rsF3xWljSVaitswObjh5b43gBds8UxbpyEx399nHHwTPmzcysWMz/ncuCk2b9UN4rrVxT3jJvdtCn/hHgmfcyb+6S1dmPV5b7xxaK9wHlh54aNNcZgX9/0yNE7x771DpF3eDlLO6HX4qXqH1VvNCC5kNeml5K0TwU908B7rrycznzd25fwVvu9nSs3NLmR02HfzF65fiSy3Hn8/lfsT4uGex4GXOR7/vbiWz5H7f3kyqU7xDgx5jbFvLbOP+QSNuC3596KeIP9yTrnoe6P9b8dSWHxpdbiMz118H8k4KPvqcvu/StjL7mny+qe4fxdM1tpV3ayezsqnXBgQIfn9Y1+WF3If0vjy2UvBOS8t/7msvM/UjEQ7Of4Xv5UTZrrH6Moun7eOeCW70Vc9QvYPMKm/PMR/xT/G9S9yfJHO/YdGzWZLgF/uUbvDuKLOJj1WFnenr/3Nf211mhp349/jq4OE9gv/Kml7zlnv965a2pKb4zryRtw53ltnPgjxpmeCJ66fus+8iM/tQj1XFghtnbfbS7Cqz45O/VU9UV/zP+6dTbnO/umS5203Bxz63sPbtJrPrdnJGXw3F119KtejfXWZNRk/WPy54v+MzhnzgPin70vwm9RQfEqE58mQPmXkNb3ZoveDn3mZNn9lTZkf/Lkz9JHiq+9kVzXrJbJRn4vNZ9RWvnB4SmsHdsKKmMEPwn7c2p28ykBkrM3s5qIHit1K3/R5sKLOHdz1vRQq+wPWAZSX38YUnj7ZsKPydOTFbo3vLbP+RJ25bBM9vn5HrbCSz6AU/ulUJruH4ybRdH5m9CWuf46ypeEqUTmgO94cxQ72fCm7ScWC94L4yG1kzQ401UjzvheM6G2OZebxbHnhecIcSv5913I+/3FbdvrHiG5ceD7jUT2YBg4/OCBJ8ScDl5p79ZabmHRtbK7g7S4/rYSIz25KUCjct4bq6/WjSG+53/2X0fCl4Xue0ukOmMuvZ49UEmyaK165NSJw0QGZLb753TRLcrzTIS9NMZlkDyr06NVU8Z8tU8zvcH3ypWxwi+HbPxvXXmctMf1qjqXWCr7wR89p0oMye5bTu766t+NE9A26VcTd62uvPK8GZxpnoiEH8fnLF4vpIHcVzTX4cmztYZnYVEzwuCK5nYXyklYXMSktcGndupnihuW14NveKev5hIYKPG2UVt2OIzGouHetQJ3jKFt17I4bK7LnzzT2LdRW/pnvn/S/uUT5S9UvBGzUeq3XJUmYvnXTG2jRXPC44xtLTSma/trI9iYK/vPTWp+cwmdHM1Q86tFC85syn5GLuOiOSyoMEj1lzv/4RJrM956s0awXPnbhitsNwmZk1tmrhqqf47tGfr2qNkNmneyHaOYJ32GLaMZ27ZFfya1hLxRt0sQnxs+a/Uw27vFjBGzH9+oNtZHbHJTGyTSvFW/29vrWS+9T8rm5bBXf066wTO1Jme7PDW30TfNhbu1Muo2RWfbn7NafWis8c2d+yo63MRtRdGvtY8A2Pc4tzuftq2z8Z1Ebx5EOWu/bayeyt03frCMEnP5gzYtxomf1zjIpq1lbxG34D/9Ubw39fq93+bRD86psH6Te5P2xvYvdR8J6NdA76jpVZ5k3NTdPaKd63c2NP03EyM8/+En1HcCPbqxM+c8+78Tatb3vFk47rDYocz393de+eHhF815jOhvMn8HPar8qs+vqK316a163dRH7/N9JN9RZ8Z++hvV5wf/SPhb0W3DHSdsDuSfy5+clvyZgOir/T+Gk32l5mLZ2e9Lks+D83e1f1yfx7yTQu7txR8RdVY4NTuVP0ycBdgl94UpLs4yCzzW7dW9cK3lO/a2X/Kfx78U05trCTcN1SXf8y7v4OC1tkC97h9LK1Z6fKbN3iTuuHdFb8WXe/R/OmySzYuPz5WcE3xXfv3m66zFq3fd5Bt4viT1yct73gnnbs8cwNgh/3NK3cPUNmq4zzt5QK/vvrQZcxM2U22eb3KYeuwnWoE/RWYxa/nu3NE28I/qm6ietN7h6ZWxIMugnPqfv633xn83Nan7IT+wWPi726fYCjzGaULA74K3jZo8IeX7n39f47xb274kXjtmdGzZGZm01c6xeC95x+bf3CuTL78nxF5rAeiofpeg7o6CSz8iMOK6IFnxh5piqPe16T8Y30egr3W8vZqfvnyWxKxLy9foI//L07ZOJ8fk7IC2n8UfAsneGLGjnzc0Xn3FVTeim+JXzJmDTuN74PfXpD8DY5Omb+C/h1m5Oqb2CgeMXz3r2GLOTXVZ/Zs/cJHpGV0rWGe7Kf3s7fgjf4eKNnoovMBlh/jnIzFD4He9MBS1z5uaviXfJTwUf2bTW6pxu/Hup9vz6kt+KqmEWu77iHfTdIiBD8YlX34GOL+P3Zev1+bSPFz5qOT56xmN8PF3xZ7Ct48b7C8ubu/JyW49/vveC32DPjJ9w1mgwoHddH8TcuRj47PWS2MrjhnsuCaxl/SB+5RGZjMv8YduorfF8P6nekpfyfH9vq8g7BP80J9LvOvU3gZJNvgk9vP6fUx1NmEeUJ4Y7Gio/ut3emqZfMbumY/kkT/Fx6p5wv3KfNyxtv3E/xI1oNpkYvk1mQ45mQUMHXGFu/cVnOn9cB+29Rf+H845izvLO3zC5Oin7vLnjwnUtaRdxNbOTvOYIfCCmND10hs0UFdr+Hmgjnw6+LZ09Zyb/3/c++RQj+UneQts6q/zsnBBY0NVV8cC/7R4+4r1w056KP4Gzuhd3bVsus2N9pY7HgjVSOjtY+Mlt8Zefg0QMUry4d2/8v95igN1Ki4P+FbWyaskZm2zbMDWxrpnh032/fVvvy97ImDXUDBR/xJPKtyVr+70ku3PNJ8NDzR1594S7XL1KbYq54l98ZL6LX8fcgb02X64Lv+mRa6LpeZq83Ol/tNlC4z0e//NhlA3/viCutCxa80COB3nAP2xhmUi344Hk3Ox3dyO+3qzbOnDNIcbdrZDfdj7+/N9+9PE3w/lGrfJr7y8y7IGttn8HC/WR+m/gn3F0nWq06IHhxi09fgjbJbHRl0bzfgq+uLjW3C+DvobbnLV0sFG9o3mybRiC/Hz6Nb5wp+EZN5ze3uOu0eP9wwBDFv5/KG7Zhs8wW7LNbFyb4Q7PV5wZv4ddVTnF7jaGK76g2a1PDPWV6bLyH4H/0Wu1N2iqzFRExpjmCGz1q1dxrm8z0hr85Z2Gp+ITR5mG9t/P38Xhb7VOC591b1qeUe/fVkqumlfC78E5LP7ODn6PaXotfJnjrbSaL5u/k12fnux9eCf504OVmHYL4+aGZht6wYYr/vTbhbj73+cvX9z8ruIn1z/WHgvk5JN1oWBOm+CDNK1ZTdvHPOVTPaqXgTUcENmwWws+fSwb2LRC8puuc/EzuGY/2ao8Yrvh8acTFnbtl5jS017tzglOqyUHb/2TWe9SPCO0RwjnqraG/xh5+3liuPnu14Od3Gnjf5v7bZgwVCT7oq9GSjXv5v39MZqi1teLSKFPPIfv4e6Xmrs7Rgm/NsFjzg3t2451HdWwU7xg/fOel/fz3lXevvo/gH4xHnfE+wO9XdZYLigSft3lUuvFBmX3+XZ1gPVK4z0isvIz7LrfPX6MEtwky7RJ9iF9vd7t10hml+M349o5uoTILPxo2fLXg34N+Hut2WGaX106dUij41pmPSt5yn/xp4owRtooPnLxrcPgRmc1aEzz+nODaCVb7HI/y94jYxgOa2iluH1dU1SZMZjtaZDVeKbj35kVzX3GPs3j+PE/wHsuKnuw/JrNhMR12Dxut+IwYi9GTj8vMoTLOIkJwo+UbH2qH899jWMCrRmOE817dWYdM7tvNjrksE9x9Z5Jq5wl+Th7zR/VC8CFTwzfYnZRZ7OKzU4eMVdz3sEeH+qf4ebjDwSsnBPfYp3f/Lvc33zMb1R8n/H79jvpsOs0/54AJEz1EP/LLeNgZ/v87rvWWbMFndB5QXsfdROodazZe8U721leTI2R2Om/HvSOCW7r13L7mrMxqr5pk/RV8/MnXTuaRMmur2zNj4QTFO1u6Davi3nml26UMwe+vudkj6ZzMvDyr9vadqHjAXklvWZTM9v2XNX+f4M8fvNLqGy0zZ/eazj8EXzFrf+My7iVBS3IcJwnf+9Y2utExMnPf0n/1bcGPBrl0WhQrM8+SkY162CueGLXavEccP/+MiN69U/ABncZOUXHv1cup/lfBa/u+9T11XmaNDFw8HSYr3rzlwMh58fw5+/L6/SuCP9AbW9ghQWaad1112zuI5+d2bYq4J/otmOAv+KT5Z+ccTZTZ++MX1qkEz+n7MWpmEr/Ok6YfsZsinFtaS79bXZCZ34RJ0bGCj3Q6MPMld3uN4zE6U4XvcWTt9f0XZbbcbfjxlYLra2n3crgkM4PGQwJyBf9e/fxIs8syqwoImj50mvDPjxytl819t7NphxOC6w51PxRyhd83LE1fqk8XzkX65p3HX+W/l6ggPzfB44xikhpfk1npIMu2jwQPiL0/9iH33Zvszvadofjm4h1l25Nl1rz1+a57BXfUKt9vmyKznXs891YLXrrih0396zIbFbizcsZMxa1nn6y7x/1ZgJrNdcFv1/+QEpjK/3u7v9racZbin5MzA0bckNl5Nc2UAMF3XR9vTzdlNjA+tFgS/PQkt563uKvf2frdbrZwfrjeup7fLX6efJrzN0bwcSPnfbS8zd9rVvnXNnUUnr/9hr6q415qvUu1XPAFadGPUu7ILOv5z1vPBT9qF31/7V2ZHb2ZETJwjuK//w16NPiezDqE/Rx/RPAOZlNf/uA+Xy3kT53gD3r/Lr2SJrNTOzefcJqruJqRsbpPuswcM1+b3hG88YYP3czvy2zkgmNXuzkpPsvVcEI1d1vpVt9tgp8xLt948QH/vspGH/wg+NNOg6+syOC/U93BX8fOE/79AerfTR7y99bykMHnBT9/dLxVJfdLncat0pmv+JTLersSH8mseujyU96CP2k76/2yxzL7782fW88FN9RtM7xfJv++TldnmzsrHitNOvv1/7zLtGehgj9//Vc3Pktmgd87pf0UfKZtt22eT2R29sa0KMcFwnNz8XW1vtkye6L7Y+MNwQND0rd85n5od71RnRYqfpWG68Q9lVlOtt+fTYJ7NTE8teQZf655u517L/imOr8hRjky+6uTaj3SRTiHtB1e+Il7kt2m7LOCWyR6bI55LrPply9OaOiq+MUmf0w9Xsgst2b6jcWC91lX89HwpcxmR3p0fCR4+EiHqI/cmUv5ciM3xa2u6XpFv5JZuyz50i7BV3cxHeqeK7PrfhM/fRG8LDNJxzCP339a99adtEj4vTf8r+wD95Nmaw0TBZ/SMeNJVL7MDq+2HKC7WPEkJ8fkxQUyu+u7yniF4Iat7GINCmVW73WX9s8F37JvZ8QH7n4jRv0c4K74nS5dzkYVyWzLqOKMA4K3b97k/OLXMju3o2JnjeANL4xONXjD7w8xay2neyhuZv8y5wP3g+PWv70i+LahiRVRxdy1vq9uvUTxrvdyW7q/lZl+8KffawR3GTjW2vAd/717zFqdJ/gbqb7PR+7bx9kUD16q+MKOjZKi38ts3pOoIUcE/2HqUOWu4p/ngaDtPwV/t6LYsrcks6fsY/osT8UPGyeEfOIe6Z1ekyx43pVbcozM36MzO7Vu56V4yBydUUtKZDapstZwneDvlh+LNSrl55zNk40LBB8yyrXtZ+7pPXp3H7JMcVOjxbvjPshs6brNWkcFP73qTGPPj/zv6e4k/RQ8bGXL3X0/8ffoBynxs5YL99t1qW2+cq/X8KhHsuBBhYdi4sv4+9e2363beiue9vG0zbLP/H748f0VX8Gb1r5R9fsis4UvJtjlCX5o1pjgCu5ny6weDlqheJbzW4ukr/x6eH7RMlTwaS6ny73LZWZuknjqu+DNLofEmVbw96DoAbXTVireKurk8iruL98OG35Z8Ot784deqpTZ2o05a/VWCZ///YHaq7/JLLl7ecRKwaeEXSk1r+J//4aDd3IE13adkfGd+4be97NNVite49s68Wq1zIa/DMjeI/iWPjXhvjUy69Tt4e1ywV1efj1g8Z1/jynHzkz0Ee5LD9X3/eKubfNnzXnBfzr1O3T9h8yaLiyzarJG8b6fV5zaUCsz3buLajwET3rw+KLVT/57b7gy/KHg00cPzvrLfVZhUwsDX8V7pl/5cuuXzGzkwenbBHc9OKplQJ3MfLKqrWXB9zRT2Vj/ltlES+sLNmsVn787ZK3GH/5cLujS4rTg991srqRxn2l/wJXWKV5eqf5r61+ZjbE7Gu0k+LAdj0ba/ZPZ3MVmxamCTws8fEiTSljtnIUN2q8XrjeLJeUPuV9+0qvTWsF964+YFKxWwtwWBRrmCl46vM2V8eolrPmzlT3MNyheNLK8m7ZGCau5/Lv5fsE7Lkk7nM3d/3aHbxWCRzQ9pLe3XgmbGZZ7d+JGwbctCHWoX8KcKntvjRN8T3+DLnoNStgJzzYWjf2E68pNTnrJ3eX6yTeLBFcPPDwmtGEJM9qWtjpd8KBi9mGmZgk7vXbL367+wrklPz+kXaMSljjine8mwT9lugwp4r4yqFB6LXgHveIvxxuXsMG0ynroJuG8rWUXNU+rhG2bFLv3sODndMLcuzQpYa17BObUCH55Q76Jivvrvj/rTQlQfH0CqZ1tyr+vVrqGiYK/q6eT66ZdwtJCHg1rGqh4ywL1SwY6JSyL9bT1EHzF/8d0fcdz+X5/AE8qikT1sVdGCJWMSuWSkZTMJETISEQkiajsKGUTirSksmVv0rAaqOxxD4mMVCjf6/fP733+fT7ej9vtvq5zzuvc+JI4hr37iwR6BTzxUlzgM04CdbG/kpEIYrjZ0lYvNy4CzQetXXUNeJ3fE9ft6/H3n/j9oRf4piNLLtPYTyxcj1UNBnm+Q8GzcAOB/hyv1UoEvnRa7Yr3RgJ5F98jZ4AreYjH7vqPQEz1kpcNQxher9v/fB77iq1Hlz8Hzm98rq2Cm0Dcj2V9V4cyvJf++CuAh0Br+p4NOwAfP8cmtZ+XQAOB3Wp1wG111lsx8xGoTTsnUjgM9LcWMrkRu1aXwhtf4H9PRfSG8ePzIm3mO4H7u/yWOiRAIDfpfYKK4WBea2+/xC5IoEXdV9tuAe8z2t7Rir3h75LSN+CeM3PbooUIpPKTlNW5znDvyMB4E2ECzQxe2ZgJvMOvg4lbhEAfLjRP/AP+ZPOQVzf2Xru6MosIkJMn8ifuiBLIxNLNpxi4n7KGu9UmAj3kapFaH8nwAeuoORExfF67+pvPAo9viQ8ewp4Z+NDyNfD+kWN8D8UJpJgpOiBxA+Q01vZCJwkCOR8xOnYV+JmUpWNbJAn0UmlX1VfgFstHlsaxN7B38uy8yfC9GX45OZvxc67LnooB7tPT4OApRaAC693p34Hn8FaJKUsTaEh9WdvBKIZXlzkQv7A7j1ydzAReJVWWWyZDoMm/5UxLwBcbSq/5byHQEY38lRa3GL7yt525uiyBbjnaLxQCT91cuJNZjkBzIh+G1t0GdVScLdiEfUZ8qfwM8BccB1mvyxNITpoObQT+KS5s/vBW/P2HojVFo0EfyDk9w7GNQIOs81O+wCua6OkO7FlGYjGfgIerr/4Tt51Ae8+zSWyPAe8Z3LjyuAKBkETx4wjgMfOCfAI7cB8TEBcaBb5zDYdiH3YBTpNgFAv6iUCiSYYigXaWHuhNBj6TUOxrr0Qg3dZ/UrPAX4+ceSKljL/zqsv2+nEM/3g2v2cM+z/+6pgnwJlTInleqBDoQl1z/vJ4kBM+zR732EmgqKLkhhPAK0LH05V2ESj/2Y7mYuBHeD0mf2H3s4mr5Exg+LrZq1rluwlUcr36wRngfMH86QGqBDo1WOjfALxkx97lGnsIVCh64aBwIqjTMyNnVu7F/YeJaaUP8P8SuL40Y1/cY17QATxWtM7gxj5cj5EBJrJJDJe6MPvWQA33vSyP0WDg+5ce6W9A+BwNFJ37gN/c0t3Vid1sV0PfzmSGT9mFOt1RJxAhLHkgGvjNjbl/rfbjeq88dm8MeEm2yZ1NGgSKaDMf07zD8DXx7vtGsRev2yaVBlxv33LyiSae77u7TOeAR3KtSXTVIpALq4m3QQrDV10JObJdm0AKuzLDnwBXnfFcM4u9Irj5BlMq6JNf21teHiDQ5qf1gRbAhx6lJfrp4N/bx58pAH6urssJHcTz65yaFnsawydS/dWYdXGdRlavcwA+/+CmwCvsFh58LZXAz+quWoo4hPt5v95l7rsMt/wzSukfJtDaWAshd+CcErKf1+sR6ImuZu4r4Bt3f2zrxD5Sw6Iseo/hMk/63905QqCE4ifZPsAPDx5ut9YnUCO1eWMH8GdHeb6IGeDn/xfkJpPO8BpP9TEC+8OFyrJrwLc9a1yWbUggU/Pu35+B93s8FHI3IlDQ9/fSOzLAfFTqU1c0JpD0xReHIoC/cHQ78wu7W5GL9RDwMp+jd8pNcF5yYrNXvc/wLz1R7VeO4vo6EmUZA5xnpeBaLVMCRW7+qTUGPPfUvAHrMQK9y1cX1chkuIiLdPI77Jb5Ht+TgQtGPaBumxHo+mj4syngceismulxPMfZw6x0HzA8f/rqHT5zPAcp12UZwLv4+xZ7scep7on/DTxTNsjhvgWBltVPCxg+BDkwye2joyWBTmrGxT0GXt95V1f2BIHE/UWX/gH3Nl/fOIl9TCHJ8tgjhl+Pf3Wg0IpAgeKLWc+BVy9VtPpY499vODK24jHoS2unTuw7SSDjxkjBE8BzdthNMdkQiG++RL0AODvBcaMJ+zuvT8fWPAE5IfWnXKQtgeR/D1rbAu9/t/GjgR2BJHX6j5cANx4/c23jKQJ1SrRqrctieJDHnNJn7DeP5og5Al/+oWgizZ5Ar5KDpiuAp4Q9fmHnQKDtJYcLNzxluOGqN15SjgR6fJ719Bng9k0C+8exK94uW1sLf49SNuQ5EWjje7uHPNkMb6QOjF84jef+X6ZtbsDzVYXeqjrjOdiV9LQBuPpzwdwl7LUS0rwCzxjeXqKZ0nAG7y9ZuRc9gP/7dPvGdRecE+QUX78Cnu6/PFjflUAXPXLZhZ+D95FOvLbhLIEeqMloeAEvMzwS0o39kfld5zfAmdzFb6W5EcgmnDNI9AXIaX957tm54759+2qUN/CyCzJFUucI5L97MvId/L3xsY5x7LEHrfzEchh+b23aTJ4HPpfgtyd8gO8UWxS46Emg8ULV7a3Al7F5Htp7nkB/72X/FM8FfUzzbwCTF74na0WeXwL+Rju1tAl7fX38sTbgeVFH5iMv4D0uknNaIo/ht5LX7TfyJlCe7O0rvsBdhwZucl/E+4Xrf0ttwINGqwe+Yt/PnXFOMh/McZHs3Rk+BPr8Q/GjL3Af9owkx0sE+tLQKtMOfFYm/a+sL+7DFp4ekgUMH519dHoKe7OfSLYv8KdjBZ+L/Qh07UdnZxvw/vBGw8uXCaQWmDwrUcjwY0e+tOz3J9DReacVvsBFin8YsgQQyEBMc1Ub8Cv7Wb68wz5aLzsvXsTwhbOCzjFXCPTridiAD3Cjsq3/zK4S6E6KdEkL8HMP9yYLXSMQh6NaoFgxw6NfaKkOY695b692ETi/qfbgk0CcY5+ljr8FnsO7L8otiEABlcQN0ZcM335py36lYPz+HZoiF4AXzrHN/8E+kF+Y+Rp4NNdASXUIgULkVfmFS0D9HnroHxJKoDr2T4GewCs2WRw8HIb3LMHQ3ibg7bx/ebnCCURJ6W8RKGX4u9wbk53Yixbknd2Bi7mwvEu9juvl1OY79cCDXru8sIsgUJ/crkqeMoZ3HilJkI4k0FZx+/cuwNV8vwVPYE/ekP25GjhfB/OlwhsEYn279sOGcoYvfVzy9L1JoCTum1VOwKtZ+zzVo3AurZdJLQduP5nqs+oWrvd7Iy7rKkA9su8Jfoc992KV/Cng+UPF8TG38XnxlwwWA4+e43h+PJpAyqbvw9ZUMrzp7f43wjG4P8+tFbUGfpU48n0Ee/Y7l6d5wCXeKnBnxxKI59H45pVVDDf9903LI45Al42i448Dn1jhd2lnPM7JaRZz2cCX2/cW/MXeZa6ruwR8OJ1rtj6BQOym1lHG1Qzn3c+tGpFIoErrO40PgTu+oUMMk3BfPfBv4jfwN3URXdzJONd9jVijV8Nw39xfW3uxy06q894DTvFtu5F5h0Bihpt4p4FXh2ybdE4hkEib3BrtWoaP+P4y256K88Be+4lE4N5XQ5rmsAs4NzeMAW8T6latTCOQj6TFzX114Dt/+V4YdBf3fw3+g7eBH1drVDp0D+fV6NU/h4BbdZwo40zH32dEOk65HsxrgQLtLuxr2S5JhgPf9qipMy2DQA7d80++AJf5E3/W/j7ub0I5wvINoA+niayRzSRQ2POE0CvAJwTtcH7C39k8f6ADuNayE0dLHhBo9exyeYlGhut3sC2/8pBAVQbXXbyBj/KdK9J+RCANdCC1GTiPfZgb+2MCucerVvM3gX6iaij/AfshSaePrsCLNr+eSn5CIKa6d1+rgNsW/ii3ySLQtJrrJ85X4DlujZFST3HudT9QawfcpF/bdgJ7q9SJe4XAlWPP7S3Kxnvonhfuq5oZfvk/LaHLzwgkEbBvx3Hgq6ermDWfEyi+YQ2ZBfxXYf/k6hd4Pg5xRy0ATxp7MNiOnX5uJ3XkNcMviaz9nJhDIK75ify7wO0GuDutc3G+Ta3Y/gP4sbKabsk8An10fpe+/w3Do1RXD45jf7lThDkW+LWJiYmCfLxnfS0yGwHec+rccr8CPL+2RN9VfsvwSOkbAhqFeG+dz+sKBf7ijbrq6iICfd/Ex9wNPLP7hnU79n3er0Rl3oHcMugWnlhMoKGWyu2+wBM8R19av8T9fGlxx1vg7oKT45IlBJobCJESbAF1dDZC6jv2l7rmHGeBK80VORWW4vvD6UNWAj+mfe65XxmBlNiH8zlaGb7528vfGuUE0tyYcu4k8I6LkbprKgjEsixDNBd4mR99rwM71+OfdcvaGB4Y1r6QVInz/GCymRFwZjlkZVOF809oVF8G8CPzig1S1bj/uH00mwb+LOj59knsXh6u9RrtDM82f3q/uIZAjqfNNsUCZ+GQ4Q+oxfNdNsFjGHjZDulE7ToCvYmVKVTsADnB/BHf2noC9V9aTwcBV+S+n/ER+3ixEedH4OzzfNtSGwgkJ0HJSLxnuFMSe92pRgKtSulU9gJuG+xjIdtEoHU/hZQagOsanfg9jf0fW7XExg8gD8QUp5S9IlBZaRmLPXCnnhCtwGaci7q5eguAO9Q1T+u+JhCzRuMD5o8MH+v2f8T1Bu8pHZ+sTYC7FGae/IzdykaLLRN4Ir1LOOMtgQ6/4Xo6Ddxi7d6h0+9wPqTV9mh8YviHwuzs7S0E2nDnXVU0cNsLob6/scsVlysNAr8z8ka/phXva3xr07Z3Mtwg6aJ0eBuB0u/V/roCPHRzJIthO76fEl+02oCHSa4Y5+kgkFCQWbBwF8NbZQc/9WO3TlItPgt8fbto4+P3BJJSD/5SAXx/Vm2p+wcCtR9TnmLrZni4fl3Bzo8E6i7Rn7cArme2qWAJ+6RGx88s4Jste1+++oTnRUfl8G/gP6dma291EqhY478Gnc8Mry9w7DDrItAtz+6EBOD9uxQIkW4ClauxnhgF/o7PZBmFvSj44QalL+D+TL4Ryf1MIFGxvMpA4HrGiVo+X3AOn5W16AC+uqfYTf0r3gu+cNMiX8F8l5S+y9pDoKY8zzNuwKNf0+/bsQceV++rAD5gM8+e3Iv7w/OrWmw9DJ8MOa5n20egjCilNHPgHB+WR8v0433/6wnqMfDmoV9fprA7eM5LzgEfNVDZUjaA96wdHMe0ehl+sqgiIHAQ70cLST4xwM+/uN59aIhApc9Sbg4Av9WZsnPDMIFUJXnit/Yx3Ob1VMpX7PNa7LcuA38jFrHywQjOXd/8/N4AHw845eU6SqCvfxwtePsZLuJ7mVIiCKRg0CrrCHwm94PtX+yK7/InC4Cr1DgNNJIEsjP67xHTAKhTrZ32URT+DtVz+gbAj/Sofz9G433kl9lYKvCv4kF+ImMEMvu822cM+P7SRQ4Ku61O2u+dgww/q/rsce433D/FglxCgAdq39a+NE6gFXrj7e+B9/k8pvZ/J9Dzh5+lRYcYLnD+x+01E7iuufTOnwXO8sFZ7QN293NauWXAc3aun0qZxHnpYX0/yzDIw+rUE/sfBMqJecNkCvzSjTEH+SkC6fBbcN8H3lHOIz2HvUf4vNAkcH03t8mqaZw/g7h59o4wnF/re3nYDM4PMtrM14En98bcNJwl0N65pcFPwE9/tbLn+4n34rc6BWKjDD/Rp6c+hP3gDaGL7sCvh1lvyp4j0FvBQPkK4Mo+0SxevwjkbOPdyUqAPGw0Mr33N84DqgsepsCNik2HV/7Bf/c217L7wC/ojHS3Yr+iVXZ1Arj/46gPifN4L9szN6NKMvy9j8kHmwXcny2azMOA81grdMss4t+HyOZ/AC41v3loGntdxua/IhT4/Y8dU+V/8fePLVF1Ba4ybLIy5B/eX9DQmRLgay6GC+sv4f008sHNFTTIFQZte3mWkejliWWZhsDXc0rZDGCPTJp7mgrc2yoqPIuJRHclwh9SwMe+Mhd7LidRKVEUozQG7uH2UGoPM4leNVz1vAp8+N8G0ZUrSNT/gNZ6B9z2e/aJVuy7z06t5v3G8KF0vbuJK0m0Z0Vy7Sngc1WzIzarSORqOOiSA/zk9/vbt7CQyG/XW9YF4Jvem16bwa6ZaZZ0YJzhbhvYuypYSVR5MYw/BniFWYNC6GoScaRZ3uoFnq/tH22whkSB8x/npL+D7x+sPMfLRqKIi7OGXsAdy76dHMJevVCWVg088dbd1mx2EvW5yfSumWC4ebaexoW1JGotUV93DLhX0WyZGgeJEmqZlDKAT5jG72Jdh7+Dx9nD48CXlOTLO7Bn5Qab7pxkuOBCmUYKJz4Xp4PGgcDnDPe12XOR6NyV0v0twD368222rifRmYFucd4foG8Y8P/6hT37/OPfdsDXHPaMqd1AooNim2ueA9/oV7ojciOJrnwy9f0NPPX6RNfR/0hU5L1TSnMK5HBRzkBhbhJ5Tr5tugncdUxQgcLuKLPRvBu4S/SG0TweEjlzcPWJTTP8aM10mh8viS6E15ueBc4pVmqpzYff/5pczUvgtbYOwuv4SXR0RE9o+QzDm7bMjXZj77kjeVYPeL70mfz7AiTqvvUyJwH4MZaaIFdBEi09Zx4dAF7qOWeuIkSiHQNr1srOgnPhYVdeJkwiD65WqQvA/6QvbXyD/ZucvnI18BWVbX9iRbAL3VBe/ZPhMrx+w1aiJKLawqVNgEedXPZeahOJ/Ldqc6QBv61u3TiF/YxkHUEAf306trJcjEQx6cvyt8+BfBJ6tyxEnEQrbzCd8wV+/EBAhYEEib5/aBRtAL5oplDPJ0mi+/b6DWt/Mdzdubh1+P98S6qFGXAnGfb+55tJFLY+dzgdePsBhdmLUiQSWB15cgz4x3MSHBrSJNJZkG9V/A367bEROXYZEvF1Jm/zB273xN2wE/ur0LagJuDH/2v0Sd9CoqfzbW/W/WF45ZHhh2dkSbRfJHWFOfDPTK+7lORItH1ISeE+cMkhL44l7GoKKYbfgFvcG9V9LU8ii/k2O6V5hjuM8UXEbsV1LfvRyR+4hxdnm9U2EkkVPDnZBLxn4hWv9HYSuVzRP7RuAeQKNuQ0jX0koEnqOPALfl5lFQr4vqVz/U4HfnXKcX3YDhJJvt9eTgN/JvKfu5EiiR4zS3rsWATvU+LfLqBEonfik3x+wK+73VMhsLduul1UD3x01icjV5lErN9Ztdj/MvzpP1YuPxUS/fGyaDwKfA/SD9Heic8xK2R3GvAdZ3T+rdtFoopLkemjwO0UZ/y+YD/Q6Tov/w+ci77hvwe7SfTrxRYdb+jnrELcVUm0fLYxtAr44BE+LtU9JGqOR6Wrlhj+5E5gxoq9JKoLTurTBy7InqTShj0hr2MuAbij2fH25H0kYl87ztQPnFKoc7NXIxFbOLW0ednk//suo49c2xCJHm5o/uEGXN7lZukf7GszIj8WA+9QHndoUCdRyial7H/ATztNct/aj98/tM7rABPD3Yvj35lrkEipbqdCFPDUz72hEpoketAYN/AJeE9Yk/Yk9oXAL4FCyxlu7qO/ukwLf+fx1bwOwN3tvDqCtUmUNyOe/gx4xV+VuwYHSBQdKSMwC3zt8nh3fh0SHX8kcH0PM8PdpG5qj2LPUFmgA4GLbRYWzT1Ioi3bXu97A/xh8YElX10SvQ8MDeZawfAn0SuHtQ+RKFVCqeo4cKFz5m85D5Mol+XD2D3gkmz7S75iNxexX0MCFxMsz3qkR6IVJynBrSvB80803fM4QiLtMhuxC8AjQm3v7NXH91+ilb8C+DuTyGQWA5xDYhRWMa9ieH6ARtp77Bq/Ikd0gRfWhjxMM8TP1+krug08tMsk/7QR7lfeMr5dwDn9susVjXF/8HVTEGZhuLdT5Od/2H9qv/hqD5zn+PTMaxMSfWqlfbKBB7L2r48/SqI7q8VWTwO/rmSoYmOK+8Y3sxu7WBm+LUnLWvYYifJP31h+BXjBZFnEHHbjizUujcAjf+WV15rhucz+8xXbaoY7uUpP3ThOIm8hWR5j4NvYhGSPm+O+nX7KPAk4U3SUs7gFidZH3IvqA7673O/ZBPYDHf3FEmvA83WGZ0otce5ykXx/BvjRmXoUcoJEmQYeA7nAl/sL3ja0IpHW+YbBOeAv7n8bEbDGObBFpHMvG8Nfi21XI7HHmQRXBgJfKqdS8k/iHPh3OrEZuIr8xn/+Nvgca10dONgZHqacZ69ri/9u4rTkUeC6cVVtG+1IJHIh5HMycLbVe9AA9ljjzVf7gd82kSzIPkUiZqlOPsm1DO9SvCx70Z5EE3T8ozPAuc+oPdFwING/GMfNucAri8/IcDiSaI5PN/kncK8vSy8+Y6/xVltS5WA4b8LirodOOD9k6By/Crz+6clX507j949xeNAIvPGzlMVeZxJt3Z88vGYdwx+PmEyxnMF98vHwf4bAZW4O3fiAXadCe088cO3493L3XPC9vVRj8gW4XLVYxxlXEn3pOnpShJPhh1o6LqmcJRFTO7O1PfB9gX2bl7vhPmPZapAFfCRdp7sFe4xnkdIEcINxtqhkdxLFrytjV+Ri+BupLQcdzpGoRLa36yLwbu6MVQoe+D1rRBIqgCv7u79exL70KlCHaT3DPwjH3W72JFHLHpZxbeAD1WtPxJ3Hc4H7RVAE8GqJr7I2XiQaNvThaAPOsX5hSfYCnheE440NGxiepufa/Qt7ZofvXzPgAcnyRfXeJApmL7JNBT5TuS/h1kUSTUZzlw4Av3Qlxc/SB/eBE+nMkhsZ3pyp7SB1Cdedk8l+Z+BvfqiazGCXfrHd8znwB3K+2tW+JBKV3Z0wBfyl0PK9kX4kWvx89rnyfwyPj+hQMbtMIoXitpeXgK9TJZXF/XE/Lz9ZVAlcemb/7knsMqPCj5i4Gb7Jf0C9PAD3520cEdrAz96r1Qu7QqJDCVttrwOv3DRywuQqnnf/XZNtAT779oCHyDWcw7NW0Zw8DN/hSF3/hv24QU3yUeCtJa8evQzEe83ynH1JwI/eGH4VFESi3uoPH78Cj8xS/W4QTCKT4G0nRXgZ7vH5LbdgCN7f9ep77ICrjcZrUdjZuW8feQTcOiHRuzAU/93ehDwauE9x27OrYSSSS+9mledj+Jl1+0i9cDxPLY+ZnAN+2KVPku86rse1XNEFwJ3i8k+PYn+fv7puDvgB05KcvAh8z3X3E7v5wbn7TMz7R+J6aS/5exm4z2uTQ4du4L6k5cFaA3xyPZnGfRPfhwcuq5gFQA4RffxzCPvsxJNf2sDjK2OMcqJIZLRpS084cJXiJ3l+t0iUpPqj4C1wm07yv4O38f61ezGAQ5DhZmP6ARujcV4SNNhnBDy5qmdsADvvMD0RC/yLyG3L5zEk6opsie0EvvKrU/ulWJyHuRdk+YQYvr/STvdAHJ7XV8+/tAROxF5pWh+Pc8i7nSp3gUfJVer0Y6+dO/hkAPjSUf6W7AQStS97slZcGNyHr/HHfBJJ9Jc2dXQAHnZz64hWEt5f8k3yHwPXUx2+wJVMonPm96do4Lty89n6sI/2a0jIiYC8WpXy8OkdEn3WVjnkBlxbMU3zYgqul0j/U7nAO/qKRjVTcT7P4zs3Ddzy9kgkZxqJDEvZzimJgrzHI63Siz3k/tFT3sAfaV0ZybpLIl+3n7olwG+RVIL3PRIpC0+KzwNvbj91RDOdRAP5GlN7NjF8qn2ChTODRGXyU3n+wAdLwpt6sMvfXnCoBv7IfPv1rPt4H/lqt5ZJjOHhwSMG3pkkYlkv/UQD+Eq2B/yaD0j0QUlPJRh4e9VZet1DvEcfaH/ZCPyLh3pFD/YUnSI5FnGGa87xx2Y9wvW+ZzHuIHBX4cWz3o/xfJF49OM6cKJiSE/zCe7zKwrRW+ABD1q2cWbh79y3OZBdguFKT8q5e7GjwqWXR4AfSMlmevqURLLX0WAUcHGj1B/e2SSaOUn+bQPunXZjWPMZnpt7fq/lkmS46FG/L5zPSSQscp7LGLiKrtOnXuwf1pqzxgJnNzL4+PQFiVazZU9/AL5ZfUfXxRx8vvxn2jduZrjWN44+rVycc9QSM0yBn5AaobjySERdVnRMAJ78OvdXH/a5LiTcBfzU4/NrnuXjHHK08jWPFMNNE2Q3XSrAf/fns9PHge937dpzoJBEj6rXLSQBV1y6YLGhiERPXxJXPwM/K7nKfwB77uCOeT5php8uCs18XkwiTY2fjhbAP4XMtfi+xO/Tt/XVHeBpZ48u6pSQqKN0gP8r8H7Ne1v/KyVRwBc2OwEZhv/o/2Q/hH2Ddl6qJXBbvl93c8rwvfrX8SYF+Owrpt7L5STKZncf/wr8Uf2s8KEKEhl4XWcS3MLw5yOt9jyVJBLfI7bmBHBP5lsvRrDXO6quSgWe+FtxMa8Kz83F9z+/Av+VWnHkSjWJzjN/7xaQZXj6a6lMvRoSmV69nmMJvMfMa5GvFt/zS1mXUoDLbMowJ7HH/zyy8yvwfUvPygrrcN+Yv0jxy4E6fZcgElhPosYo6ZsWwB/aWoUbNJBoWamN5B3gl+4szQo24r53ZVPeZ+AbjC47jGEXHHPZzicP+rDN+88vm0j07J965nHgv+8vMw55heulIWN1EvDLsytbjZtxfWncOtUFXGX74BHR13i+X1uTx72V4W0K0R3fsauFbpw2Bb7p00bz8jckWmXxYnM8cI25MyPhb/GcZf6s/xG4r0fM+WPvSNQfGX9mwzaG64tHrJJowffqz8glY+AXKcO0KeztR5svRwMfThvdWd1KoqGH6ufbgZeJ6nTeaCMROatvtW47w831vXws2vE+e2hWVR/4sRWuwtIdeP96ocB+E7ifqHzzT+ziMqwdb4G3XC2+UP8e9+EGn+trFBgezMwiFf2BRFfDgpV1ga8PE+qx/oj308tyn8KAC479jpP7hOdstsfpJuCBbElG89jThU0nV+wAOeHNH67mThLt7ety1gQ+tlKoM76LRGMz813XgJelLbt7qptE/M7Vu2uAB3tkOit8JpGVzuZb/4DvtF2xewm7edL27r2KDJ/XE2Nv+UKirw79G/2Ab/lvcejOV3yfSxW1S4Fb37ldebqHREJ3tzr/An6ysi9FpRffB8GOq8pKDFc4Oeq/oo9ET9QFb5wHzm6beeo99nMbuCLzgNs84DmS3k+itnu5/pPAP63Zr+o2QCKzHwun5JVB3/YWlt07SKLidbP7XIA3Nr8QWTOE5zLrHbYs4OkjP3i6sesRE+8I4MeeDW94NIzfp2DmmoQKwzOWh27wGiGRrl/WFjvgZ990cmuMkohbl+vVPeD9xEchToJEitJyZr3ATfdcke7DziOx8IV/J/hu2R9VnpH4XA5eMT4O/BX/x4O+FJ4L6aWV8cAjzl62PkiTqHVXtuAH4INh7y5yj5GoUtDUnXMXOHf9+rgR7F7HS4qOAN/68GRR/jcSCfz+NBkBPNMj/fPVcRKNs+QINQPPSApmMvhOogNxWmjlboafX1ojLzRBooysxKMawOMjd5z4hv3m0SyrK8CLxeajSidx/snwtagA/uqpTWPYDxItpLEf/gN8ZLXDkukUiXYcs9mmogrm7OZV+ySmSeTQ5c1yHvgnQiNgGnveVqMPOcAXFPjra2bwd3b+ETMOvH0igu3WLJ6ncaYHZPaAOloRZ2b1E+81Vde+OwD3t1B6LDuH62vmQvh94BbdZ+b/YJ/ar8jTD/ybg4pR8y8SPX9Zliywl+HoW3x2wm8S+dit5TwOPMYwfLXDHzwfDeV844CfCGB3UZzHfou3ux24rtWmdqYF/P7yH2TW7mP43s7GXe3Ya3dbuesCN3j/+8HdRbzv1L58EgK8XbV049m/OA98HP5UC1znz8rwPf9IxHRtaO4vcLdfvf9WL5Fo/6dCNlU1kPNF1C91Yz83YLnRG3iLheyvR8soFJ7XzZkP/EbcXZ8LTBS6YybHNAF8zcukv5rLKdQ5aDYqgxjO9Zw3dD0zhcJOnqh0AJ5pK7R+EPvGAdXrGcB/Vj/MyFlBoQXP2YO9wC8W5CoFrKRQr1TEIq86w99K7Xurt4pC7hx/M48Cf8N6yEGAhUKhKvroNvAQjc7lY9g5cwNa3wJHtQOZJawU+i/ylhHLfvB3PU4fDFtNofKua80awHuR6w/TNRTa/+iYYgBwc75vKRJsFFrOsi6mFDjrt+FDM9i91zwbmQWO7pv+rWWnkGztVtntGgwPlUMFt9dSqH1PkoML8LSL91xPclBoSyQd+wj4ZY8LMlvXUUigRrx4ELgeaw29iP3eN513gpoMP7cl4PlbTgq1Cpt1mgEPaHrhdYeLQj1njD/GANd+a4ic11OIZ1C1qQV4s9Sptbs2UGg4husZqxb4v96O9K3aSKGm6K4QTeD8Dz8WfMJuOXnTJAD43wcKNx78h71S+b9S4PVl807nuSmUvLb9zQxw/86tOho8FGKetvLaqg3uOfVOhouXQumXB7icgfMOflg3gD2u+nhmJnCZPI0/L/goxNvySroPeIQuL+HPj+//y633eQ+AuZ9i0qknQCHj6Kh1JsBHE2deCwhSaOVZ6txN4OXbf9WMYT9gta/pFfAkM6vyUiFcL15R65brMNzjn0RpuDCFYpt69PYCP8dzpMxMhEJuDjIB3sBn4z5WbRalkK/9hcxc4DHOZU0/sQ921laMAecO/9vRsIlCRNu6NxIHGX5tOHUgVoxClJ3NW2vgK90Tp+3EKXQys7AmCfhG4XGWHRIUGniw9ul74HojyaJMkhTa4Ocaxq7L8KCie3vbsTfsfn/8APDmkEXLe5vxPZ9FwleBW+rmBLhJUUixprirFHjRbPGDfdK4vnJ3hszA519e38ouQyGX7vrN8odAnv9UM/8V+8sjJyocge/6WbMlewuFdCSWH0gHHtLOZe0rS6Gkc8X1n4FzWeXH6cpRCOn4Km84DObm7YxWXnkKTVTop+gB/2vTx0ZhdyWUfoYAd2tw0nu5lUJp3fKa1cA18vbeDt1GoYAnqiG/gTMLn+gy3U4hCZcT5Qp6DPdhatwkqUChauW40TPAk4293WexpwgNMz8AHsfqXlO/A9/zXYe4e4G/43+xMVaRQoV33ghyH2H416s7XO2UKLTC0oHHAPitHQtNCsoUKo0SWBUOfEyKRZJJBdfp4QmqBvhmc9PQduwRj/uq/wDPrxoZu7eTQiEl3yN26DN8m1GhsfsuXL9xgodcgPusrq9U202h1caufzOBJw6sk+NQpdAqlr4HPcA/tiWn9WKff+2p/p8BmDvtJ9c/30MhqzzZ9iPA83tsIi7vpVDdh9VHQ4ET31NW6u2jUJcOx7sq4Ef/rQsWUMN1IaG66xfwQ6wVK79h33M1KmmbIZj7q+5FlCEKWXuyf3cCvnrm5foIdQr1cRUppwP3er3yrvl+CvVfuO7ZDfxFcJicjAaFnhRFZHIaMZxNdG/Vb+zRVGnzQeA8iWImzZoU4tjMO3QVeOzo7m+JWhR6EfJosgT4eZZroU7aeA6KOE79AD70e05i5wHcb9ccJ6WNQZ8vvtO0SodC+tb+HTbARfe6uHRiJxW7cpKAHw5z2vDoIO579x0D24HXxEVVXdDF9VUvp8tqAs7Ftt9V+xCFjj/fskId+PVvx4X/O0yhi5dsCy4CH9o2/34E+yr198dygN+Sq4so1KPQdb6ACQJ4fH+OdvARXC/Cjr7CRxmuqFPHfFSfQjNOkfOmwDttfzeIG+Bz5Jh0uwlcYqvR9Rns1VtiuhqA/3r61rDekEJ8nReUFoFbdzkKxBpR6IpMSoiiKcPv5W+i7YwptEmN+e0Z4Nv2LpTuMMH9Sj5nxX3gFeenby4/ir8/Z/qOz8ClzVc5vMeet6zrKOcxkN/GlXHkoNBfHlMXHeDyW68Keh6j0Fd3Ae8A4NHCI4v7zSjELiZ7oQj4mSqbAa7jFDp9MOT0OPD7HD+bBrEPLm4xFDcDc5MzPTfPnEKXzYXkLID3NNikXbOg0Akfq8XbwF/Kq9w0ssS56/x4zSvgD/RErm46geeUw9tL/4DHiwt4T2E/7LywWfk4w58XSrvXWlHIIcm/2QW4znIdl2hrCrWtNbG+D/wHx4UzticptHvkMtUN3KU3z1XBBvdzlUXHdeYMzzm36MFkSyFtkfeftYGTb018O7BXlS6pXwbuPV0ckmGH569oaGo+8O+kRJzHKQqNujuOU8C5c1Mf7ren0J/ajO0iFgyf1Bcq43Kg0KUdu51NgWc3P+wYxP6+Rz4hEvjzTcrjeY64D/dcfVkLPM76zepAJwrtO6LY8gu4XLD9FuPTFHpw6ECXvCXow4nL9cWccZ7/UfbpFPD8tEyvaezvLGKak4Frpx64W3cG55aHLTltwNuTxt7EuOB5N342cuUJ8HeTo+btXCkko+dluQe4VaaCvOJZCj0fGBTxAJ5Z+d6O2Y1Cjk0vux8Bd5s4l/IBex3fr5Ae4I572boy3Smk+ytdar0Vw0+9SP/P6xzea/yKK3WAex3ebqblQaEz9bsO+gP/wl+astGTQsHfpF/lA18noTo8gv09Z7gqBbzELV++6DyFDhqa3ReyZnjZ8k1+IV4U+teU+M8YuAQV/Nb0AoX4Yw4ZhANHUr3Cm73xvGg9F1cJPLhZ+sIc9ow7bK3TwB9+dGxtuojfZ73gotRJ8PujCVsSfSj082imsBXwXUbF150uUehxwH3lGOAcHxu/7fTFueU5//5XwIOIekNWP7xfLLHvXwR+JCanpBv7zRhfZQUbhhsNholnXaaQXbC9sCPwF72Hoy/5U0h65u3CHeC50fNMhwIoxPo3r6UN+BeW2Av8VyikVsMTt8IW1N2hjeNj2Pks/+nvBl7l4O9QfhU/Z9zx31ng1061DEZewzkk2vj+fegGzLYnAvE9PFOn2gX8gLLwsFwQhe7HvXzFZsfwSFGh03+xF2xT1FUHvk9oabIlmELKFirVXsCv7qz3vRuCz1exTiYL+BO/06zuofi+fe4K7wW+f+57EgrD+6arTw/XKYazFhrLcYZT6MOahxIHgH+vja8bwO7y0drWFziPfLFl3nXs1KOYF8D7lhf8uhaB+5hjQMkQ8DbDyATjSHyOZ4n33Pagz0io7RK/gfu80MDgIeCnbrzpmcG+lOA6GgBcLGFbcMNNnDN/3+jNB77f0HVrfBTOCXYabwjgRq+vfHW4RaGEnzez+R0Yvp7TOVLlNoU62s9d0wfupyilxhJNodqN44cDgb/UKJ3pwv5wcBlbMXCxI8LPnsRQ6KNZbhUNXM/O1OlSLIWKEhcchRwZvhBtJXkojkKva4eZjYBvHlcm+OMplDXnHB8M/PfV3qxv2JeO3RIoAd5uY3KuIoFCt5lNE74B35+asPtmIoUUhCpWijgxnFPr0UrrJFy/DY3OxsCVna993JpMIW+B83UhwPsFpR4tYd+l0biuFLjruQTf9js4P1hUGo0DP3eh1SgjBc/T4BPhIqcZXrCvVdYzFT9/OLPAGLj81zhWzTQK2STGfQgBzmazidpwl0Jb67ZRJcDz+jzfjGC/FOI99Q14rnN4TtE9Cv1efmZS2Bl8nw22iaHp+H6eYBsyAr72x8I1swxcXwWWr4OBx3Idd5e+j899y4mHL4E3RHqd/IM9ZXit9xhwRU9D4zeZOLcv89wjdIbhWd1jOikPcP7MvP7TAPimDxrqrg8pFDRh+iAQ+KsLZnv2PaJQ+IpunSLg/z5K7eZ4jHMgC9cACdxiZcHufux5/MvP8rswPF3g997cJ3hPOflsQg94i9ycxrUsChnMczpcAb5W/9lh46cU8mRXaM8DXhfHZyaeTSGt0rXbR4AHcO9zmMX+UvxJMLcrw1fT/3k3PqNQqxtT60HgVmKZ1xOe4/tcyc/uB/xB9/A9pxc4byv+VHsOXF2sq2RXDp7jM9GO/cAb/rv8cXUu7m+bpgO5zjJ89nXH9Bfs5f3ccZrAX5t2bXiWh/uAMdOdC8DPtUfu9M/H/fNuftxj4NpGE1b6BXgvGJUN/gy8Z/JvqEghhbj03E6zuYEcXl+a/wO76pzv/n3Ao0ZFB2uL8P1hMVnnDvyt6471scV4z3rwqyMd+BrP79r2Lym0csr5+nvgX9caXVYuwc6VrbzCneHLzE8UrSqlEC1d0akM3N2VY6oLO6vVXVcn4Ia2jtuyyijU3GH8Kwn4guGpc77lFMrO/uL9BjiT6YrCwxUU0ly389sCcJGwg/OClRTaucn5qPw5hh9k2qY5gV17lWe+NfAHvcVR1VV4ng4br7wNPEKlv+d2NYVYetmP1AIP3PxY3q4G5yXejOvTwPWa115TrMW/L+csF/dgeLfK+q4VdTgH0icGjwI/eLNgWyd21tehiyHAfxA/Ih7X4z3oyi32l8AtT76mfBooxKvgw0UBV1+/V/dQI4VsV2iw8Xky/IbAwWcCTbhOhSf+6AK3Thzn+o5d8qF/ry9wtvvSvlWvKDRROVWUDXzD8YWRW804D0cdDuoBvq3zlLHtawqJ77uhvfY8+L9229bteEMhi8nCxX3AL92dVlrxFvfht01P3IBzivM8/YSd+Ved7j3gN0daNj1+R6HipKf9bcAzl3Gn+rTgvNcZcGaZF8N3xk/wHmql0IYu9bHtwO1qjiUJtFHoQs2UtS1wl/Qj/N+xq5XGNEcDbzd5f7eqHe+JpIRUHXC1P8OStzsoZHY+y3caeFLOtRzb9/j31zbVi10AOST+6R7FDxSqVI1aZgI85K3VmxUfcR9r+LEjCHin+x3LTuzrDhyyKAAeef/k5ONPFEokUryHgfsHPQu51EkhiRYibIM3wyt2XBU+3EWhEVG5KE3gYe2fSwW7KcS9+uz188CN/UvMJrBzPH96KRN4tbnA7+rPuP8oEdYfgD8IZUqJ/oLrvUl0N/NFcH8kz6if+or35QhLVkXgW48dpZR6KDT5OPGdHXDfPdUxq3opZK/TGRID/OZcFurGrnCbV6kO+K6sDZNZfXi+Pz3ZNQXc78JCul8/3oMqn7lv8mH4LX8b0yMDFKqZWvbXEHj38H52kUE8B92trlwFPvHmbuMP7K7W9XM5wNNMva/VDVFIilQ81Q+8/9ErFDeM9xGF3AaOSwwfHYxe5jiC57vjbgE14OxbPtbvHKXQjxftjmeB0/dvXl9NUOjIjouPU4HvO1dp9BV7Dt/W3rfAlxXbCT4ncR67OceyAPx40mU6gKKQ9csOqS2+DL+7Z02pIY33vuqavebArRvWRIqNUcirteFAOHBjM/+Ts9h71vZrvwTuwmer0vSNQnGPOFUJ4K+3Fa1LGsffudZC/D8/hldV+3xz/o77ZHgVkxbwdxNPX++ZoNBpiX2fPIE/GTr0dO0khSKrutIygO+pNbvZj93r6i3LduApue2eeT9wvo114FgC/l9XoUXQFM5LmyyL5S+D3GvJrG06TaHDRz1MTgD3OFWuIDWD+6Fp1mgE8D7uHtE/2DfqrzhbCtw/1X7921kKzZ0OokngUQJHV6X9xPO0TcqS25/hQeVZi25zOCc8m67VAr7igf1P9V94fsmMCp0HTiwG/Vj/m0Lq55a5ZwDfOrFqYgR7YbZ2URtwvvTx78V/8L1aWfzjL3CuPUo/wudxH84y3iQXAHIp2TNrsYDrpUZQxwJ4U+vogtwi7qsX/rMLB27Ep79yCfujmX2excCv/tjI1fEX9x+HxIsjwAv9d4tk/qNQ76yY5/orYG6OlW27sITnSMugrTrwZzZJGjrLaHSS/9MBN+DSazrM+JhoxLLqn2gqcGEue/dv2B+XW/14DXzknuH1yuU0snT8WfgLOPNg/MNbzDQ6ptDkJnkVzIulHQ22K2j0WadDyAS4s6TUqOJKGql84qm7CvxlgAfrqlU0+rQixfIF8HMqXFu7sSssPzH2FTiXz8pjT1lo9P63pdvqaww/5H7k6mVW/D4bU0kV4Is61DP91TRyuyp0zB743q2fvoquodGX04Ol0fA5+hvWzmB3/0Otrwae8jFDvZGNRpzWyrbjwDu/X/FOZKfRy7pXD/gCGd7a9OyF81r8HJOM3gPAb92Qovdw0Mhobz2bF/AjrpOSHOtoFJW1dVsGcM9YZocB7HavRnRagd/ZdupRPieNxOsI0wX4fLe1Y8FcNFJsUjaXDmK4fgDTdrP1NFq57IORKfDlN9V8ZDbQSCK1GgUCX/O6vm4Bu/SrRbEc4LM2t9e1bqRRxfPIha/ArwZlWqf/R6N7l8++Zg0Gff7kYo4nN41SbTJvKAN3k7jDrM1Do/jQrdp2wDWYLpvz8NLIX4BzJgr4PcmMPBq7mZ5uQjlwlVpW9go+Gu068HUrBfwbc/7pKH4a6aq8qtgYwvAPQqmvbARoVKvLob4fuBJqklYUpNG353klZ4EHJW27sVIIf+fb+ZvvAHey6Jrqwv5JaH1EE/DSogrzp8I0CgzuGJoGHvC1r/6yCI3Kpqa2i4QyfHJx73YDURqJxnp5HQbuc7jz7qZNNLJPsHh+EXjO76x1s9j1ZR5+zQRuq/IysEmMRoWXTJfagIeq/P2VJE4jvyJX3kXgh2X93F0kaJS+ZnyzdBiYpzrb6X2SNJJ5/HHLUeAmFQIOnJtppFwqJXEVeH/l3uEh7BNuxPpnwNMCYk4VSdEobo7rVxfwxwqCRJg0jS4GZLczh4P7uebzGQsZGs0qFd7bBpxzb/OU3BYaXTsob28J/M485buE/R7JIxwGvOWS6qr3sjQaUr/Qkg+86Ht57AM5Gk0GHvDsAx4X4Sp+UZ5Gl3tusK+5zvDPwYeLdLfSyPCybqoycEmu47qC22ikFe2/yRa4jn10/wT2/Ye2pN4AjgrmLtZup5FmpyF7CXA1xbD1cQo0Mraf9hgG/ohPI8dxB41uiHO2cEQwnCV1s/5uRXxPNLOFVIGL/1CcZFOi0cHphlMOwMcOO8f0YT9mY33vNvAro40785Rp9KTCp70cuOLMwf4gFRrlqPz3iwAemj0Vfmwnrou/ShvWRzJcTrtaSWYXjX7s/yyxDzjLr9yhBex2O5jlTgOX/N0Y07qbRtP/CqRjgb+58lcrQ5VGjl3j/FXAnRuP/Tm/h0bR314sp4HfX9aRc2AvjSxcFvo33GD4QWeX03z7aFQc+iFfDbjFTknxcezPzu7ycwa+NvNvf5Ua7ieGsrvjgFeNzNyNRjT6av18vAo4szKLjb06jc69ro6ngSe/UxHfuR//vzWnlDbeZPj5kWvUag0asXrdaVYDnltE5vRgb93oYOwM/MElp0s5mjSS/9DQEQv8rfMy7UAtGuX1lx2oAt5dnbfeVJtGP88czKOAZxX5DkkdoNH9h25cG6IYbhBiUTiP3admq9M+4KzOhuEtOjRC49fznYBrplhapx/Ec9z82kw08HvH/FTO6+L3VOXeUgF87NMLzgOHaLSnSvcYAVz86M9x3sN4bvII+XDeYrgXu/7bb9jfXoi+pQpcTbUku0qPRglsT1LtgbPxKUZFH6FR/mq7e1HAk0cqPe31aXQ2oyaxBPj7bjPznQa4b69oDBmCrrBMY40hrt9T55zZbzN8WLZYrhf7kR/1GirArzFf4ss1wufVU8NlA9zkpw5rkDHuzxanO68DV1IT+2NqgufjnfLbBcDlBFjGpY/SKLGtXL0XuOfrnwML2Ou3nCFWRYP5GPq9q9WURgJ9r65tB15y63t7xjEaxQp0rrcAvkH851svMxqJ/ZeQHAT8YgDza53jOOcssnI/B75qgKeZ3xyf74rt4Z3AuUMVXn/Hfugk+48l4DI5Bu9qLGjkonbviEwMw6eTPTpiLWkU+ZFONwZuEpLQ7XiCRiuOfqf9gJ/IrRzcbUUj7cmn0g+BH7EgxtmtadTcLW7VCjyhbt18P3ZBTfOwX8A/Su9eXXCSRt02eo9FYxne9c6WP9SGRln2/yp0gSdPhMub2+LzvXau2RP4gdbnGnJ2NIqgM1+nAN/zrM18Cfue9uSaBuD/mr97vj9Fo8OnTZ5/B37EgSXqoT2u05GOW9xxIEfVCWT7OOC68+E+jYAbiW55c9gRz+tjYiqngTvUKnwTdqLR7fy5P7eBVxAKHNPY91fHFZQC/9Mho9h4mkYcuX/thoD/aOC1SHKmkV7JDla2eIZnMP0LdDlDIxs25UxF4Gpvup+rudCoumel0gngErZPvnC50mj85KOyYOCjrK6rR7H7NvPsfA5cdYW4aslZGq0+ZJn1Cfj6hHeukW44t/B6cv0DHsJ0OsPaHfdJJyv3zQkgV1yf7VI4h/2McL0+8ERPD86VHjifmBazXwR+dKn3UDf2kyc2690DTp/fHZbtifthgfu1V8BtNgY1BpynEdOt2GeTwEmJspXGXjRKEott4Ulk+CDdqyN5AZ/LffcRBLz/8ffI39jFNbdMOQFPz6Q63nrTKGVXw8wt4JxirXz3LuLv8FJt/CXwI6fTTnn64PecufOlHz6n3DRH+xKN1ol9qWJJArnUdm6R15dGvBf/Jm0DnnYvQG8cu5HUKmcz4A3l39Oq/fDcdPq59QrwfwsaUzGXaUS5vBt7BNz/kf8BR3+81zjfSG0FnsmUlrY7gEZ34lW05oAvmaTPsV+hkavEu0GhZIYbj4QaDWDnO6x/QRt4yB+DFwVX8V6gVvXPFXjxl3n2sGs0Wq4kFBAHXL4t9KxFIL63Nq4z5cBPCc+0yQfRqP/3M+th4IvrkBJTMM4DOwaq19xhePs35zsfsUtrsvDsAN77x3P5kxAahZ8UtzcHfjzQ3NUvFO8XlcqPrwK/2yLYrR9Go+xoNPAY+B6JCm2xcBqdWK+xrg34RKtK0U/sPV5qSnPA73Hf2Pz6Oo0aJ5QNhFIYbq9VnpwagfeUIhkbLeBhGfUc5yJxPlzid3IB7nPxQYjmDZzTmNjsY4D3rLP6x32TRkXT88dKgV8rHPcZw97CMo4GgDvlGP+sjKLR5ov9wiypDC89FHU++haN6rw7Z+SBf2i/O2N/m0a5e99XHQW+90bQhV3R+N4ufbjiBzz71Z4/bDG4rmd7VO4DZ25tCujH/tloYrgZuNmY+KqCWDwX9FeHTQInnYxvhcbRSG7TNlHuNIZvijHit4jHc2rJJmcv8PuFoo/lE2j0SyRd6RRwBYFqZaZEGh0t/Z5zHXgzl1zTR+zrlh/elAs8csTx+JMkGjVtLw3vBN7a7zbul4z36Mu7iUXgXIaagQZ3aDTK37Jb/C74fwOH+cRTaNSheSFIF3hgnX7BHPYKecV6d+Dx1sH6b1Lxua9j/RMP3Dsz6FtaGo12iP6UqAAe0Xc4wuMuzr0JCweGgDtY9WzRvkcj9qeCJ1nvMfzVWaUW3nT83aLNz24FnmZl4jGOfSaowOMo8BV+u3hqMmjUVyLr6gtcZ+NwVex9Grk71Z9IB95z0fi0UyaNFpv8NJuAO82GbNjzAO9rHMdEx4GXd1+u4XiI90dvkxmudJB7z6u4D2GPUr5QsRP4t435IsWPcH8LqvCzAm7ANtlx/TGNbiVuUQgCHvFoPMTqCY26smp6ngA3UXm6RyGLRiNTVwJagd9cIzWz4imNvB47c88CP3je7lk3dsvlVx7wZTC8tsbS6Vk2jbxVa6URcHvN9RJXn9HoaZhCpj3w14dDhkye4zy/qWNDBPDiLYX3pV7g/2t/hm8OcAGFu/YL2L8JZXZ9BC6UqyHdloNz9WTXlnngK/+kf7+fi/vepLqXyH3wfaxKCr3zaLT3aH+BFvAHW8P9D+Xj/dSskHYG3l217qBwAc4J22v/uwV8/KT+xmnsNC/LrkLgXPaaQ42FNFI/GGb4Gfh9oYm85CKcw39pnPwHXKb/SNDZYrzvW++xF89kuNWC7bH9L/E+WOxx8iBw0UYZ2f9KcE7eRRqeBR586wETjb1DIG1XDPBXzzs+V5TS6OKdOO6XwI3O5xbcLqNR73jr2FfglYrqt+zLcd8+fKRo2QNQ7xpXXXdV4Hn0g9NbEvjFWffD7JU0stogIH8I+IdUDrkB7J+/u35xA65w25KjsArftxKWgFjgq8SPTYdV4/n4fJynBPifrL9dljW4760UetIDvOeSUfW2Wryn/E7eyvSQ4c9IwyfMdXi+1NpnSwJPPLgQ04XdPjlA+BDwmSmDK9n1NFpbSoW5AT+wW//slQacuywekDHANb1+njBppJFicf6+l8Abf2vpSzXhfW3VfxFfgX8R3Lt/AfvukHfvloCXq3xRbntFozMuX1ZKPAJ9OFVYLrOZRj+mkfJB4AkPWSUuvqZRmOk/C1fgQ48ThQ6/odHcO+6Lt+Hv59/wirzF/Tw24nohfP5sxn8z2IsGLWK6gVd+F9j46h2NOqfDoxeBj+zdtTGlhUbOy7jDRB8z/PPuuf/cW3Ee1mI+rwXcaa8pn2Yb3l/+GJmeBh6YelSYp51GbseZt94Afjh/RuIb9rRU3r85wDd0KshXd9CIXIqp+wDcxIZjZ+x73A8rzgf8Ap6fFa7h9IFGY+wV2wWegD7Alm6w5yONzGXPflYDfrjXxHrdJxodNA73sQOecynTbRi7QgUHRyjwyN1RV1924nybyXQnC7i994a4yC4a/adpJ9gCfOz6jqyT3TTS+KQQ/wP4QstYteJnGr2L81ixMYvhGal7ulm+4L2+QuzMTuCchhLTX7GToQeaLIBnazxYm/uVRmzb+ngDgC9vK9sS3EOj8skx2wzgbw2cdI/34rpmdstoAD4lkuUs10cjp0enu0jgQXeuRC7rx/vF+h5mtqegz/OPvfiI/X3g681bgXMvkh+eDOD5uGOHuhFw3js+85cHafTYisfQC3iEYYqY0RCuRzXfY4nALf0M9CSHaXSM84RJGfCH3nEX/2B/xVF1oBf4i7vOD1pGaLThQsb2ZdlgPhq0vs8Yxf0kgIVLHPhvona5N4HvueMUqQ08vUZT6RBJI+RsU3Qa+JfdJk7CFI2sa00vRQJvzplMmcbe+vS94gvgJVd43zfRNJK17R5pBy7O0rI6ZQz3E9HTN2aA52aya7p/o1GAeNAW7mcM31bQ6a85TqPpR1uqdwFPi91SxvOdRseJk4csgUtksvz+hj1KSOKdP3A+9bM7ayZodCXcRysd+EKzhU/cJI02nbIuqAN+IbWt7PQPPC/oTt5R4LZ8b//tncK5wmzYi+U5w2vu6mlxTdMokA5+JQO8IdIkchS779cKTj3g9aj/Q+kMjZ443zB0A67DPykUNUsj3fbZ0NvAl3wDne1+4vtz+FdBPvDXtUnFKnN4H+SN/x8T9h3P5dfGATx7FippyCiRVZGSUYeIzLJDCfVDVEjKyMhIRjIjkYwiIbNQRhQpKaGMZIbugQaR9Zznr65/36/79XXf51znOp/L5w7gBYZyLFx/vqNl9/c/ZoAPXNUz68fenJjDuKHwn9c/G31QOvsd0bVCnCrA+44z/g2b+45+y+xlPwF89FWa4fG/ODdumFzwh79jUZG9ax7v1wvd8XvAfT2MFpgXvqNdp3Tf1APX93Ey68b+WWkycwR40ruFxwWLOC8FKV9gfQzyRutK7qCl78jDR3bfduBsAylnzJfxfGHT/FsH+Fv7rNdSKwik78yT6wJct1Jcchm77JcVxjeA1x8Si2xnINCDqbs/C4GnON+ZyGEk0LMRIvwDcLuISJMrTAQKmP4m8BN4L9vvyqPMBOK0jU1dUwTe/1CH6DYWAoXbTQjsAZ6XIx05h11WcSncHLhpzNz0O1YC7RGq/3kZuPmp/faZbAQiTFSMbwPXCJl5f4mdQNn8LrlVwPvMxZAeB4Ea7hlP9wJfhRofC3MSqEz+175F4JP3ekV/Y59iN/QQKv7nNQOnEl9zEWjW9nQ2Ak7b23CmcRPouJdiiy1w7qg3ge4rCVQe9Zq4CnykLmf20CoCPepdvyIL+EmHafeNPASiMiW5XwJPHCyhJrAriCys+gb8TVK/UwMvgXRjY9lZS/65y4TPaBIfgRgVyFlx4Gv0Qv47u5pA+7Q4B7SBB62Z/6a2hkCfWKaqnYDnFHx15F9LoNaitLhw4OkBO8jv2EVD19rkAX84+d21hp9AXXVmIm+B7znNOxO3jkDsmfbdJPBejQw/RwECtTuohnOXgrqavsOqup5ApwxGdsoCL+9fjuHdgPcl3vqdAfCpMy2C37BXeWXZnQduOr8ir3IjgXiVq6lo4EfnU/dFbyKQ1rq884+BB7Slv7YXJFC9nsvYe+CZ39itFDfjv7ue0WIKeE76Z4pLiEA6z12rectAPTtyXR3AfvRi+UY54OP3s9aVCxMoIaDjvBHw9vr0gnARAhUKtla6A2eQWD5kI0ogzYis+Vjge1Re9MtvIRAzm7lCCXBrp28+bFvx+W0bPfUReISAi8AX7D+2W0T8BM5UYlReJEagUr3cnNXl/1whI9k0dBuBmr16n8kDLzZE05biBOKf/NFoDFxZ7FDSDgkCXaep1xeAV0U+VGbaTiCR0ncv4oBrT7r0f8b+1T+xuAS4SGVkaL4kgT7ePJT8EXi+CbvsVSkCbdjW7/kTeKDkYKeZNIF6/E7prn4C1uE+f6CUDIHUu9v55YFvlb8vvYw98pJclxFwQvlmV7ssgRYT/GLdgU9ItV/L3UGgcY9K9Vjgcefc9vrtxH3GeHS8CLjTeYcxo10ESnZjCfsAXOp22W1xOXx+V64XnAL+3NLKYB77D0fhXJ6n/1xW0ILxgzyBTOoEpXcCL9PPq8jeTSDSjO++IfByCxM3bwX8vNMS/3nglQ+NJA33EGiH4je/G8C9H2cPb9lLIEnGpi/5wNs79dL/YF/BcV++BfjHcK3jLYoE8ogMDCCBP9yXsDFjH4FMm60aOCv++ZMjCj2eSgTyYtyzJAk8QFX8jq4yPl+XeHfpwOfPnjkhrIL7icPEMSfgioaLIr+xX+f94BUGnOnI4LfXqgRaKH9y8wFwvb61+Wn7CRR2KyvtFXBHxySPCwcIdOBnUuYI8C5rJ1VtRKBDHIl3mSr/uY5kGKugGr4vNqXGbgF+88CvtinsE2cKfdWB53Hm332lTiBWhXfHbYHXLhSdTTlIIOOqOYUA4FtDGFRdNQgktn8P813gR3jTuDU1CdS3EPjmOXCCN/jr+kMEGlb6GtYLf3+6pJjGnqtgqPoXePMOmWv1WgTKkf04tr7qn2+XmbBO0iaQw38uEYrAJWxm5c8exvsruEnMHLjSHl0udR0CucQPlV0EviA6PMKvi+uWs0E1Hvi+xPpaAntxQ/WzYuBflsfu1OoRyHGpXe4DcMZ2Y+8EfQK9n2dNnwBOBzAeO2OA+/mCBdPKZ/+c02tG8YAhgebVX9tIA6dldmxYcwS/P7dlsQ5wM96H82PYudO45h2BSyU49D8/SqCnCoMq14D7Szm8jDUi0IW1vR7ZwCMP5eQ5GBPosN/fzHrgpRaScSomuH6K1JoHgIe0kz68prgOJwpHl4CXS0+c/oZdzltrXvD5P9/SvvNolRl+/1h2NhXgn1SLVG+aEyjEa4bDEvhy73mp0xa4z7vyMV8GPrvVZYPSMQJJVFhNJwDXup7NscqSQMfi2/tKgCdc2Tg/hD3toF/1B+BPLrbQT60IZMVmmTABPG+kcjDKGtf5Vid77up/nqw29MnuOIE2fn4kIQX8/YLmu70nCCT837YRbeCvbwy+5LIh0L1Vn5L+Ay7m9LR6ALsyf+3BYOCFKxqflp8k0I2qwZF7wK1buEsjbAmkrYb8a4BrqEU+PmlHIMHxrlVfgBe0qRUo2BPo3a/Ht+aAs83I5HOcItCW+6/4BWpAzt9yJP8rdmr/pigF4JytDwpKT+N8u6Jkzgi41bndRdf/I9BJ2UgbV+Djl36XnnDAuYgttyoKOGH7vULekUDubRyr8oC/yuCrZXMi0PaW4mNNwFcUnW38gp1bOSNlBPhRxr+txWdwfj7R3c5QC/oVT2XXNWcC5V+2ZhYG3mD4cNjahUAFb7fLqALnV3wzuessgU7fOahnCbwPbVpkOUcgDsk8u0vAkwbucPVi//rE1jUe+PcYvU1F53GdhzleLAKe+VpSJtQV1+GXWrd3wJ8u7zlg5Ybzz6zzaQK4bqGr0U53AmUIOR9hqwP5U//Tf8wXCHQ3pkZODPh2kzO+3dhFY89wqQO/orw9rtAD/7792S8ngB/3XZ0XfBHnDe3X2T7Ai6IlGo55EmhrsP/pJODhtEOf7CUCIYuYTWXAt/B9mGW8TKAPrMvNH4D3XLDn78J+reOtKw18f9Tm3QVeuD6ZZrk5X/zzv59WGAd54/XpDMkQB062cF2w8CEQU7SHrAZw/vH98TK+BPrj+qroJPB7mbfKGa4QaFWNr/QV4F8v8Xd/wr77WVJaMnDd/srFR34EMs/byFYO/Jp58Nar/rg+W1mc2oBbW7jrmgfge9nZqo4GXnM8+IJ0IIGyXmzg5awH532w4s6KqzinrTtkIQ78uR1fYyd23YK+xIPAGY9F/cgLwnnv9chbG+CyapJCgcEEupxnPecDfDZxTM8shEB3kjSEkoBrdjb6SIUSqOljmnIpcEGfxrxl7FrpLobvgReuGO3tuEagM2qFliTwY9/EVuWFESh6zuE4WwOo/+wg9YDrOA+vSjLfClzg2ZKnaTiB3F6gwwj4g/vJjyQjCLTGwl7OGvj+wSNDS9ivrF6x+jLwRWLrxo5IvF+KG4k44DJqa00eRhHoNXtJZSFwFRuRG/43CNT55nXgG+B19dqvTaLxvVl3Eo0C9yHDmSVv4lyxw2ua4eU/NzAfVV/Crn5sTdZm4DpXjwe2x+A6D5Q/rAQ8kyBrc2MJZEZ9GjEF/oQ3YYV/HN6XrwzebsDZL5geNIknkPedMuYo4Jo3ZEK3J+B502EqLAe4yuCm5kXsfiFPGBuAk5ToqvZEnDP3sXt+BX5x5wHT3FsEetI4+nUOuNB2tzt+STiHe5io8b/65zbmT4eNkwm0fPXI7V3AXyutkd1+m0Diil++6wEXNA6+vIj95ae/co7ADwqzNXxMIdBcdr57EHBt0bs8uXfw/PjtZ24acNsu7RN+qQT60tf6uQL495dM+cZp+Hc+qC+1A3d0bJuXuEugcCYDwUngwWpF+ovYeyp/yHE2/nPetvS7H9Nx7t0nh7YBZ09J/5Fzj0BrG7g11YBfF3x8yC+DQC/uhqpZA+/pfpdinIlzHU+awiXgLibzUxJZBDpuZSoSC/wjp+LhRez7G/KZ8oE3Xw289zGbQL3ROV8bge9R/jyXc59AjQxaxYPARZ8om/o9wPOybbjvAvDqy3mPjXMINDJ5Yb9A0z+3ZxDn3p5LIJvfTH/kgEd35p9ZxF5csj9XHzhx6cDrjw8JFO8qauQIHDn1SOTm4fdxLfpxFXioTOB1v0cE4pklw1OBd2jtJIzzCaRh0LnhKfBzymP62wsItKfsXEYb8OqInKJF7K/dn4hQwPWeufK3F+LvelOUxPr6n3ceQb65j/F5YbZhFQUu18I/5FdEoKBTtWdVgDuW/dQxKcbzkcynN2bA06M6S7aX4Nx+P0vEDbhEd7XgEna3NZLnI4BfEXoU1l5KoFtVjqXZwPcOpv7KLSNQ4IDtVA3wzQ/ibP3LCWT5hn9bN/CNPyNbTZ4QyLA6zOgXcKR7fb/kUwKlLj31XNn8z1/uDitYwh7QnhMrAZxd4bpQRwWBDl49dl8deMyHiJiHlQTaa/C2yBo4281opoAqvO9XGMo8gaPpuMumz3AfNlsovAl8V3gSJfkc7/um6oyHwGc/3LFfxq607lBUA/CvxundHdW4f4Ynnu8Drp+YYZRXg+vh+ePDf4C3C2W+Cagl0MDPhI18b8C9dumeplkdgfQ8tEakgO/dklor9QLfg8Gv7msC//0wQWVFPYHGHdectAEemxBe0Ynd1lGO1wu4zRmfvY8aCLSzSaQyFnj7Y4fywJcEYn83ZPkIePSkwR7zVzg31nj9fAn8aNHOJ9KNuF8NDgd9Bc7sw7WPoYlATle2cc0Cr+wYqPqEfWvHgUi+t+AePPz4QP5rAn3fIcckDVzc5lLD1WYCpX9cvKAJvDJtj47FG/z+LA96TgDniKHey7wlUCS3tPJl4N+qUywYW/C+74iOjQF+oAgNfMaeXvxh4CHwnVM9Zwre4XXr/SXRAHyW9ezvoFYCMf+cdfgCfMnvZ8Cx93juVhlMmwb+7us57h0f/j/nFrSsagE5rbTvNlMbnqMDbX9JAC8MUd/ejX2E7S+fOvBbfclPCz8SiK3Xd7sVcFp7WDukHdet2theD+BLBiLdlh0EMvDbvz8K+B6fIy47OwnE2B2gch+4pIXbEvMnAoXefixXAzzWNSiuB/tellbhz8ANDEMlij7j+dT+C8sUcDt/r+rQLgI9+tM7zP4O5NgIa1Prbvw+XK2VosAdlmWpXT0E6hguDVMGvslxMoS1l0C1TdEGJsCfGKQLfcF+a/Ek11ng0wf2VxZ/wfX/dvuLEOAvGl+bhvUR6Ig3cT4NuLi7+o/jX/Fco/9g7RPgJm8eRMv3E+h95ImSVuD3bGZl2AfwHOrPd3gMeETVnpY+7FbODZ3LwIudbc6WDhKIuHXRen3rP++fd18ZPoTPka549y7gC39dH9sM45zZ0m2oA1xo2sJYYQTnBPuY53bAvS9LznB8w/O1md4WH+BneEZS+rE3fOcKjAPuoRumVj6K19mxvTMPuOqT1WMRY//vY1lbG4BHD4RG244TaFTlyple4CcsBvbu/U6gT8K2Ob+A1+aKDnAReB7kONrH9f6fT9rrRAxiv3HAgEsM+JG1FnuekgQ6x2YppwrcTk93MIrCOSrv4hFT4B23tkTb0wR67Jrx31ngXqH9KvsmCGSaNuARAlztQSCxchLPoT67fVKBa11nSRnGfvXIHa8y4G+rzulWThHIx36DawtwuXcV89E/CMQyX3hiBDjLkdGC0z/xHGR7QnMBfu/7aVvlX/ic9mzbuvbDP3/VP7qW9zeBRB5z/JUGHrCqsvkb9o0SnM0awJUpl4Bn0wSyCN8eYw18D8fyntgZfI9sdjjiAbxn2p12+IPrXOolayTwooMv76vOEujnH40nmcCdA6dtVs8RqOjd6Ikq4F8Qy4Zx7Fy/ChbbgC/x/Wqv/kug2Mcpid+BT4TV3Iyfx/WgW7iNoe2fT8k76p9ZIJAnN1GwHvjZbIoDLRKIT/XIjl3AiXOGr9cu4fcX7X+gDVxENCqMwN7PdEfgJPCBI/e165ZxzpcOCbwEXDzqNvutFSTq6L8zeAP4SienNy4MJKp0Gla+D7zHk++GOiOJJlYej3oOfFo74agAE4k0Bdg+tcP3dJtaS2NPbPkmQAJ3DN7WU89Momeec0aMH/+5xurd95JZSJRqpRGyAfilovWO51lJtKXhZeEu4EI/OndospFI/Y9/mzZwX0fnPxvYSTR1wIOyAf7nQWfdJPYdQ5nLnsA3aghEvuIg0QpJHq4bwBPf7zC/w0kiD+vKVdnAlQY2bXHnIlHSi0zOZ8CX2L9OaHGTKDyrZakN+HLfxeeCK0nkoLOPHAce8Ks/4id2s/nR98vA+/qErF6vIlEQQ0/+unZw78vJSd3lweuQvTpIFnho8Lp5D14SnZWOO6IJXMeptUWHj0SZ/Zb81sDHLh5LF15N4v7j0u4O3PtA2YVp7FOTjeHXgStbDWq9XUOih1/O70sHfuNE/6aMtSSKFjjdXw78d1/Bj0v8eD2/5/i3AN/grv9afx2JTt9WWTcM/E1+VfoWARJJuIs8mAM+LT57eRZ7bYXFDt4OcF94Mhu1rsffVTFUKA5cYWe/VPYGEplW1kvsB973PYzFZyOJjjHNJZsAl1ZdGjiyiUT7+68xOgOvf65evU0Q123iudOBwB0ZjVPmsc+dL6y5BZwre4dX22YSsZfp8hUAr9j32TxHiERnCjSONwC/b6G310+YRI1ZKTgA/3OJ5Ih1JiIkau8/2jsJ/Glswp/toiTSyXPkYe0E9dzr1L2EfVRvQEUQ+INVbM87tpDIdeVzW3ngD1+cT8/bSqLHigt+h4Fz3kgPDhQj0eU1mfE2wH+z33Yy30aitO+FGReBV7yzMpQRJxEjk1huBPAWjxEFRgkSXc9lzLkH/GX8HsEu7Ou26t99AvxEowFz4XYS3XvGEN0C3D1bhg6WJNGmZ2KXhoCzNLV9spQiUbDzE/NZ4AeaVF/slCZR1+qKnas+/fNTB87ls8iQaNuiFIMY8IFX9sm92L0u8L5VAq75RzC0WJZEI8/O3DgC/ODZOxfCdpAodMu+w/8BL6jpsz2xk0Q+k1fmfYAHXR8+snsXiQgXpZwY4N2n8hGHHIkYBs/rPQD+i1Dc1Y/9Z5LQ+DPgeypCRcvlSTTdrePXBnyLQ+KayN0k0p76wTkGv/emA6udAolkxdbHLgB/1To7t3cPiX7VVPOs/vzPFWv1Jrj3kmiMY+SaBPC38zbDQ9htDaNmVIE/EZbvrlDE90LnUxtj4MaNL99H7yORyXfHWkfgGyLXNZ1Wwn3yY9p6P+APOSRqlZXx+/RYOccBb+ybfsqrgvdR715ZDvCjWUHFo9jrz7v+eQ7cdKbl0XNV/L03muU/Ap+90PEgbj+uq6nHDmPAI8qTM50OkCh7aGv8AnBvqw3pBxCJ3uSLV/B1/fPjS2apa9VIlJtc2SkOfGi/YQqBvWeyj1QB/r2c4XadOj4XCwl/jwJ3ZnJLvnWQRE2sAwwOwEMakpPPapCo07KOwRe4Z7zv7YOaJBo6oPj3JvAs3vV31h8iUcbyITIbeHzXubQJ7J3f6I5K4FPXr9x7qUUiNZVdT1uBB9VqZKdokyhfZ1XcMHDFjQ25bodJ9N0q/L9Z4FsU/xZo6ZCouSJTbmU3eM+y8VJBXRJtL7CeEQV+bVd01U/s41fLS/cCb9EhXrzWIxEVWHxGD/jI3YXmu/okEv59dL0t8OutLz9eNCCR57bE2ovAUy4f/KJrSKJBm4CT4cAFlTxHRY6QyI7gnU0DLldy/McM9hk+vfAS4MJBswstR0l0X3jnmibgJocPc2QZkcj/RE1iL3DzbL113sYkiuP/yzsF/NMeRrEjJiT6GzscwtzzzzNTXeS3mZLoveCVH+uBP/YKU5/HvnfFK3NZ4LzOZkZtZiSyuFZbpg58kbfTLsccf9fcWS5z4C0rWT38LEgUktVq5Qx8YcV4iMkx/D6t3zL9gW+P9EmStMT9p7F0OA44n0F13jL23o9Km3OAJ409rum0ItFH5H3kGfC6eaP2R9Yk2mPh4fMeeJFU1vjV4zjPnJK8Owy8kD9ryeIEiSILU6v+AJewMeLfYUMixeDW91y94H68XyDDfJJEVdJ1fcLAO2881ezB7v/zwshu4GEV508U2ZLoh+j4sDbwgqaPl67ZkSiMWfSLNXDrE8Mxx+1J9HRE6J0r8Feb7j2SP4XP78rhJ8HAD91nb2I/jc9F0/nbScCNUgWHv2L/fbLh4iPg17J6l8v+I1GJ8NDhWuDpJw5tjnTAf9eohb8duN85SxU7RxIlqwX3jgLffEnAStEJ1+1e9pS/wLM2BnivPINzacBxo1VfQN0u3bw9jL389FWGLcBjX+pUVTqTyFnOK28P8G+8+b03XXBu33VQXwf4n2tPFv87S6KFRwOjx+HvvHESUT1HIv1JUx834HcD6jVWn8f1pnmPNQS4tG6D4zj2pj8NkUnAXVqdo2pccd0av+B4BPxhUUVxghuJltNvB9YAP5aY/9nZnUSrpA2n2oDziGotqV0g0c0DA8e+AfefDdkm4EEi+21GVbPA/eqcDGjsTlKZa7n7/jmj0A/Phoskik3ucBQGLv1kc/ptT9z3qr6XygOX2THx2vUSiVi/DM0eAn5K2v7Xoct4HtF+sdcSuL6Jt5CgF4m8ta+dOwv8ut5u3Z/YiyV2pwUAb6+8eem1N74f5ZtfxQHn04zOuutDIr0ynbH7wA/E7Gi76EuilplyhkrgQZpuy7pXSBR1iIe/Bbgom8kOUT+c50lz0X7g/v6fTvzBrq0QLf4TPm/098Y7f3yOnJ+IsXwFOXxbTU1WAL7fuz9sWg98OlN0yjuQRA9avnJJA+92Fdty9Co+R9GDv/cDd9zdaCoehHOmS8+no8CbE1ivL2BfLHhTfAq4ocq3Zx+DSWSYURp6Cbhdq91UbgjODzG3jMOBx0/7bgsIxfdR08X1qcDjju22NrtGorbYI58Lgcukh8VKh5GIVNp+8wVwc3ev1wzXSRTDtUKtA/iWyywrurALG3d9HwVee2zHvsJwPAdZlkTNAQ+q+ekWEkGiuy43t3P3//PBo8Z5VpEk+q/TrVoIuGuF/siuKBK9HbTQkwP+LW1QiO0GiQ59OfRRAzh/Hq9VH3YzXlVjc+Bzod2JpdE49zarvHUCntOj8jH8Ju7DJlr7fYEfM1LksY0h0ea547k3gDvGv9XfG4v7M+tV7nvA9XRnI7jjSJTVVHqmBHi6cHXzEHb3sJnal8CFqzdwVMaTqC5Wl+cz8KyWlTo3E/D7yBdbfAcuNZsc/l8iPkdl0rfngb/7XvVG5Ra+j04/a185AHKsngf36iQSrb9hxyYCPOj1C8Nx7D0+wgrywM9yPoitSSaRgveMpSZwyefCnQm38VzQPuZlDvzy9R0bXFJIVPDpd4wTcPmNH0+o38Hz5juhTB/gxwU5swRSSVTI5JgfBXy18qdxGvvVV62P7wJPENq782UaiXJsLPKLgKt7Sl5KuYvn0I2MmfXAU74/rnZLx/uu9SGmA/h+iWYW7Xv4fMk0eI0C/9590XBzBs7zG75YzgIPLihJ+oX9lqWgAufgP2c3DBpsziSRyL5QNkHgSY7D0veySGTEsL5DFrjHg85Ll7JJJMTw6TYCvvDkWL3+fRJdC647ZgS8+NDZVVsf4JzQ0cV7CrjCMo/1HHYFNZH6i8A1YzRy3+eQKHx18tlrwF/dZ525n0ui1CR13mTgpdQxzSsP8TpvEip4CFxutXK8cR6JDIgdGs+AX2l4OLT9ET7XRz0/tgCfLciRX8YucPun1VfgWwN2B3fmk8iKL/fLJPDUEf2ORwUkWs2SZMEwBJ6P+rUtqJBEZ+vq3q4GfnurhNexxyS6c1NcSQz47LGxNzuKSNRR05y+B/ipnt1CLMUkMk55tKwFfL0594Ve7Obn3x07Bvyij1tjcQmJRMN2PToD/Pf0yU3XS/G9v+vTjA9wxcs9bjZlJNpdUasSBfxPfn+jQjmJ1p6Z8E4DvkbLdTPXE5xbbp4qLgQe/uP6xUHsct4iQ7XA3WxkWp4+JdEWd3HuNuCMqpZi0RUkknp5aecQ8HtKPH6nK/E5qlmt/wt4HavhJ+UqvC8F83bMw6DejPl38T0jUXuvvDs/cK7W0xFj2E2TKr3Fgb+RUP1W/Rzvl0ysryJwKd47agnVOLeMVl06DPyw4tVU5xr8nmv2uVgCtzCYmFWrJdH1JQ5LZ+D5jENmAnX4e6fl1HyB17IdL6WxB2sUi0QBF115nO/lCxLt3xv+NxX4tYZB15R6EvVvePauAHh9L9Xq1kAiZpXDKTXAX7H67dB+ifPeqJzte+CZ07HRm1+RCDl5Cw8AD7WUnvyFPWWlSNcU8BfDh4++acR1skUigmEE/N1DRPG9JhLxTN/csxr4OjmetZdfkyjog3XPFuBnLJ5eMmgmETdjlNdu4Nech7q3vsHzzidRXk3gVoIx+/9iRylCGabACaG6jA9v8b2ZEiz9H3A7sQusOS0kStxq/NgTOFP/fRe/dyS6HRQpcw24MoN1m0kriVSY5bJuAY/YH6so9Z5EutMaa3KAx2sdvrviA+4zma+uPAUu+D6A5TN2Vsun/U3AWSMUzxW04ff8b6NqF3ADKdfO4I/4PddOxY4D5z8lfsCqHc87pUqDs8Bvjx3P2dWB9/fmrCTHt3++12U1H1snPo+/Zc9uAP5fhpZvH/aUnb05ksBf7p/7VvoJ99tohj4l4Ky/JY0iPpPo64lMLl3gLF5dz2278PNEzW4r4JV+zJKK3SRKuHrMzBm4XGVB4soefE+5urn5AM/62s44gr2OkT00AvjJzEtuVb0kmr4mEp8CvL0i8WvMFxJl6jxLyQMe82mXgWMfnluTuu9UAdcs0n6+/yuJntRcufUGePnfbum1/XgfuR5E9AB/7zx2h8D+9I25FwH8Trkr94sBEm3SjTn5F/iBmAt+SYN43z+ZqHGOgj7zeHLi3BCu2+rMjRuBK70ZtdUcxvur5z8hCdwzwaJ94wiJXFrHnikBP/pSXesH9rXxA0E6wMN47lc2fcPz1OgZDUvgf6Svyt4dJVH9utBFJ+DJ7zszLo7hecRtd7EX8NCizHV64yQKVbtkcx34z5CxSNHvJPrUYciSDFyBKZthFru/T839HOA1g58vtxIkeu3fiJ4CF/0cNJFNkoh9p1N7I3COlOz/fCk8Z3Vl234CfnhQtc+IJtGz135j34C/PKVntn2CRMP6vx2ngYd3vX+3hN2xhGOIeQzU4UyzVuckifK1as3WAk/zVKp7NEUifot1DVuB3+IWUg76QSI+OV6p3cDFPC6XHfuJ+9KWwoiDwL/ZHtq58xeJLl/+MWIEPOlGWB7L7/+vQ+8+O+BriveLf8HuFXrumhvwI8GOmSXTJGLszn0XANz+ObNw+AyJRhujV90EHriWP/XkH5wDU0V07gKf00jesHcWz305J/0KgCszRSdxz5FocI/Bo+fAP3DO8A9jd08gPr4F7rTmQ0LlX7wOfEq/e4A3dW5aGzNPIpM5JR4CeDtnd7zDAonep0xsnQMe7cK2dv8ivtc0jsmzj//zjcUPEtYskYhGXsoCwIsTnvAT2Fu/HlEVB172fm9S3TJ+z3MDinuAJ22S2JC0gkJXlKRlNYH/kgu7c46BQmkxcoImwL1bzIU0GSkUXPeb2R74UnZixkYmCn1bd2nMDfh5T41tP7B7DT5pCADe+efkwyZmCs2cq7gdDdxmlJC9y0IhEc4rZ9KAH5kfLrnISqGnTEy784Fz/dDdp8dGIf9cw5kq4KuDhGtE2SmEtGxLm4GznLHTnMX+UkrJuQv4PVvet60cFPqS1bNxDHjlVhnj+5wUOr586NU08MPnyrp9uSi0PvLKGebvoN/O5toZc1NoLCGAbQ1wuUAOYvtKCuU6H00XBc5W13lhGbuq1dSuXcCPeKxc6FxFoavFts8PAI8xKwrN56GQbU2mugHwc1tqeIJ5KdTQ+rTOGnhe4t4USz4K3dqVoeQMfJvLhm27VlPojZxtvhfwLhuHItY1FDIWmVkfBvyLzGbVPuxbdU8HJAI/E7v/delaCu1bfNSfBfzd4SbTCH4K3QxrVSoB7s1TNWi7jkISiu9u1AFfzOB3VRSgEJPVw95W4PPPuxdWrqeQ9IHTW/uAo82skSPYc+WWT5PAcwJSNjzbQKHrQb735oArZNzKjd1IoV7/nk42AuRh9FfRaROFyi5uZlkHXGfdq6YDghSSKjm0Qwy43ciMBf9mClmEmhrJA3/icHOcxH5MVe+8GvA+q2jveiEKGWyTDjUEHuD/i/O2MIUso6cTjwM/dbMm1VWEQpmvHt1zBn5Ob3KHlijelw1H7nsBT3cLfSG4hULJnweyrgFfVx1o+gt7uqF9agLwVZMDY81bsbd0RGcC73l53/eeGIWa05V8i4BPLrTyXN6G33NdnF0N8C9mx7MNxCkU4d+v3gJcP9pASUwC9w3xrYI9wNn/y2z9i739uM3UGPBfyVan27ZTyM01rmYaOM93z785khSqza+7xkSC+ln7O8ZfikKcp4jDfMBdejokzKTxdw3wsggD3/dXoFZahkLvPfY8kwFuurvanFGWQlPOli7KwPUPvZzowm651p//MPC3kzJhj3dQ6L+a7Eoz4Mk/Z4Sv7aSQ69NWi1PA41ZuqTy+i0I9BouTbsCfryg03i1HIY4PckH+wHdGpVAc8hSyjzq3Kgq4qNvYtQHsBm3FCbeBj5xNEH26m0JK9PLaHODEwYznNxQolLDD8mYZ8OqSlcdO76HQh+Eapnrgy1e6fynvxX/XWv7Ce+C+9swxfIoUqh8u6/kCnEMsWmYc+9m32vsJ4A+CLjXX7MP905a6/Qe4I6p2SFTC/edn1hQzBe7fTfbMZ5UptPG9q/pq4OpdpzMPqlBoUtMoShg4r+IrtQ2qFLqXqdMmA/ziXFD/JPaqvVa8yvD5wTT/xv0UenskREcb+L3H/EJpB/A+qjZfMQW+KE5UeyAKCelJ5dkB38CxyUZXjUJRb3LbzgPnXJ+7JKJOIR0OrV++wGf4Y9P/YP9txsQTDlzyVada60EKyS4Pit0CzjLuOZStQaEkk2GFLOBs6u4hvpoU6spgR0XA38Y1iRsfws/vM9Gohr9zz6t5uxaFghxeqr8Bfl065Owy9kM+J5Q/w3We/c7zSZtC8fXCsiPA9zQ/LM0/TKHN0dwbfwCPsmuwCNahUIr0NoYl4FdD9i5Y6lLo1XfnIU76n7tPM2bs0qOQtUB/tQDwtsvbtdj08b3JFBwvBlz+/QOyD3v1vMUpOeCo1i+2zIBCfEdPyh4A/oKrQDHSEJ8vw5QfusDTvBS+2h2h0IAWZ5EF8NbmNaH7juK6ulbkdBr42QZdGR4jCnWfiN7kDrxIsrv9G/bzG++/9gM+Xlfj+9wYrzPXjGsEcD+D+a3xJhQiA4L4koD/iY9uOWNKobBGvYIs6Me8PNXMcD3sMNEoAr7PrkJIwJxCdSwp7c+Bx7kbvqaxi6SK2jQDnzFUvvDSgkLyauRQJ3CPGl/BO8fwfac2azcEfGfo6iZ3Swqx0Tq9E8BdnZbcD1tRKCN+0HAe+E1ZtFnYGtdbcN1ztgmQu1I6Xk9j7+MaF1sL/KJHzcWW4/h8+VqGiQD3DVgQyTpBIXHRdSMywMeCo99521BIQF9YRQl4utZFn6MncX/TuxR1CPqNAgkJWwpdOyfYZQScSVi5cxH7EsMaIRvgy3UbgjvscE6wsLZxBj6spC/3yB7nhOqZ5EvABY629V89hZ8PGn0XBFz0TW70sdMU4p2RXowGnnH+4/6d/1GozeG1+B3gRsyGNIsDhWa3VuvmwPc03pT2BfudK1xnSoHnCikblDpS6F1t2dVa4NpyeYvhThTKVq1KeAuc08il0PYMhfYf3Jz5GbjUIb+Tis44zwj3PxyGf7ezn3eVC4W2izHkTwJneR1XP4K94m5I7jzwhm+JF5+dpVDkV+d0tkmwbtPj4nHnKPRavjxmDXDxushup/MUSiROXxEGfo7bPwq54ro187WXBp6fWYvWueHnX8wdVAQ+o3v0F4VdLGBwswbwy+925jS4U4ihb/cvQ+CeP09Yp1zAeVjqZ70VcKOgHh53Dwr5PNl8wwF4yKH7L7Uv4vr58NToAvAHzDXeQp54Lmh6wesP/NR1sZ3T2N1I1TfhwMNud428vUSh1ggp/0TgP1b0pGReppDgdKRMBvD7YduNvL0odN/bvjMfePlMA9tRbwoVOT72qgBuJpBfI+5DoZBVF9e9BP6+ZMBzEfvF6uLC98Aj4uxkO3zxfddwRr0XOEvgjm95V3AfcEtrHQXepamddtUP1+caQ/OfwCvyHpkd86eQ98KVrkXgHr7Wq3YGUKjcW9qMY+qfTwWaN7EE4jzTa9WyFrhsaGrgF+xtrtwHRIAfNpZVLr1KoXNh6nnSwC+VsP8OD6LQAfd5XkXgjG47Cm2DKfTwisqFg8AtzO46KYZQaM0cY6sB8BmZY1tXhVJodI+JmCVw3xfWX0ewRwbJep4GntqXe/vZNQp57IivcwUuoY/M4sLwd4WHsvoCZ+4S4jtzHffnQRbta8D36Gu/Q+EU4r7OHxQLvMujInxdBIVOvy1/mgpcZOMFLRq72vzYWA5wG86LTC8jcS5yLFhdCvwvT01dShTOmTZs+2qAe84c8Xe/ge/NXX8smoGfCZdUPRyN7x1Z/wsdwGMSdP8K3aTQ0ey0sH7gxcMlFdPY00bMkwjgVQftL7fEUGh6/6OMaeAP/Y7tzYql0MjynQcrfvzzFNvEae84/Ly31AMu4LVP15cfjcd9ad7i3jrgp48MXZRIwHN9x7ZEUeC/fv1QWMIeaZoYIgOcdNee7kjEc8qbnPOKwAcSh8of3aIQc5iNyUHgETINl4KS8P3eVSVvALyY8buiZTLOCTw13MeA7/tmMrfzNu6HvmcG7YGLZjA9Y02h0LJLTdE54H5Ms1f6sFvsqvHxAh7UvQuV3cH34HpnFAzcY6qAITL1//NIw9IN4OX8ri/t0vB9F/e2Ihn4i3UXw/bdpZBRQ/C5LOA7XjzX5UnH+dycFiwEnj10eNUo9n2pHE0VcN0Or//4/B6uw+FulwbgIy+kbsVnUGje9yRXK3z/TYFWzpkUelx+534X8O6t64XVsyikMHBTeRg438OfwwLZOGfq7X9DA3fx5nk4gf2u1n3TWeCap86ff3WfQn9Em7sZf/5z7j08CqkP8LmWzbNcCdy0+sfchRzcJ5/qdAgAr3nDX6eTS6FYvoc6W4BzyPheE3lIIa+I5koZ4FxFogZ/sO+6kC+mCLx8G8fa1jwKBa43iVCHv3Ncrjf7EX7+XQ2hB3zXlpRM33wK8QxMHTIHflxbw9m4gELEPeKOLfChFBl5yUKct08WUM7ApSizv8vYe1yU93kCr+Csrf/0GOcu/nj/AOCSjY6RBUX4nOZX1IYDl544YhpSjHN4YP58PPAY48ubrUtwLh10lb8LfF9D36hcKYXGhZlP5wIX5Q0uYi/D+xXhHFMC/BSHo08/9nH37KfPgUsEhGs+KadQ/rbS7ka4nurEqhtPcJ6ZTpr5ANxFNLz71FMKycmbruoFXj/xX7ZyBYVqpL6LfAOu4RPoyleJ7/edx3ZMAk9J6FIex74iJnPvHPCQVedZa6vwvJbarMT0659/rlD7mPgM96XsVsWVwENOH7179jmFJOdKdgkAjx9KdcYDFtr8/bKYKPCtzOKKG2so1PhSaI00cOcUkukH9o1fchcUgD+7RH9oqsXzS4DA4AHgvs7Sd+/W4Zy56FJ3GLiM9n0Xzxd47svJSTEGfvqrlZJ+Pc7n7966HgfewaDPtrWBQoy13cgB+KFgr8457AtvP3K6we9SGMj68BLP45oVH7yBPx0LupDzikIfvSJjg4HXn7dV92/E/bDCwOAG8O47XrxmTRQyNl3BnARcVf1tv/RrCuXdyS6/B/yg3LHHjM0UavmqYp8H3OqAcEA39qZzTRxlwNlVRI4UvcF1lXw4vxr4xJyVcNhbCkU8rtNpAl5j8H7yRAvOLYxyQx+Aa3P41Sm8w/fIYIpnD/Dzy6diuVrxvZC6zDQCfBdTiP0Qdt8Q2xs08IyxL7sr3+O6Gq/h+wN8MuA8S8wHCkltEIxd8fufH0vf99mhjULuDt5cnMBVN6g83P8R9xmRrsA1wLleePqubaeQX5LSD0HgR53HDUjs1zelHxcHXjgeJ1LfgXP4AkfDTuC9PJ6/kjspZBfpK6YEPKc0utH1E4UCBKYDDwJfyOm/rfWZQro/LnfpAf9U53hucxeFaCcWaTP4Ph/F1X9jT26962UDPL5IkP9tN163C4deOAIf26nzPaMH96Xsv8zuwO+L5Vd79eL6L6/V8AGucepQ3JEvFLKcTvQLBm5Qt9ZRvA/PX2X+JVHA7Xg3qi5iZzroO5QIXGW7GV/HVwq5TEatTAf+8Mur0bx+CgVzl+/OBZ7IePb51QFcV99/mxYD/3teO+7YIIWefTJwrwI+NWPhtHMI3/tiL643AM90TTvAOozP6Zajd1qAmxUK8Pdh7xJdyO0Efup6I1k6QiHtC43FX4EfaH9YH/GNQjtPF5WPAT93+sVtu1Fct9rPyqaAR/OtdN83RqG4c+OFc8BPFEUd5hmnUOY2pWzGaVDP69RERrGb1xUmcAE/uFFi9vl3Ci3e0A1cC1wpVv1DPEGhsa8rHTcDv210M9eZxDmH6e9hceDhcrxX1Sl83vV4xXcC12F7abmexvmf3XhJEfiOh3nyk9gzw+va1IDfpxu4GicoVCt84p4OcPlHPN9SJym0ZZOkszFw94obNR5T2Fu27bQGzkPtT9b9gft5sOnkKeAdgiIXRH/icxrzJO8s8HRRBf1Z7P6aBnaewP9r8xZ//4tCWZMb1vgD38X0Y8WD3xTSGNpcdw24aPTt3ivTuP7PWjndBO6q4/HEZAb3pf4PXMnAz3L7x0r9wfdaZFDePeA+hZVnGWZxnq9103wIXIBN/HAX9ph3qd3FwD/Q9Vsfz+E6Z2F3rgJurByzHPoX38tPS6frgVu+vNF7fJ5C/QoZV94Crzr17OnuBQpJvGtbagduN7U+gXORQgJtWle+AD9y8IHbIPYtsQzTI8BT5E4ZVCzhOeUE0xkauMetI1I3lylkE2bQNQ18k44Lm8MKGvnaDB5cAk6LPhlRZaDRzd11uawz/9x6bmf9GkYa8VmQHDzAyZyudAJ74IbTDgLAlViL/F4w0cjirXSNMPAZqtw6mZlGAtUafNuBTyoQSq4sNNqPCk7uAr78RH+9FiuNDDLPPNwHfLN+34wgG42a9vpMqAE3fXen8xd2eYOBHTrAG9ZcL3vDTqM1e9OcjYBnzmbEZ3DQaEq9JMMS+AGz7xe8OGlk+kKkww74LKON8REuGr1kJhicgev2LsuJc9Pow3Ee6QvAXzxt5VvEzrwx7ogPcOYLb360r6QRFeXhGgS8efhnW94qGq1nLY+IAD44ql1ylYdGGz5ZZMQB323WHHeMl0ZBBidKU4BXsl/22MlHo2/PG+sygYf0HjVlXU2jnouJzXnAK3LM9/Rh//XqzbsS4Ena19eVraHRmxVO76qAn0v89idiLY3+eJ5/XQ882+V8tx0/jdZe6q95A7wqe8uzfetoVGP0vOgjcLSJMY1HgEZxlqx3e4D3PeQOGMUu/bXm2hDwo9IH7arX00hm15gzAfy8T6ZGwgYa7b0XqPsT1skFWXGXjTQa94/a9he4FT3EfnATjb4Lci8w/AH5oameXC9Ioy9vVrRyAB/vaWmdxO7Q7XKHD/hdJoaSxs00krtteHoD8FLBk4lpQjQatcrbLgo8mmHM66Iw/i7XwPHtwPNvJB/XE6FRofjHrF3As1I91LaI0kjw4z2rfcDXc3qJzWHfUk9zqwFvLb7P/mELjVy1q6q0gce7LlAPttKorITt9BHgRsJX2vzEaHTP9DO7BXC2NLEnpttoRPhJPbQB/urldIq0OI0OBTAecgBedmEygFGCRqcf2n45B5wnmO+/buxL+lqunsC3f7TWLdpOo9aqssUrwJ1VW3eGSdIoXKMgLAS43l0nfhspfF4U5VZGAbftkJpXkKZR8bh6dDxwnWdrB7lkaJT0YIDzDvDXO8WbhrBb1q8KzgT+YNXJgkpZGlVFvZt5CPytQm18zA4aeZoLORQD3xmg5eO4k0ZGboxtFcAH3/y2PbCLRqukfRXrgDNON2vzy9HI7XP47SbgLT2vdlDY9zfu/NMKPNxynL9BnkYqh88f/QQ81VBu8fZuGu0q1LrfB9w76d6ImwKu88NV0yPAC/j2tmjvwfV25o06BfxTyo9Sob00enXSK/wX8Fze9jvT2AP9XrX8BU4c7QluUaSR7JpSLsbZf+6rxHY2ax+Nbrkf1OIArp9raeqjRKOY7xev8AK3921TNVLG7/lWr1AAeG/M+W3bVfD6nHndKwR8qHHXqmXsS6spZnHgtfMCfzpVafTfhgpJWeCvVooN5O+nkfc7WV0F4P/1mjYHH6DR6kBDBxXgmzXySqwQjdiDNvkfBB66VSxVTg3fI2K3YnWAa1rXh7Kr0+js09p7R4Fvag5x7cd+M+r2Iwvg3Xoulk8O4nv2t1iJDXCHek+NGxo04lA7VfYf8Odc2bKnNXGfrzMrOQucYp0RUDlEo6hXi488gK+Pd2FcrUUjtYzjGT7AL99kpsexC2R7xF0FbtZb97lWm0YzQpoB14GvNb9Xf+swjers3zveBL6tP7PgnA6Nc+w6/VvAV5m/TtbUpVH29U0yacDdU3hDNunRKJq7ny0b+Fykr+tP7Iup9v15wM9xclg369OoKyKnpBh45nSF1j0DGq2UeHy1AniYbKT8ZUMahdT76NcC3xgXIGR4BNd5IdeaRuBuTLc4tx2l0aTyqc4W4EV2rTPz2Gsqg+Lbga+7sX34oxGNrvu6GPQA//Ff9vuHxjQ60CbENAj8fov680ATfO9z3S0bA56XseKhhSmNdl8h7CaAX381kLjDDOciDxauaeBf1w8FsZjTaM/Bqcfz8LxcYXb7gv2FUv5Rxjlwfj9onyi1oNGPPGWaHfjaP490I47R6NloaigPcO4Pu/bZWdJo04GODeuA16h+2rbPikacjEMPBYHvF0pdw2ON+0Bw056twIvNghhGsV9Zc61aErjVy+uTz4/TaJ5RWH0X8CC9x33xJ3C9ZcbX7QV+o2X6rbMNjdw1v6nsB/57+/Eq9ZM0ctzHX6oB3+fgUO56Wxr1vRcT1wXO8TcsaRJ7mzV/4lHgzPIG1xrtaHRYdnzZHPjMWznPNHsaaSXedTgBvPThntMXT9GoZUSp+RTw7QXHTPRO02jo7DMJZ+DGFSkHt/yH69xfLMgNuHrBvNwc9s/Ol7ouAd983lf0gwPOq0ElUn7AN/Zt4MtxxH1MoMcrGHjol08r/J1o9Nx7oj4ceJVhyZTpGRp1/p1ijwG+Y13+gLQzrhNySPcWcFv+lx8YXWgUkfbqeipwesffum7sqnYp9ZnA/Q8ZFhedxfd+mP1sLvBWlbqMsHM4J9gLSz2G9fD7SJzNebyPBz9alMN9MVkM2uOKc4jXlavP4O8ovfbgdqPRIzPhnBfw+aii08PYlaSfv24C3iXzxKzKHZ9rXdPRd8Adl7u0Yi/Q6A7T9+V24Iuj6/c5eWDP9eXvgd/b6CmJLtJII2KlxADw9KDJjes8aVQwl64wCvzmYig3jX1SW+EABVx/k9JSwyUaiTW+1fgJ3LOWfSrlMs6HrxwPzcLz9e73oLsX7g+3ODSWgJOSi+2HvfH5iixRZf4L7ounoo3CPjgP/z4lzwnczdq+Ygb7tq3CYrzAH8/W5L3zpZGZ0ze+dcDzPBTTsq/gnMZfMb8JeGDR25u+fngO8k0eFAXuHO8bZOxPo2EirEECeNEKbU/JAFxv5WEZssDzv8g6rQikEbfsbd/dwN9x7bL+jP1xRrWREvD4CwaGhVdpNHh6ZisCfnM6VD00iEaNTZo/NYGf8e5WOB6M+/CmvOe6wD8PaW/fHUIjvWKJ4KPAM9a1beIMpZFiT80hc+AP5i7yDGL3GnNjPg68w203U8U1PC9IoVo74DJ23H+iw2iU+kvqkiPwusfLxH/XadSRsEfyHPCn6iv7VcNpxHXStusCcO0FhfY1Ebj+s/KDvYA/e3mpicAuW7pJ2h+4a+DHZy8iaXSxv7A1GHj72sNFyVE08vB2PB8O3MHxc7brDZxjP2px3gRedSLwtlY0jaxUDDMTgF/sOxi9+SaN7rME7E0Brt8iFPwbu2tQT2M6cA7etV5vY3BOY7Q3uQ88PHrLucxY3D+71n3JA14mq2vvHYfzg8lf2yK4v+0RFkfj8T42rhwqB77NYURfIgH3yavGJ58BT3trfnAJ+/Cn5q464JLEoGJnIo1G1nkaNgLnyw2Vzb+Fc128Wd1b4IWk+tbgJBo9TD27ow3W1Z11G6yScR2GPEv+BLw6jYlH7jaNplM1lnuBq3azs7Cn0Eh0L6v9IPCrCuLzX7FnZjC/GAWufsv6R/kdGpXvUhOk4O98yx2LSqVRskKVxw/gOuyrvp5Kw+uz5NE0A9xwNKJD+S6NmvvPCywAP+gg/JYvHedtyfxTDPP/XN717Ytx7PKysvmswBXGoytq79GoX+XXFBdwn4ozj29l0Ojrg2U5PuCoyfrBuUxcb7UmruuAd86fTtPMwvfgp6ncTcBT94cmbMrG9XOg66sIcPaLzyN/YrfR5uITB373Gmdw830azR6MRNLAfx539bn3gEb+QZbOu4DnfyXcL+fg+cjicuwe4Nd+XTljmItz9erRMmXg2sHb7LY9xH2VJacDAW/xHDm2gD3x6rMpTeBMpZVH2/NoxNIlxqELfGzL/cN5j2i00Wpk8xHg4QUP1K7m00jYcn6HKXBOlZp9xwpoZCfuomoJPLmU3LWz8P9z0x4tG7j+yzskWR/je8HNSv8UfB+266J92JNivhg6AU8smdlQVkSj9obnBueAPyR8VkcW/z//LBy+ALwxaS2XfQk+Rw9T1S4DD85sYFIqxflz+a7CFeCRv8IWeMpoFFTAvO0qfH8Pu+lR7CUs7/muAb/IdXSiuhznYcvlvxHAF7NMxhKe0OjS3K2Bm8CFxc8OuDzFc7piUn0C8C6f290HK2iE/mPIuA1cKbL344ZKvL/tn3zvArdVk2+Zwv6kfb1JFvDA4LRXTVU00nn6WjwX+Of9m2vvPsP55/3YTD7wZ8eKKzyf4/U8d7mhGHh0tWWJfjW+L4a9op4Arzdbl7+15v/9ijZ6Bryfc+z+X+zaKZ/W1AG/3Pg2va2WRlv893x8CXz3hZe3c+to9NKf60Yz8KY/H+IDXuA+QFtqtsL1VPtxw7we94FNW2Y/As9T3HZdtgH3Z6v/cj8Dr3p1Noj5JT4vC2JmX4Bv7Wy60ot9u5H90gDwySN7L5e8ohHrI6Hsb8CVRSrcwxtppGJtrUUAl9llcNa2CX9X6YZvE7BunacdFF/TSJDZOvAX7AMVRXarmvH6p4usnwWexBxw/Bv2959c8heACyrbWjx/QyP9+f37GRb+uYCGqXH8Wxqdskl+wwJ8Nae1gXMLnveNrphyAs/zvnhY/R2NJraRPauA37hyT2N9K86TsqMn1gD3Wfx6YBJ7QsX5PgHg+8d2Kje+p1HkhmuWgsDLxeL3pH3AfzdD9qMI8PZ77HIX22j0KsNBexvwOK0YGb2PuN5c5CslgTMySG3f0k4jHqM4iR3ANZ51bp3D3p8ZFicPPMg2XvhDB43yStb83Qt8xRf7TTmduJ+3KdqoAOfcoCng/4lGA0bTNQj+XSbFNWafaSQUYiCoCdw0VIVHpotGjFXqlw7DvxtpxMXUjec4zfYWfeDrGbzZerA7XWISMQJe0VbMVNyD1yG93dUMOM/3+eWwXrxuqw89twT+Rd5iweYLjaaELVlsgE+kNMzu6aNR2gY+PXvgW1eqT3N/xXPK0fM3HIA7e77/MYz9sMCFFmfgNbXnJ6r6aSRRs5ndFbh8lxAZO0CjuVsX1DyA9+f1jzkN0kjql7vnZeAzW4tH0ND//y+0OccX+OOd8YPrhmnk5+vZGQDcuir0K409QPfKihC4zkXXe1+O4LljSH77deAsS3e67nzD/ScxRT8KOHWztvPCKM75ZWXnYoDHG//6qDNGo4qYoMgE4Anyih9ExmnEf4XlQTLwJMHId3+wDzcdqE4Fbrk48ab1O84nr3a23QOe8cL+9X2CRrmN3YPZwA+bj766QuJzIXhgMhe4Qq53gwlFo8r1NnP5wE9mC76QonHdcqusKAbeqvi+hmECzxc6n5jKgScfiX3ehb1UVI65Eu5Ll33V40ka1X7TZ6gG3lenUXFtCueQMan5OuBtv3c/OfGDRupeLT9ewjq0312m8JNGhd/lv70GPj+tXsL1C+/vjZOdLXBf7p4sGsKuXWZS/wF4gXZUYeVvXP9FvPkdwEMGmvJjpmm0rj0prgu4pPnqR44zNHpzjvD8AlznlsvDA39oxPSRw3wAeFZ0ew7/LL4fjf7IjwBnkNV9QGH/q1rGPQ4cnXyf3TCH8+eo+jAJXHvNqayUvzT6kZ7xZBL4GkWWTPd5GklWdVz7BTy3ovze4QWc9659MfkDfMu1i+nCi7hOLKo2zwPPvKF+dwb7ez/XkSXgttWCae+WaMSmt5jDuAhyIBNravYyjRp4/3NiBf7YcDHFd8UEChHJ3cYJfDqKMcWYYQK1vm3qXwl8IJ//tiTjBNp6+tUtPuCTqXuTVzBNIHaVTF1+4IV6/yV9xr6ccXJ+PfCqnIxbhcwT6AaxlCsIvCadTAxlmUBKDldNRIB7btFIPM46gUIdxv9uBf5AKDdhN9sEmlXdky4BXDJ4YwIn+wTaoHJGTRr40IGU+EHs50pCv+4A3qgmEV/BMYH8f0d6ywP/dPlF3E1OvA7Gfnx7gUu0O8U5cE2g70LWD5SAd6hvjtvPPYHM8sT37Qe+qvRr7NqVEyhVa7BRDTjfuoJYErv2oShjTeDiVtdj61dNoK9/tvdqA/9fO3f9VOUaN2pcEbu7JVTE7kZvAzsRRWxMbEHFRiwUE8FAsDuxxUBUBBRRxFZsRFFUnscOMM6958y879c5f8GZuT6/ec2atdd61p2zZ9g33iMgOL+h3h465dZJdMvWwwM8Chjq+zmH5K6i7740IqBdQUP5Twkb0kP0UqmTA8oVMlQz+0rPeon+Idg/4KvuyyqudO0jemxsWMC1wobKfuHT9f6i9xj+NmB7EUM16dC9lZvoXQZVCZxR1FDHCu07OlT0+bumBDoVM9SfcZmt3UWPr5IQaF/cULsP9F4yWvSij+uu+qt7c+uDH8eJ7rRvx6p7JQzVtVQ2F0/RfX1tVoeWNNTI924nJ4seNWDf6gWl9Hh4c77oNNGrlldr+pU21MeBFTxnip4W82xNnTJ6PGzzvzJb9NYNlq3NWdZQTpZZrOaJPmOYY9Bz3X/e9fH0Ff11ixzrTpbT82JU9kg/Ob/C769bYWWofPnX510mepFLR4OHWxtqU0mH3v6iX+kWHOJgY6g2D99tDBR9a4el6wvbGip42/6kNaI32+G34a3uVaJn2QaL3rZ7wMbI8nrerXRz2yD69OY7N62rYCjnPq7rN4sePCh684SKhsrvMfz2NtG9dxhb2toZysVucY5domf/U35b2UqGOhsf3WSvnI8Dhm3/ovudkyVHH5DrydFDO67aG6peg8VrD4ne8EPWXdsqG8ozpMiFo/LzZ3PfPb2Koco1iEg5IV+fcmtP96qGut13Qa7Toqu5HfZVqmYou75jqp4VfUNs3P4/uof6TupwXvQtoS6hd6vr9arGpmEXRd9rk3bwQA1DHdn9flaM6OWKrTg8v6ahBrR0C4wVfeasxkf71jJUUJf0HVfl+GlrHqtd21AZZc8evy56zuGHTuSoYyhry92RN0WfEDf95DPdNzqdvXpHdKuRXU+H1TVUHtfft+6Lfr9m9fDl9QyVbdSY+w9FH1i4WMSw+oaqeC974hPRl1rmPN+0gaEsP96+/1yOn69ZIws11PM6983byaK7388Tlar7kCmZ4lPk+rOxbMyFRoYqtWBoVKroto0aXQ5qbKh034yw96LfDel/ZXwTQ22Ov7LbFN3x5JKrbZoaaseBhDWfRN/oczG+jIOhdk7ON/er6BVSstz4rLvD1EWjfohu86TrrbhmhsqVzaFbhtynXLbf2drcUPsmVq/zR/RPbTLfn6YMdSrfgEKZ//xv37xhZGK3Foa6WfWamUX0yV0SH9m1NNTq0rPisomeqZPz09+6b645fltO0R8uuvf8TitDBZzePjWP6Ae+DUne31r/XrnLdcwveqUlP17NczTUFq+nJQuJnrt+0Js+bQz1q2NKShHR7d82f1erraHCHzc4Ulx0lw1mWvZ2hpox6+a0UqJ7N9/74anuj2aebFZW9BVRYz6faK/XvWpv/1qJvqxcw2/LOhgq6/PR521Fn9sq98+hHfU69qbJrIqiL7V9k9Gkk/5d1vZrYC/61SPxfwp2NlRNh+tpVUSfnhyeOVV3v6qrt1UX/ea+o5YXuhjq3YmDPWuJbpNxJHtQVz2uqllZ1hX93OXTucZ30/vvi5TD9UUvbBmXt013/TwrZe/XSH7f7S8KlHEylE/XuRZNRQ8NzlLks+6r97jsbiZ6RmK14nE9DDV3kV+HFqIXcB1YaquzodIcSqS2Et0/+7qy03oaanqp7AvbyN/rcaJ1t16GuurpYt1e9LVXylewczHUotXZT3UUfWuUV6Xfuve4U7pLF9FtzyVUudNbn0/mrX7WTfRvB2rX2O+q59HHiRN6yPGzYH3teX0MNXXiqV89RR/QMG/9Pn0NZbiMWNRbdOPMwka1+hnq0Afv/H1Fv2ORwyF7f0MNCsi0pr/oVbIEqKe671hiFh8ketnDNq1PDDBUpRqd1w0W/cXv022XDTTU0vjixYaJfuZ5n45DB+lxe8Y5YITo3ztn7trE7b9zVOZco0T/2OCwU8HBhlobZTNnjOgFV43o9Ub3gvPDPo8T/XKvCn3ODzHUiXsXhnmIvmpSav+1Q/W+WaDV7YlyXiedcBs3TJ8f5jZVXqLvCFw8zHG4oSrPPLhnqvxdvIeNLD1Cz+vuG/LPkL/7mrZjP+ne2ynb5Fmij0+o6XHF3VAxN9Luzpbj2dp68paR+lxh1bP+XNFTvItPmzpKnxNWNgmcL/qlR0VndR2tf5fJ2977it6uZuk5FccY6lWZ5Y5+8ncfV2nBL90TH2UELxE959ImfrfH6vOtxYf3y0R39e65bN84Q0Ukj27mL/rQxl4r5443VOYb45YGiN7x+IbVrhMM5VYy/d4q0Vskx62r6WGohQULWq8V3Sf874Zsnnp/z3V8xDrRu9ZpuvWJ7rd7vtwXIvovB++dxycaqmfr7e83iJ56I2bv0kmG6lzpU9XNos9JLnJwyGRDDe9xa+RW0WuNHn20sZehuhVrs3276LP7XgorMMVQYdGdHu0U/dNe+/DXurc59LrAHtErdA04f26qPldUKuW4T/Qwh0zRa6YZap3Py8kHRO89xit27HR9Ts7RfvtB0c8mfLjWeoY+bxRpm3BYrkuDJt4sNVOvq1+f/Tgq53uB9Lsfdc/yq5j1CdEnJi56GDtLj/MZ7x1Pyt/3UOlnm731OefiYPfTou9fdCJ5ymxDrbSbtihc9B59er3p4qPH//daOyNEz1Eq432FOYbquHD5hfOiPzu/62OG7vEV/RMj5XNr4frt1lw9/is1/BAl+phV+TP2zjPUmscLLS/J3yv02t858w3VMMinWKzoY339LV0X6PVqj61dnOgzC7rmrOmrz/9DPeteE/1vO7t82RYaqm+Jcc2vi97PKr3QE90nlCze7oZ8nstvFz++yFD9T3l0uSV6hyVHyyz10+eBtjOd7sh9KleQzZDFhppZrJHzPdFLZ5tr13iJXn+m7+nxQPSIiR5VCyw1VOsL8d0eit6r3fBar3W/0Gxvx8eiB84YVP/cMn1fa+3Q+qnolbMMarJmuaFG2/o1fi76o/tD1dgV+l5cbUX1F/LcYo5zbO2v18/j3axeih7XwrtDqZX/nUOu50uRn/NiQNePur+bm+vXa9Gbjt3vHBugz7Gjs71OFb1xvTjXzYH69cWjEt6JfqqgMWDKKn3vftgyLE306IxiQ7usNlQDywUhpuieqY4jK6zR99mUJbM+iv7y5tRxGboPu9O7/2fRHQ8cmnhrraFql3vf+KvosRPeT90bZKhCxToU/S76ocI1vOes0/eUvB7GD9Fb+0+e1zvYUEkuQ2LSRX+SeH5RjRBD1W9tE/JL9Htv8y/Pul6PnwoHx/4Rff3pYYGPdW/VOVezTH//t29pdi7o2AZDDc3TMLeF6IPHl9m4ZKPe98Pq388i+qjWPtsGb9Kv35B9a1bR2x1P2d1os6H25z84MrvoG071CM2/xVBFh1SpkVP0vO2jjqbo7vrK+2Mu0Tv2bXQqYqvel9/tPZpH9IKvj0Ss3qbP/zGHPPOJXjGlZtSY7YZyjFlZo4DoLt2OxrbaYajfDl1TC4o+p1Tj6yV36nvB7NSthUX3VdG3P+ju/HCoa1HRncKcEy/vMtTA7efyFBf9+ZTXTzft1vf0KhnnSohec7rPS689er5cLDWhlOhdTpR+23mv3l/OlitbRvSu5c+a5ffpcTUqx5WyovcMd/uarnt8mcSJVqLP98qZcXO/3u/sAkvZiF60Y1imvQcM5Z1Y74Kt6K1ru2ebE2qoywsvDq0g3798mTy9D+rz2xyHrHaih5S4W7DGIb2vFd+xo5Lo43MGFs96WM/HzektK4ve0OhR9rHuW9xbPqkix8/54uWPHTFUv6jpU6qJPtTruf2So4Z6n2Vn3hqin88RWmPwMX2vnxm9rabomSZ612t0XJ9XZyTWry16+F6nJvlPGOql86tLdURfvqdyixTdc/VJ7VVP9HLuWdtGhBlq26OUF/VFt3n6stPqk4YaUf3ZuIaid8sW6zTmlKHybrn9rZHoYx4c7N3qtB4nvjHeTURv2yV4QMkzhjJrhFk4iB42YNHQD7qHGLt8m4m+3mL6qMvh+p5SLDibEv1pvfETNp3V95rvy31biD45bYSXV4ShGicvtGglumvFoTM7n9P332q+3q1FD7w7ZG7583pfrrDkm6Podb4PX5Suu0+ZoHFt5TicP3b5zQuGej0i9EU70XNOmrJqT6ShqvW63quD6CvOzw/2uaifc+OMSx1FLzxk9WaXKD1Ph9Vv0Fn02857dlaP1ud8+9nbu4hebMX5/ZYxetzev5evm+hVcz088kj3rFEtpnUXfWzk95NHLxnqikPEMyfRm4SWOLf4sp5fa7u0cZbj57JDtFusob7ZfN7TU/R6OYbFNbyix3mtQ7lcRO8+esWNfHGGelhk/ujeoj9KCb/3SvcYK49YV9Hdp75/fPaqnkfbp1boK/riotbJq67pc8LHkNn9RE8645I6Ol7vL/0e3esveqnBK82W1/X3rduk+kDR32SO/1oiQa+3cafmDhI9a1CeX6bueSa53nETvUGpbhaXbxjq1OxSFYfI8em7Osemm/peoDJNHip6gVuP83ndMlSxbLkjh8nnnF6paOfben+v6JBnhOhtfniVLn9Hn0OM1b3cRV8ac8kmXfdqx4ptHCk/T/9S9jfv6n025uKLUfLzhHnU2HNPn/OnhNiNET02/ko9n/v6fUpuHjlW9GsbKjZ1eWAouz8394wTfULZBS2rJ+r779R6r8eLfqvDq3aWD/U95d7l8h6ily/Toesj3buNXz7QU/TgFYd6Hn2kv6//wqCJ8jmsL9Fv8WM9X5Yevz5J9JcOCwa7PTHUveMlLL3k+Bn3yb3hU30O6X+84RTRs1caOj7fM31vves3aqrow4bdm/xK91CPoOBpcr5YdZ559rk+h/skXZ4u+gXn6Lmrkgw1p+fILzNE357e3G/0C30ObFHdapbof/OdXdEyWY+ftbXbe4ved2nTNSVeGurTrikTZovuODpival7y+jfq33kOrOr5bZLrwyVs0XsqTmi128Su2djiu5j7z+cK/dTa6dDk1/r+1dItYx5oqc7Pz7R6Y1+DqWvlFwgeqeEUWdtUw11o9XBBr6iOyz/efGn7jaDnzgtFH2N39IrN97qc1ds7zGLRK981urG7neG6hVXbr6f6Am2Yfdmv9f3l1N1gxeLPu5k1ye90gzV9FVQ6BLRX09OTa5mGOrg1s4Xlope12Xh2yymoeKU881l8vzjUvHjQ927FAx9vlx0e49L34980Pu7ez9jheiPN4364/fRUH5rBqX7i+71JF9Wt0+GOvPujGWAPC9VCsvd8LNeZ86OzxsoetSUQYXyfdHrQJ9ZRVbJcXI5V8lXuu8q/Krkavn5i56yOvvVUMnN9pVdI3rvvu52q74ZanbleKu1oo8MLFF99He9ntt3sw4S/dCpq3Vb/jDUnaW1rdaJPjN2TpMSP/Xn2eVVJlh024iGLU3dt8aWKREiepbAD+0upRvKpY19ofXynNNqf9eNGYZKGReca4Po+eLce03+pe8vqz0zbxS9dAW7/p1+G2p9zqPfZK/QOWWI7R9DtbDu/3aT6Ieb7Rn1U/fIyp6PN4ve/ssYjxt/DfVs6qdrW0SfPab21N2ZTNW7f1L4VtHTNv3wnp3ZVO/t1d5t8ly0JHJBLwtTDayZd812+X0rL1taLYupRkd29tkh1/OproFZLE11p9Zf952imxPsgh/q3jehYrddoi/I/23zkaymOmtE1tst+iKny7v8spkq/PmdEntEv1w7JHRQdlOV+D4oQ/ZSB8Yfb5DDVIHzhz3eK+f7WcfwvDlN9e5+cvg+ud8NLHPxpe4v2jwL3i/PvSu+xobnMlVTK9cpB0Tf2u5GQmBuUx050c0pVPQTCw/cG5XHVLn6Xa5yUM7HdkuetMhrqiyDL1gckuu/76iXxfOZalBJh0TZk5p1fGfo/uRu04OHRT83ptqnmPymavHmwtwjos/NXeDnhgKmarftmvNR0TuX/Pp3UkFTHevlVuGYnNcBj7J1KmSqtj29P8u+dUJUXtvCprpoVog8Ls9dhw8U+al7ynTX5SdE79M9qPSNIqaa7FjSNUyeWzrNt91d1FRVt460OSnH20aPyrOLmepGUrtU2We0HlSrV3FTVXA9deiUXG8bd2tYrYSpXvUKn3xarv8zWzTPUtJUd6v1aHRG7lPZ67Z5qPupGrPTZU++b9f5SClTdQltER4uerW3pZ39SpvKJT1kxlnRdzYp1HdQGVOtdV/RKEKutzE5Bzcoa6qrbct8lb2en8XIvOVMdSa1zeFzog+c/Wv8S90rbMsz+rzcZ3d89wq3MtWVSE/bC6IP/vF5VqC1qcaFTEmU3cvr4/xRNqaK9y7jHyl6XIkPS1rYmupoxLDWF+W6+swMKF7eVPf3d/8m+5foD+sM3TOHJO2OEr3R5U+bYyqY6ktiCddo0Te++LprQ0VTjY34ni1G9LeF00Mn2Zmq1lqf47Kn9f57vGMl/f5hR9wuie69P+tZG3tTbR7vn/uy6J6580b90D2+YKkTsu+fXDQuobL+vT72GBArz+Evy93cVUXP04FNLa+IHuRS+YF3Vf36A3f2yl7lSr1nPauZqntV665xol9q1DKlanVThVa3+ij72G1d0yxqmKpy1tuBV0W3yjLgS6Lu87I0q3tNrmO9x2YcrmkqnxkDb8n+duMsC79aev6GN/KIl5/n1vKcg2qbanDJ+DzXRY//uLlAgzqmSnhZZo/sP38eLZ63rp53Eyq3ShD93utL5V7qPjrPl4eyrz71qGJ4PVOVyzN74g253436WC2wvqmiL8TmuCl6wPfs9UY1MFXZWXc3yt7Fzappi4amMv131r4lesqWhq2KNzLVzy5NomXfG9a9g6H7n+xret2Wr980untMY1NF5T/5SvZ0F9/eG5rodfLk1sl3RG/5eMvASU31ut3NxeKu6NbVIoZ3dDBV+ar3Vsie2fHhWJtmppq53rbUPdF72vyY9EN3t08OO2RfHllsZkJzUwXMtat+X3Q72wbzdilT3Qt5flz2bS1cFnu3+O85jG36QPSFpaau7NnSVJuOXr0g+4DQdUFVW5lqV8+/jomin/p2ZpNFa71uXM4RK3uNL092JuqeMCC1w0N5jt2eOfSwo6m8Rm6Lk/15Zrvji9qYam7j+h0fyfN23k7hA9ua6oTt9ljZV0V5XKzfTu+/XmltHote1jboSp72ej4uKHpR9gi7czeSdX+ypUyzJ3KdTHh1/0wHU3UtY3nyn14y37OAjqY62T6+5lO5j1s0TBnZyVSJU6fvlt1isVua6myq6Rk5yz0TffK+JV+KdTGVa8U5q2Q/NuxERpruTds9yf5c9OATzy1iuprq5VHbmbLnWJ8n14Zupip2xilN9pRCjQtO6q7X84NjBibJ81XpESU6Oun1+YXnddnXH1llZdPDVAt3DW/2Qu53dyLtfuju06X9ftmd5n6onuCs9zX70iWS5b4cZlV/V09TNV/ybL7saZ7dHLx7mWpZ1FpD9k1HfFr3dDGVt10r15dyHE463LFqbz0+LZMvyJ47LMnJwlWf3w7PsH8l1/kphfsk6n55Ri5/2aceb+N2uI9eT06s+iL7ybHT3Bf1NdWMY8X7pIieuHH/+IH9TOUYE3RW9pxtn3nV72+qnM2KWr2W7z+0sHeeAfp7jQ2YI3vvL+0WJOsesDNvkuxJ32YtPTNQj5PGS1u8Ed1l1NHAgEH6/DAz92bZv3d4EzzSTZ9zwv1/yZ4nqNxWNVjvX51K9kmV86Vrrz3Fhpjq8+y9x2WPmbDsUJru2Xe1zP9Wvs+PqLDooab6Vih5pOxFUzIi1g/T639x/0jZGzWqFzNxuN6vs7Yr+U70J+/HXuswwlSza+TxkN3dYtdta3c9r18+i5Hdceqzh991Lzk9qtR70V90KPni+khTVWt+arzsJ6c5p+4cZSoP3/ORsje1WPFh1mhT7d/ysHCa6O9exn53HqPne1Ku4bK3t7L8W2WsqQqGOJ2QPfGQymYxTq/bpQ9bGqLbr5mZN1H3GacqOcseFX+yyOHxpvoReXqL7E1cv5ReNMFUlkvc02S3q1u7/EAPfY8YUqexKbrtgPFV6nvq88CG0gtkj7+zv3aeiaYqsLTCddnj1qU2StbdnN21+AfRz++u1OLMJP3c4kIGye6aaUS7gMl6fJ7LtVv21lt3dB3ppedv6OY02RstTu6lppjqfGrfuh9FfxNmO6DYVFOVjm42TfbClYcMS9N914oOZ2Wf+nTrmOhpprJf7/NX9gd3kyaun67PA02TWn4S/Vde2xkTZ5iqeOSE+bKH+g6Z22GmqfLMrhYte0TT7X7Ws0yVLbqE5Wf5PjVe+n/X/dLL+q1lbz2wYtB1b1MVquM7V/bRsSM27Zytz0W/s5+X3Wnsnp2zfEzVP/h8huyJ7d8ecJ6jz2MuoQ2/yOfTv9rxKnP1OdDv1kTZR+weH555nqnmzK4VKnurSkcuPtDdallsiuxjHn2+cmi+fp4WG6y+in73YoObCxfo9bDugd6yT388/cEAXz2/PNNXyO5cKeJZvYX6vpPXL0b2Qdsyvc69SD/PPi4Zsm/v7Gi80H3prhG1volevqLf19N+pvJrd2aY7K+rXPu1crGpYpb3WCf73/4FLEcu0evk1VpXZZ95pmdutVTvU04uv2Uf0yq4ULFlpjroGV3ju+ipn5+UTNN93exZg2TPf93WJnq57ld8/GX/leBuv36FqSbsSDgne8KPAzUn+psq2W1cmuwH2n1q0GGlvjd171v6hxxX4Q2bWwfoe25MUHvZq/T0bvNd99UFK3nJXr5AVOfrgaayXZhzq+wPjBw9d64ylY1Xi2uy+5hd+81abSrnWvHfZO9WcM0Q5zV6n815xPqn3E+dH42qstZUI3qkdZC95wkbz8xBet3oP3+i7DkbjJz2QPfpMyaHyJ5056DPoXWmqvE7MlL2ygFfFy4M1uO/wbg3slcY7bBiQIipzk2bmi9drleD5q+pt15/36Iv6so+cULchtwb9PlwwEFX2d1DCu54ofu37U9myd77mev+0xtNZTT23CJ7cLMtR1duMlVHz9FRsi85/vq0+2ZTXV8f90p239Y1I5tv0eeN3KuyZ4hupE6JLbpVr7cFY+xlr7j7XMJ73T/9HdxB9tUzst2P2qbXPfsxo2TfPrTr05Dtplr0JMlP9ojBa1957tD7iMfl3bI7TX76vv1Ofb+oU/aS7DdC7L5Y7TLVRK+XybIfuDM+45vut5aWy/xLnqttTlpc3633kcvXysref87fnDv3mCp22ofGspf/2K7grL36nPNpSS/Z60xaWcJ5n6msF230kD1btkSrKvtN1WRR5aWy2+21qZT5gN7XHGvtlL1Y/9E1HuhuVejYuX8+T7lj9Q+FmsqzxbH7svuaGQ4LD5rquE2dD7KXTnB0HHBIj7fstXP8luv82eWd6h3W9zjHI1ayXz95r0fuI6aKsz/eQPYCF6z6vtB9evamXWTPdXfk4NNHTfWudruhsvf8dmTkymP6+fxMnCa7X/mMCe7H9bw48mW57K36O05tfkKfh/eu2ya7zZbls4uGmepYvcthssca93zf6z5jx9w42e+3s14eddJUGzteeSL7l32jVoecMlXStM0fZL9c/Nh6z9Omyj03a5Y/ov9c/mtb+zOmenr8VxHZ6+Vtu88qXD+3EQvtZLdf43/km+7+Kdsbyj6vYuKp+LN6Pi5yaS/75wjbCzsi9P67YbOr7HUGjr0885y+Z02eM1L2j1nDrvc4r9fDoelTZU85/vdu5QummnYm3yLZr43u8CRTpD4PXD23RvZBlVa9vK/7sNe5d8ju+vbxu4MX9Tx1+35E9unH7D77Rul7zeJ552WfM88jvX+0qYocO3hN9lq9z2SuF2OqWjW9E2XvVNsyZ+5Let/pZr6SfV2BrgVe6N5zRLZPsj/9ElT89GW9j0RH/Zb91ZOkcitj9byIsM/5V/RpV6vauV/R99wtDYrIPjjCq3rzOFOFRRrlZPc4dr5e0aumWuPZo7LsE0NzOrzXvb7F0LqyN97v3Drqmr4/xtg0k33tgY0dQ+JNFZlnZVvZBxx57eR5Xb9PlUPdZB92unaf9gl6Hk2Y4yr7nOiZblY3TNWlRtbBsi+9FeP+TfeZp5qPkr1fcv4J8Tf1+XlQDU/Z47/1mbLjlp6PXnenyR6eZ4f3zNv6Ht25/hzZLSsaC3rcMVVq/W6LZPdVjZZVvmuq9vMrrJDduv+8VZnu6fGwMGy17CdmXAu5r3tQQLb1stutL7bt4H19rv5WdKvsvSPc9vo+0OfGrCm7ZK+atO9w/0T9fQtNOyC7X7avJ+s+1PNoXPyRf96nujqf65Huo16Hye7da/GlJN3buF4Ol/317Nvxpx6bavuS8Rdkn7W37F3/J6a62+Np9D+f/6774xFPTbXFosQV2e9mPprc7JneF96ViZd9Us1fb4s8N1V+N+OG7B8GtP30TvdmR5bf+WdcLV/582KSnke1f92XXUU8zBTywlQutZs+kv1TWoUcnsmmupKl81PZHa0m5G//0lR10msmyW7vdLqY1av/5tebZNlXzs9S7pvuX4KnpPwzL8K6VIxP0c8h5dEb2c+lBlXb8dpUZzbpa6jo48u+qDvzjalGFa6d9s98dKrWtEeqPlevLW/KftN3SqvKb03VYManD//8d89c6JDpnake5d/8SfZuZi6n+7q77q3yRfbhFXq5Hnyvz+Hr1n6V/WCfzYN80/R9vMbLb/+MW//UEf0NUwWfK/JD9tPRdcfXNU1VKbjyT9k90729cn0w1dACFdJlb1MrdlaS7oWnZM2QvfaIQgv++7v2P0sn/Ns39F/q/8lUD5zn/ZK9xa1dgf/9XezpE6x/yz4wx8fgZl9MFXJh3z99UfOmW//7u7cWwbZ//vn8k333vNN9SsfF//RP+xIO/ff3JU/bPf+n10wqeTL4u6mW+9j//WfdKz7snMcP/fvuGvpPP9nlYEy7n/qeZQT+03/P/3GtXLqpKu8++U9ve6bVna+6fyh/+5++4sOyR9cyTFU7LOWf/sDu/ovtv0zV+9Dnf7rtAJu3M36bymNIxj997KoxH53+6PWhzN9/etiVEz/s9b/nWP/3rw//0x1av+7x3//v+fP339f/Xx/+n77Qp9KNvz4Wc/7nuf8ot0r+O3cmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMD///4P
- 00000000-0000-0000-0000-000000000000
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 8678bd6b-c571-4190-8bed-27a19fbb5a4b
- 1
- 69cb92e2-5dc1-4578-a030-e3fde0cf0c69
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 89237e9f-871d-48dd-9eab-340be1f24133
- 1
- 88f963a4-8bce-4d2b-969a-528dbf52cec6
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 45c3e10d-573a-4dad-962c-2e7c9f645ad9
- e74e59b2-8cd1-4463-9f9e-699a51228e3e
- 908290ff-2ae5-443a-8c02-efd3ed2fe118
- 1ac526a1-e8f8-4de5-a9e0-0332f0e610b4
- 50ab8d1b-85d8-4277-8f06-ed620cbe042a
- 8cacd258-ba73-4c62-93cd-8d1e686a3c02
- ec295bb2-6f65-40de-aea2-f7e5ac3e0e01
- 4f0205c8-b81e-4c66-9378-aa2d8f7ee9e2
- 4c448985-1964-4d98-a54b-8c378b64c191
- 383b2bad-9847-47e8-a0fb-694d2a476a78
- 88f963a4-8bce-4d2b-969a-528dbf52cec6
- 69cb92e2-5dc1-4578-a030-e3fde0cf0c69
- eb97d3e3-58d2-4ca4-83ec-e802f3da77ff
- f8f514f7-3e33-426a-8203-3b6e245b29bf
- b59b106e-8761-4626-a895-2e38e0d747eb
- 7ae8b5fd-03a9-4f7a-b6fb-eedf36ea815f
- 5c493b6d-4ec3-4a33-9878-718b9f7f7899
- f1ee4950-7f56-4f3d-8d6b-542a35f21276
- 693be2ef-8a44-48e6-8210-de71cb311eb1
- 2542a3f2-90db-4e1a-8579-508a04e14002
- 20
- 96e719b4-9a6d-452e-8f37-602b6adb9fa3
- Group
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- true
- 45c3e10d-573a-4dad-962c-2e7c9f645ad9
- true
- Duplicate Data
- Duplicate Data
-
8793
11401
104
64
-
8852
11433
- 1
- Data to duplicate
- 6ab95784-ed61-435b-96a0-975d216bf164
- true
- Data
- Data
- false
- ff663701-35a8-41a9-a9e6-3ed043495116
- 1
-
8795
11403
42
20
-
8817.5
11413
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 1
- Number of duplicates
- 20eb3084-35ca-4289-9219-b2d49c898a33
- true
- Number
- Number
- false
- 64568223-14eb-4477-af37-fa9297e41d7f
- 1
-
8795
11423
42
20
-
8817.5
11433
- 1
- 1
- {0}
- 500
- Retain list order
- 681ab8bb-eefc-4d58-b9e9-5392382a6f36
- true
- Order
- Order
- false
- 0
-
8795
11443
42
20
-
8817.5
11453
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- 34f0dba0-0301-4b92-a3fe-a19ba56a6ef7
- true
- Data
- Data
- false
- 0
-
8867
11403
28
60
-
8882.5
11433
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- true
- e74e59b2-8cd1-4463-9f9e-699a51228e3e
- true
- DotNET VB Script (LEGACY)
- Turtle
- 0
- Dim i As Integer
Dim dir As New On3dVector(1, 0, 0)
Dim pos As New On3dVector(0, 0, 0)
Dim axis As New On3dVector(0, 0, 1)
Dim pnts As New List(Of On3dVector)
pnts.Add(pos)
For i = 0 To Forward.Count() - 1
Dim P As New On3dVector
dir.Rotate(Left(i), axis)
P = dir * Forward(i) + pnts(i)
pnts.Add(P)
Next
Points = pnts
-
8787
9825
116
44
-
8848
9847
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- d16ee258-d9ab-458a-9bb1-c212d6ddaeca
- true
- Forward
- Forward
- true
- 1
- true
- 34f0dba0-0301-4b92-a3fe-a19ba56a6ef7
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
8789
9827
44
20
-
8812.5
9837
- 1
- false
- Script Variable Left
- 6459e70f-df80-4cc7-813b-b513d9113360
- true
- Left
- Left
- true
- 1
- true
- d5250384-0cfc-461f-8d2e-aed83cb60717
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
8789
9847
44
20
-
8812.5
9857
- Print, Reflect and Error streams
- ef2a9db7-8232-4f58-bc22-400ae95d8013
- true
- Output
- Output
- false
- 0
-
8863
9827
38
20
-
8883.5
9837
- Output parameter Points
- 4b2d6be0-031f-4559-89a4-0096c0e9e848
- true
- Points
- Points
- false
- 0
-
8863
9847
38
20
-
8883.5
9857
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- 908290ff-2ae5-443a-8c02-efd3ed2fe118
- true
- Point
- Point
- false
- 4b2d6be0-031f-4559-89a4-0096c0e9e848
- 1
-
8820
9442
50
24
-
8845.609
9454.725
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- 1ac526a1-e8f8-4de5-a9e0-0332f0e610b4
- true
- Series
- Series
-
8795
10858
101
64
-
8845
10890
- First number in the series
- 0657e0c5-7dbf-4982-b197-efc5dcd5b8ad
- true
- Start
- Start
- false
- 0
-
8797
10860
33
20
-
8815
10870
- 1
- 1
- {0}
- 0
- Step size for each successive number
- d19029f6-92c1-4cd8-8fcf-c6af38366e01
- true
- Step
- Step
- false
- ae0232f3-71a2-4c0b-b75d-03d815a4ab4a
- 1
-
8797
10880
33
20
-
8815
10890
- 1
- 1
- {0}
- 1
- Number of values in the series
- 907ce87c-d3fb-4a83-a928-cbe5a9c019a0
- true
- Count
- Count
- false
- 64568223-14eb-4477-af37-fa9297e41d7f
- 1
-
8797
10900
33
20
-
8815
10910
- 1
- Series of numbers
- 49c1b877-fdb3-4465-b110-c6b10cdf2441
- true
- Series
- Series
- false
- 0
-
8860
10860
34
60
-
8878.5
10890
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- 50ab8d1b-85d8-4277-8f06-ed620cbe042a
- true
- Number Slider
-
- false
- 0
-
8771
11579
150
20
-
8771.432
11579.58
- 0
- 1
- 0
- 65536
- 0
- 0
- 256
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
- Convert an angle specified in degrees to radians
- true
- 8cacd258-ba73-4c62-93cd-8d1e686a3c02
- true
- Radians
- Radians
-
8785
11069
120
28
-
8846
11083
- Angle in degrees
- 21c53376-7559-40bc-8bdb-6f23af54aebc
- true
- Degrees
- Degrees
- false
- d461fc59-ff17-43bd-8530-b47d4e0b9d07
- 1
-
8787
11071
44
24
-
8810.5
11083
- Angle in radians
- 325f27d4-a4e3-4de0-b22e-2b7e9d4d37b4
- true
- Radians
- Radians
- false
- 0
-
8861
11071
42
24
-
8883.5
11083
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- ec295bb2-6f65-40de-aea2-f7e5ac3e0e01
- true
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 0.00140216731
-
8721
11371
250
20
-
8721.145
11371.12
- 797d922f-3a1d-46fe-9155-358b009b5997
- One Over X
- Compute one over x.
- true
- 4f0205c8-b81e-4c66-9378-aa2d8f7ee9e2
- true
- One Over X
- One Over X
-
8795
11483
100
28
-
8844
11497
- Input value
- 6add9a57-8003-4b63-b7e0-cf662a38f736
- true
- Value
- Value
- false
- 64568223-14eb-4477-af37-fa9297e41d7f
- 1
-
8797
11485
32
24
-
8814.5
11497
- Output value
- ff663701-35a8-41a9-a9e6-3ed043495116
- true
- Result
- Result
- false
- 0
-
8859
11485
34
24
-
8877.5
11497
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
- Create an interpolated curve through a set of points with tangents.
- true
- 383b2bad-9847-47e8-a0fb-694d2a476a78
- true
- Interpolate (t)
- Interpolate (t)
-
8773
9337
144
84
-
8859
9379
- 1
- Interpolation points
- 56262534-3c57-4f1c-83af-555e0482f4aa
- true
- Vertices
- Vertices
- false
- 908290ff-2ae5-443a-8c02-efd3ed2fe118
- 1
-
8775
9339
69
20
-
8811
9349
- Tangent at start of curve
- c257fa5a-8ab8-4230-840b-c953eaf64795
- true
- Tangent Start
- Tangent Start
- false
- 0
-
8775
9359
69
20
-
8811
9369
- 1
- 1
- {0}
-
0.0625
0
0
- Tangent at end of curve
- 79fe44e7-09b5-418d-8178-0d0c98fef165
- true
- Tangent End
- Tangent End
- false
- 0
-
8775
9379
69
20
-
8811
9389
- 1
- 1
- {0}
-
0
0
0
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 08a99958-2a27-4991-abbf-c817c9714716
- true
- KnotStyle
- KnotStyle
- false
- 0
-
8775
9399
69
20
-
8811
9409
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 4050ad2c-5e3d-4904-a320-abd7fe2221d2
- true
- Curve
- Curve
- false
- 0
-
8874
9339
41
26
-
8896
9352.333
- Curve length
- 094dfd85-1e34-4fd1-8c16-0b45ca704387
- true
- Length
- Length
- false
- 0
-
8874
9365
41
27
-
8896
9379
- Curve domain
- 6e59181b-1f9a-4a9f-9ee1-f12d89d7b0a8
- true
- Domain
- Domain
- false
- 0
-
8874
9392
41
27
-
8896
9405.666
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 45c3e10d-573a-4dad-962c-2e7c9f645ad9
- e74e59b2-8cd1-4463-9f9e-699a51228e3e
- 908290ff-2ae5-443a-8c02-efd3ed2fe118
- 1ac526a1-e8f8-4de5-a9e0-0332f0e610b4
- 50ab8d1b-85d8-4277-8f06-ed620cbe042a
- 8cacd258-ba73-4c62-93cd-8d1e686a3c02
- ec295bb2-6f65-40de-aea2-f7e5ac3e0e01
- 4f0205c8-b81e-4c66-9378-aa2d8f7ee9e2
- b53adb78-a001-472e-b4d9-21016d5a1502
- d461fc59-ff17-43bd-8530-b47d4e0b9d07
- 056f1928-832c-436e-9583-925fe9f79c8d
- 24402fa4-4cf6-4928-aa18-97b2fb379b92
- 0510202c-a370-465f-bd2a-2d6d989d6cf9
- 13
- 4c448985-1964-4d98-a54b-8c378b64c191
- Group
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- de8b8d5b-29d5-4cfd-9b53-7fb2d3442fad
- true
- Evaluate Length
- Evaluate Length
-
8773
9169
144
64
-
8847
9201
- Curve to evaluate
- 31717ae1-93c2-428d-af92-84c7cf5909de
- true
- Curve
- Curve
- false
- 4050ad2c-5e3d-4904-a320-abd7fe2221d2
- 1
-
8775
9171
57
20
-
8805
9181
- Length factor for curve evaluation
- f34e43ea-2b73-42f6-aebc-fea9c02b1efd
- true
- Length
- Length
- false
- 0
-
8775
9191
57
20
-
8805
9201
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- e5e93e34-4260-4398-a936-af912206afe4
- true
- Normalized
- Normalized
- false
- 0
-
8775
9211
57
20
-
8805
9221
- 1
- 1
- {0}
- true
- Point at the specified length
- 1a277a71-111e-4f61-b188-0fbd711c6f12
- true
- Point
- Point
- false
- 0
-
8862
9171
53
20
-
8890
9181
- Tangent vector at the specified length
- beb0d37e-13fa-4d79-bebc-f79d675fa129
- true
- Tangent
- Tangent
- false
- 0
-
8862
9191
53
20
-
8890
9201
- Curve parameter at the specified length
- e11b4dc8-aa19-4daf-b73a-a85f3773043f
- true
- Parameter
- Parameter
- false
- 0
-
8862
9211
53
20
-
8890
9221
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
- Mirror an object.
- true
- be5f0e4e-5875-4c70-aa36-870c817df9e1
- true
- Mirror
- Mirror
-
8776
9107
138
44
-
8844
9129
- Base geometry
- af084c56-70bd-42cc-8609-94f4b24be4b3
- true
- Geometry
- Geometry
- true
- 4050ad2c-5e3d-4904-a320-abd7fe2221d2
- 1
-
8778
9109
51
20
-
8805
9119
- Mirror plane
- 061313de-0895-42fb-a091-c2e0b3409d26
- true
- Plane
- Plane
- false
- b61e6070-fb9d-4232-bc37-354c6df94646
- 1
-
8778
9129
51
20
-
8805
9139
- 1
- 1
- {0}
-
0
0
0
0
1
0
0
0
1
- Mirrored geometry
- b3fab030-ec36-413b-bb22-a1a708a15c8d
- true
- Geometry
- Geometry
- false
- 0
-
8859
9109
53
20
-
8887
9119
- Transformation data
- 44d19e6f-1e47-488b-a099-6fe1ebef7448
- true
- Transform
- Transform
- false
- 0
-
8859
9129
53
20
-
8887
9139
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- a19dc0b8-11b2-4e7d-bbd5-60cb3c62ba36
- true
- Line SDL
- Line SDL
-
8792
9253
106
64
-
8856
9285
- Line start point
- ff18a17c-fa27-4ca7-a35c-dd81a4c8e840
- true
- Start
- Start
- false
- 1a277a71-111e-4f61-b188-0fbd711c6f12
- 1
-
8794
9255
47
20
-
8819
9265
- Line tangent (direction)
- 0770b59d-c58b-4bbd-b3e6-f1f7ac55dfd7
- true
- Direction
- Direction
- false
- beb0d37e-13fa-4d79-bebc-f79d675fa129
- 1
-
8794
9275
47
20
-
8819
9285
- 1
- 1
- {0}
-
0
0
1
- Line length
- 94054e0a-a900-446c-8edd-2dfd16b0dd8e
- true
- Length
- Length
- false
- 0
-
8794
9295
47
20
-
8819
9305
- 1
- 1
- {0}
- 1
- Line segment
- b61e6070-fb9d-4232-bc37-354c6df94646
- true
- Line
- Line
- false
- 0
-
8871
9255
25
60
-
8885
9285
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- a17b5425-b933-4a96-b022-239c9056d234
- true
- Join Curves
- Join Curves
-
8786
9045
118
44
-
8849
9067
- 1
- Curves to join
- a7d2f32f-0347-4692-a16b-a8fa7c986d30
- true
- Curves
- Curves
- false
- 4050ad2c-5e3d-4904-a320-abd7fe2221d2
- b3fab030-ec36-413b-bb22-a1a708a15c8d
- 2
-
8788
9047
46
20
-
8812.5
9057
- Preserve direction of input curves
- cbae510b-8019-476e-bc88-f52db782c55d
- true
- Preserve
- Preserve
- false
- 0
-
8788
9067
46
20
-
8812.5
9077
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- 36450c41-52e4-4b2e-b49f-0c6e5de84aa2
- true
- Curves
- Curves
- false
- 0
-
8864
9047
38
40
-
8884.5
9067
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- bffee6c0-e4eb-4cb4-bae7-60a3dcdb7505
- true
- Evaluate Length
- Evaluate Length
-
8773
8961
144
64
-
8847
8993
- Curve to evaluate
- 6658536e-acb5-403c-a29a-ad84914513d3
- true
- Curve
- Curve
- false
- 36450c41-52e4-4b2e-b49f-0c6e5de84aa2
- 1
-
8775
8963
57
20
-
8805
8973
- Length factor for curve evaluation
- 9fa261d4-fc4c-4556-af9d-922e95fe9244
- true
- Length
- Length
- false
- 0
-
8775
8983
57
20
-
8805
8993
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 081a47dd-8367-4a9d-a6d3-8018753b2efd
- true
- Normalized
- Normalized
- false
- 0
-
8775
9003
57
20
-
8805
9013
- 1
- 1
- {0}
- true
- Point at the specified length
- 02e1596d-ffca-497b-b85b-2c3356fb951a
- true
- Point
- Point
- false
- 0
-
8862
8963
53
20
-
8890
8973
- Tangent vector at the specified length
- cece903c-8bbe-400e-b48e-6f2a408e9b79
- true
- Tangent
- Tangent
- false
- 0
-
8862
8983
53
20
-
8890
8993
- Curve parameter at the specified length
- 00ee014d-ef1b-46b9-add5-50183cdd34e5
- true
- Parameter
- Parameter
- false
- 0
-
8862
9003
53
20
-
8890
9013
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 6263d839-2890-4f51-a4ca-400b76341a46
- true
- Rotate
- Rotate
-
8776
8878
138
64
-
8844
8910
- Base geometry
- 2ea3fff0-67f2-4944-b6bf-ab33219b19f7
- true
- Geometry
- Geometry
- true
- 36450c41-52e4-4b2e-b49f-0c6e5de84aa2
- 1
-
8778
8880
51
20
-
8805
8890
- Rotation angle in radians
- cc6072d9-502c-4084-8377-d319d0627489
- true
- Angle
- Angle
- false
- 0
- false
-
8778
8900
51
20
-
8805
8910
- 1
- 1
- {0}
- 3.1415926535897931
- Rotation plane
- ed9be6ab-c7c0-46ee-b2d3-b56c09c4cd47
- true
- Plane
- Plane
- false
- 02e1596d-ffca-497b-b85b-2c3356fb951a
- 1
-
8778
8920
51
20
-
8805
8930
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 791ebe5c-87ad-403d-8ff7-ce80d4848513
- true
- Geometry
- Geometry
- false
- 0
-
8859
8880
53
30
-
8887
8895
- Transformation data
- 3a723d4b-2f67-4de6-a78a-7035d42bddd0
- true
- Transform
- Transform
- false
- 0
-
8859
8910
53
30
-
8887
8925
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- 684dab19-ebc3-4fa2-85ae-30ba890d75cf
- true
- Join Curves
- Join Curves
-
8786
8815
118
44
-
8849
8837
- 1
- Curves to join
- 87b43af7-c729-4e6a-bf68-1a4737d3f489
- true
- Curves
- Curves
- false
- 36450c41-52e4-4b2e-b49f-0c6e5de84aa2
- 791ebe5c-87ad-403d-8ff7-ce80d4848513
- 2
-
8788
8817
46
20
-
8812.5
8827
- Preserve direction of input curves
- cb3f2326-ee77-4e90-9a89-5e1313bc7210
- true
- Preserve
- Preserve
- false
- 0
-
8788
8837
46
20
-
8812.5
8847
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- 9e1b94a2-99b2-44aa-b7ca-e881ee48d2d8
- true
- Curves
- Curves
- false
- 0
-
8864
8817
38
40
-
8884.5
8837
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 383b2bad-9847-47e8-a0fb-694d2a476a78
- de8b8d5b-29d5-4cfd-9b53-7fb2d3442fad
- be5f0e4e-5875-4c70-aa36-870c817df9e1
- a19dc0b8-11b2-4e7d-bbd5-60cb3c62ba36
- a17b5425-b933-4a96-b022-239c9056d234
- bffee6c0-e4eb-4cb4-bae7-60a3dcdb7505
- 6263d839-2890-4f51-a4ca-400b76341a46
- 684dab19-ebc3-4fa2-85ae-30ba890d75cf
- 4204693a-6067-4379-a243-8448862f25b8
- 9
- 89237e9f-871d-48dd-9eab-340be1f24133
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- b60b5335-5a6b-4be3-8839-241b11937a8e
- true
- Panel
- false
- 0
- d689d842-3ece-40aa-8820-e9f429d00049
- 1
- Double click to edit panel content…
-
8773
10949
145
20
- 0
- 0
- 0
-
8773.175
10949.88
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 4204693a-6067-4379-a243-8448862f25b8
- true
- Curve
- Curve
- false
- 9e1b94a2-99b2-44aa-b7ca-e881ee48d2d8
- 1
-
8821
8782
50
24
-
8846.021
8794.381
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 4204693a-6067-4379-a243-8448862f25b8
- 1
- 009cb74a-f9f4-4ccd-ab1c-2dd05580acb6
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- d461fc59-ff17-43bd-8530-b47d4e0b9d07
- true
- Panel
- false
- 0
- 0
- 0.0014014999884235925
-
8626
11124
439
104
- 0
- 0
- 0
-
8626.727
11124.2
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- e00c36a5-d637-4c31-9c20-859c86dbc3f4
- true
- Evaluate Length
- Evaluate Length
-
8773
8689
144
64
-
8847
8721
- Curve to evaluate
- b4782cdf-a573-4ac8-81d8-3a3c3980821b
- true
- Curve
- Curve
- false
- 9e1b94a2-99b2-44aa-b7ca-e881ee48d2d8
- 1
-
8775
8691
57
20
-
8805
8701
- Length factor for curve evaluation
- a3a4657d-6639-4885-99a7-26365f8b6e4d
- true
- Length
- Length
- false
- 0
-
8775
8711
57
20
-
8805
8721
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 5d422b99-77f9-44a3-979f-653b421e37ea
- true
- Normalized
- Normalized
- false
- 0
-
8775
8731
57
20
-
8805
8741
- 1
- 1
- {0}
- true
- Point at the specified length
- 387b7e56-7c99-49ec-b347-b7060ddde04a
- true
- Point
- Point
- false
- 0
-
8862
8691
53
20
-
8890
8701
- Tangent vector at the specified length
- 74164024-be1f-4c52-9f08-9b067cafb8ea
- true
- Tangent
- Tangent
- false
- 0
-
8862
8711
53
20
-
8890
8721
- Curve parameter at the specified length
- ea18cad0-f4c5-4093-bb76-2acd4555555a
- true
- Parameter
- Parameter
- false
- 0
-
8862
8731
53
20
-
8890
8741
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 0258f90b-2449-4f50-9f7c-8ed53b74791e
- true
- Expression
- Expression
-
8748
8467
194
28
-
8848
8481
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 7e38885d-ed6b-49da-bc43-e1a84a1d2674
- true
- Variable O
- O
- true
- 292ef126-835c-4bf0-9893-67488a17c4d9
- 1
-
8750
8469
14
24
-
8758.5
8481
- Result of expression
- 0d6c0bfc-169e-4f72-9f23-437eb12c8214
- true
- Result
-
- false
- 0
-
8931
8469
9
24
-
8937
8481
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 574c27c9-3452-47a9-97c9-e01fb407b925
- true
- Deconstruct
- Deconstruct
-
8779
8601
132
64
-
8826
8633
- Input point
- 62e95adc-4eab-40b5-a64e-95da9b371e6d
- true
- Point
- Point
- false
- 387b7e56-7c99-49ec-b347-b7060ddde04a
- 1
-
8781
8603
30
60
-
8797.5
8633
- Point {x} component
- 292ef126-835c-4bf0-9893-67488a17c4d9
- true
- X component
- X component
- false
- 0
-
8841
8603
68
20
-
8876.5
8613
- Point {y} component
- edc4300b-a059-41cf-9529-dd2086a225e5
- true
- Y component
- Y component
- false
- 0
-
8841
8623
68
20
-
8876.5
8633
- Point {z} component
- 96c2465c-22ba-4da2-90d3-72c71f8e4df3
- true
- Z component
- Z component
- false
- 0
-
8841
8643
68
20
-
8876.5
8653
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- c6bbf3e9-5806-4a3c-ab8f-d72c75b2e3b8
- true
- Panel
- false
- 0
- 0d6c0bfc-169e-4f72-9f23-437eb12c8214
- 1
- Double click to edit panel content…
-
8765
8438
160
20
- 0
- 0
- 0
-
8765.516
8438.371
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- c36c8810-c429-4a65-81c2-ee9afc72aab1
- true
- Expression
- Expression
-
8748
8381
194
28
-
8848
8395
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 1964230e-0424-49b8-94c3-995387b3a5c7
- true
- Variable O
- O
- true
- edc4300b-a059-41cf-9529-dd2086a225e5
- 1
-
8750
8383
14
24
-
8758.5
8395
- Result of expression
- 97b9357c-5971-4c4d-a02a-09aa3e756a13
- true
- Result
-
- false
- 0
-
8931
8383
9
24
-
8937
8395
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 37daf086-17fc-4e47-ba8c-391198555b78
- true
- Panel
- false
- 0
- 97b9357c-5971-4c4d-a02a-09aa3e756a13
- 1
- Double click to edit panel content…
-
8765
8349
160
20
- 0
- 0
- 0
-
8765.516
8349.949
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 44fe1fbd-5b85-4a6f-b9c6-e285398e2914
- true
- Division
- Division
-
8804
8279
82
44
-
8835
8301
- Item to divide (dividend)
- 018cf40a-ffa3-4db5-8a81-3b3bb2f02f0e
- true
- A
- A
- false
- c6bbf3e9-5806-4a3c-ab8f-d72c75b2e3b8
- 1
-
8806
8281
14
20
-
8814.5
8291
- Item to divide with (divisor)
- 331475fc-78ae-4bad-b8a5-46a25122b26a
- true
- B
- B
- false
- 37daf086-17fc-4e47-ba8c-391198555b78
- 1
-
8806
8301
14
20
-
8814.5
8311
- The result of the Division
- 28d39efb-0253-45f1-b5ef-6bb38788b4d7
- true
- Result
- Result
- false
- 0
-
8850
8281
34
40
-
8868.5
8301
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- a102b448-aa77-41af-b3e1-af7787a09310
- true
- Panel
- false
- 0
- d689d842-3ece-40aa-8820-e9f429d00049
- 1
- Double click to edit panel content…
-
8765
8202
160
20
- 0
- 0
- 0
-
8765.764
8202.434
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- c362505c-12b2-46bf-a82f-8c1d92073bd1
- true
- Expression
- Expression
-
8748
8232
194
28
-
8848
8246
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 7759eba8-291f-45e4-b2d5-b4abec07e173
- true
- Variable O
- O
- true
- 28d39efb-0253-45f1-b5ef-6bb38788b4d7
- 1
-
8750
8234
14
24
-
8758.5
8246
- Result of expression
- 6de964ed-6bd8-4f74-a7c0-287c5084f789
- true
- Result
-
- false
- 0
-
8931
8234
9
24
-
8937
8246
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- d689d842-3ece-40aa-8820-e9f429d00049
- true
- Relay
- false
- 6de964ed-6bd8-4f74-a7c0-287c5084f789
- 1
-
8825
8157
40
16
-
8845
8165
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
- Mathematical addition
- true
- 2f9e1ab9-aab9-423a-812a-3c7da9b498b3
- true
- Addition
- Addition
-
8804
8094
82
44
-
8835
8116
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for addition
- de86611c-9d46-480d-b637-8e1aefb32d8d
- true
- A
- A
- true
- 37daf086-17fc-4e47-ba8c-391198555b78
- 1
-
8806
8096
14
20
-
8814.5
8106
- Second item for addition
- bc9134fb-4752-4d31-a07c-5c8e2da350c8
- true
- B
- B
- true
- c6bbf3e9-5806-4a3c-ab8f-d72c75b2e3b8
- 1
-
8806
8116
14
20
-
8814.5
8126
- Result of addition
- 6b249492-ca97-4af2-a06b-2046935f0f14
- true
- Result
- Result
- false
- 0
-
8850
8096
34
40
-
8868.5
8116
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- a8987895-1926-435c-ac30-b55cbdf38020
- true
- Division
- Division
-
8804
7944
82
44
-
8835
7966
- Item to divide (dividend)
- f775f3bd-b4f2-420e-a393-77d9dcaecbec
- true
- A
- A
- false
- 5d38ad1e-9c75-4669-82cd-7bb63c08c77d
- 1
-
8806
7946
14
20
-
8814.5
7956
- Item to divide with (divisor)
- b3b644bf-1028-4663-bb5c-035f4264887b
- true
- B
- B
- false
- 0
-
8806
7966
14
20
-
8814.5
7976
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- The result of the Division
- 416e8064-9f0f-4d9b-b2db-0f65ee086b56
- true
- Result
- Result
- false
- 0
-
8850
7946
34
40
-
8868.5
7966
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 69ffacb2-16a1-4129-973b-aa48634a37a7
- true
- Expression
- Expression
-
8748
7896
194
28
-
8848
7910
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 2a552031-5f82-49f0-b2fe-d6aade26571c
- true
- Variable O
- O
- true
- 416e8064-9f0f-4d9b-b2db-0f65ee086b56
- 1
-
8750
7898
14
24
-
8758.5
7910
- Result of expression
- 3fad3673-2f3c-47b3-8ec5-8cc65bc73971
- true
- Result
-
- false
- 0
-
8931
7898
9
24
-
8937
7910
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- ea54cb37-f08c-491b-ac20-a65e4389cca7
- true
- Panel
- false
- 0
- 3fad3673-2f3c-47b3-8ec5-8cc65bc73971
- 1
- Double click to edit panel content…
-
8765
7866
160
20
- 0
- 0
- 0
-
8765.516
7866.29
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 5d38ad1e-9c75-4669-82cd-7bb63c08c77d
- true
- Panel
- false
- 0
- 38e7344e-f708-4f88-a876-2c3a66f71082
- 1
- Double click to edit panel content…
-
8765
8018
160
20
- 0
- 0
- 0
-
8765.516
8018.2
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- c531f81c-9d53-4f73-8799-3bd516a3edc6
- true
- Expression
- Expression
-
8748
8047
194
28
-
8848
8061
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 0774d1fa-5f5a-41ed-85b3-b904f177db60
- true
- Variable O
- O
- true
- 6b249492-ca97-4af2-a06b-2046935f0f14
- 1
-
8750
8049
14
24
-
8758.5
8061
- Result of expression
- 38e7344e-f708-4f88-a876-2c3a66f71082
- true
- Result
-
- false
- 0
-
8931
8049
9
24
-
8937
8061
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 877569dd-746a-480a-b6ae-2a0b26b46cb9
- true
- Scale
- Scale
-
8768
7773
154
64
-
8852
7805
- Base geometry
- c3599339-1fb3-49c5-a07b-4b51e97661b2
- true
- Geometry
- Geometry
- true
- 4204693a-6067-4379-a243-8448862f25b8
- 1
-
8770
7775
67
20
-
8813
7785
- Center of scaling
- 89aef1e9-7140-4a20-8473-07e485ac5ff4
- true
- Center
- Center
- false
- 0
-
8770
7795
67
20
-
8813
7805
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- e977af64-2c2e-4e47-b04e-5b87ea55c42f
- 1/X
- true
- Factor
- Factor
- false
- ea54cb37-f08c-491b-ac20-a65e4389cca7
- 1
-
8770
7815
67
20
-
8813
7825
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- c897da8f-2a84-406d-8949-2463bc806522
- true
- Geometry
- Geometry
- false
- 0
-
8867
7775
53
30
-
8895
7790
- Transformation data
- 22292b14-ceae-42d8-99c3-9457f523f130
- true
- Transform
- Transform
- false
- 0
-
8867
7805
53
30
-
8895
7820
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- b0780f8b-24b8-49e3-9ca2-ead4f899b3af
- true
- Curve
- Curve
- false
- c897da8f-2a84-406d-8949-2463bc806522
- 1
-
8820
7182
50
24
-
8845.5
7194.791
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 5104e935-fd94-4795-b481-644285836bda
- true
- Expression
- Expression
-
8748
8554
194
28
-
8848
8568
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- e778a8c2-ce9f-4465-88e1-d6389d8f03a5
- true
- Variable O
- O
- true
- 96c2465c-22ba-4da2-90d3-72c71f8e4df3
- 1
-
8750
8556
14
24
-
8758.5
8568
- Result of expression
- ee5860d6-07dc-42c1-b491-a363d9b9964c
- true
- Result
-
- false
- 0
-
8931
8556
9
24
-
8937
8568
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- ba05c31e-27c7-43c9-bb03-bdcfd5e8adcf
- true
- Panel
- false
- 0
- ee5860d6-07dc-42c1-b491-a363d9b9964c
- 1
- Double click to edit panel content…
-
8766
8524
160
20
- 0
- 0
- 0
-
8766.388
8524.146
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 77c1dbe1-728b-4cff-a941-f348a22d517d
- true
- Evaluate Length
- Evaluate Length
-
8773
7563
144
64
-
8847
7595
- Curve to evaluate
- b2b3693e-ae57-4dfe-a73a-7eb477a93d21
- true
- Curve
- Curve
- false
- c897da8f-2a84-406d-8949-2463bc806522
- 1
-
8775
7565
57
20
-
8805
7575
- Length factor for curve evaluation
- 10824d6a-34a9-453e-a5e8-c31b5902a35f
- true
- Length
- Length
- false
- 0
-
8775
7585
57
20
-
8805
7595
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 6146096c-62b0-4293-9dfd-be134a2e27b3
- true
- Normalized
- Normalized
- false
- 0
-
8775
7605
57
20
-
8805
7615
- 1
- 1
- {0}
- true
- Point at the specified length
- 235df291-e3ee-43c9-b742-ae83f703f283
- true
- Point
- Point
- false
- 0
-
8862
7565
53
20
-
8890
7575
- Tangent vector at the specified length
- 8ea36277-2dc9-4b05-950d-eae7b4189f4a
- true
- Tangent
- Tangent
- false
- 0
-
8862
7585
53
20
-
8890
7595
- Curve parameter at the specified length
- 2a407ca2-64bd-41e5-8f43-b86e3fdd4220
- true
- Parameter
- Parameter
- false
- 0
-
8862
7605
53
20
-
8890
7615
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- ed7e6822-10cf-46e3-98d5-7d186149277e
- true
- Expression
- Expression
-
8748
7346
194
28
-
8848
7360
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- d3348215-b5b4-41d4-8251-f4bff26c252d
- true
- Variable O
- O
- true
- 63785d1f-d1ec-4b65-8ae8-4948d1b5c20d
- 1
-
8750
7348
14
24
-
8758.5
7360
- Result of expression
- 3ddf313e-e51c-42fa-b4bf-f04d5dabc4fc
- true
- Result
-
- false
- 0
-
8931
7348
9
24
-
8937
7360
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 36704715-e6fa-4103-b9c9-63c99693e5b3
- true
- Deconstruct
- Deconstruct
-
8779
7480
132
64
-
8826
7512
- Input point
- 10226b8a-49ef-4762-ad62-b2105c21ad36
- true
- Point
- Point
- false
- 235df291-e3ee-43c9-b742-ae83f703f283
- 1
-
8781
7482
30
60
-
8797.5
7512
- Point {x} component
- 63785d1f-d1ec-4b65-8ae8-4948d1b5c20d
- true
- X component
- X component
- false
- 0
-
8841
7482
68
20
-
8876.5
7492
- Point {y} component
- d08fac8d-d0e3-4a18-b730-f48281008189
- true
- Y component
- Y component
- false
- 0
-
8841
7502
68
20
-
8876.5
7512
- Point {z} component
- c55eac9a-aefc-4b11-ab9a-d42b48254a80
- true
- Z component
- Z component
- false
- 0
-
8841
7522
68
20
-
8876.5
7532
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 3bfe6f5e-0bc5-434b-8a1f-1ea9e1325374
- true
- Panel
- false
- 0
- 3ddf313e-e51c-42fa-b4bf-f04d5dabc4fc
- 1
- Double click to edit panel content…
-
8765
7311
160
20
- 0
- 0
- 0
-
8765.771
7311.715
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 957deaf1-c564-47c7-b565-4f0dae2b1c92
- true
- Expression
- Expression
-
8748
7260
194
28
-
8848
7274
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 88f2333b-e8d8-4330-bd82-c57ea131424f
- true
- Variable O
- O
- true
- d08fac8d-d0e3-4a18-b730-f48281008189
- 1
-
8750
7262
14
24
-
8758.5
7274
- Result of expression
- 9e216706-05b8-4261-8eb6-72f29a9f9034
- true
- Result
-
- false
- 0
-
8931
7262
9
24
-
8937
7274
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 6bd5e34d-dcf5-42c1-94eb-d3b84215d27e
- true
- Panel
- false
- 0
- 9e216706-05b8-4261-8eb6-72f29a9f9034
- 1
- Double click to edit panel content…
-
8765
7226
160
20
- 0
- 0
- 0
-
8765.782
7226.085
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- ad71ca87-a761-4963-809d-57f3d493a3b4
- true
- Expression
- Expression
-
8748
7432
194
28
-
8848
7446
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 42174f80-7ee7-415a-8297-bed2120b1e47
- true
- Variable O
- O
- true
- c55eac9a-aefc-4b11-ab9a-d42b48254a80
- 1
-
8750
7434
14
24
-
8758.5
7446
- Result of expression
- 60d3fa91-7ed4-4789-b6de-6365743d9495
- true
- Result
-
- false
- 0
-
8931
7434
9
24
-
8937
7446
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 247eb013-2062-40dc-bced-7540d1c2f75f
- true
- Panel
- false
- 0
- 60d3fa91-7ed4-4789-b6de-6365743d9495
- 1
- Double click to edit panel content…
-
8765
7397
160
20
- 0
- 0
- 0
-
8765.516
7397.927
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 056f1928-832c-436e-9583-925fe9f79c8d
- true
- Panel
- false
- 0
- 0
- 1 16 0.35721403168191375
1 256 0.0014014999884235925
1 4096
-
8656
11247
379
104
- 0
- 0
- 0
-
8656.958
11247.21
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 693be2ef-8a44-48e6-8210-de71cb311eb1
- true
- Panel
- false
- 0
- 29f48876-ab06-4cd7-8e67-8916c7700061
- 1
- Double click to edit panel content…
-
8677
9484
337
276
- 0
- 0
- 0
-
8677.713
9484.323
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 2542a3f2-90db-4e1a-8579-508a04e14002
- true
- Expression
- Expression
-
8748
9777
194
28
-
8848
9791
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- c727f68c-269e-4a22-b4f2-a05ce9642d1d
- true
- Variable O
- O
- true
- 4b2d6be0-031f-4559-89a4-0096c0e9e848
- 1
-
8750
9779
14
24
-
8758.5
9791
- Result of expression
- 29f48876-ab06-4cd7-8e67-8916c7700061
- true
- Result
-
- false
- 0
-
8931
9779
9
24
-
8937
9791
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 64568223-14eb-4477-af37-fa9297e41d7f
- true
- Number
- Number
- false
- 50ab8d1b-85d8-4277-8f06-ed620cbe042a
- 1
-
8821
11537
50
24
-
8846.481
11549.87
- cae9fe53-6d63-44ed-9d6d-13180fbf6f89
- 1c9de8a1-315f-4c56-af06-8f69fee80a7a
- Curve Graph Mapper
- Remap values with a custom graph using input curves.
- true
- eb97d3e3-58d2-4ca4-83ec-e802f3da77ff
- true
- Curve Graph Mapper
- Curve Graph Mapper
-
8676
10009
160
224
-
8744
10121
- 1
- One or multiple graph curves to graph map values with
- 43c6df62-f227-47c7-bae2-a8726349380e
- true
- Curves
- Curves
- false
- 8678bd6b-c571-4190-8bed-27a19fbb5a4b
- 1
-
8678
10011
51
27
-
8705
10024.75
- Rectangle which defines the boundary of the graph, graph curves should be atleast partially inside this boundary
- 466e2f81-cf6e-439b-9ea0-e06358c16ba1
- true
- Rectangle
- Rectangle
- false
- 72f41297-9724-405c-b6f5-330141fa27a4
- 1
-
8678
10038
51
28
-
8705
10052.25
- 1
- 1
- {0;0;0;0;0}
-
0
0
0
1
0
0
0
1
0
-
0
1
0
1
- 1
- Values to graph map. Values are plotted along the X Axis, intersected with the graph curves, then mapped to the Y Axis
- 7c66ffeb-78a7-485d-ba20-55bb18caca75
- true
- Values
- Values
- false
- 49c1b877-fdb3-4465-b110-c6b10cdf2441
- 1
-
8678
10066
51
27
-
8705
10079.75
- Domain of the graphs X Axis, where the values get plotted (if omitted the input value lists domain bounds is used)
- bbc7b1d8-5fb1-4430-b91f-ccb9e2a0858f
- true
- X Axis
- X Axis
- true
- 0
-
8678
10093
51
28
-
8705
10107.25
- Domain of the graphs Y Axis, where the values get mapped to (if omitted the input value lists domain bounds is used)
- 73e3ae7b-74f9-466b-9745-281365fcbd28
- true
- Y Axis
- Y Axis
- true
- 0
-
8678
10121
51
27
-
8705
10134.75
- Flip the graphs X Axis from the bottom of the graph to the top of the graph
- 820ce0d6-a550-4e23-b6ed-989083eace44
- true
- Flip
- Flip
- false
- 0
-
8678
10148
51
28
-
8705
10162.25
- 1
- 1
- {0}
- false
- Resize the graph by snapping it to the extents of the graph curves, in the plane of the boundary rectangle
- 903a154f-5160-4aa0-90f4-5fbd822468c9
- true
- Snap
- Snap
- false
- 0
-
8678
10176
51
27
-
8705
10189.75
- 1
- 1
- {0}
- false
- Size of the graph labels
- ab4a7da3-5cd1-43d3-874b-df954d81a60b
- true
- Text Size
- Text Size
- false
- 0
-
8678
10203
51
28
-
8705
10217.25
- 1
- 1
- {0}
- 0.015625
- 1
- Resulting graph mapped values, mapped on the Y Axis
- 92f2fc28-d092-4a3f-8bf8-86115b5ba83f
- true
- Mapped
- Mapped
- false
- 0
-
8759
10011
75
20
-
8798
10021
- 1
- The graph curves inside the boundary of the graph
- 971013ce-ea07-43e2-bc26-b371ca9c2fc8
- true
- Graph Curves
- Graph Curves
- false
- 0
-
8759
10031
75
20
-
8798
10041
- 1
- The points on the graph curves where the X Axis input values intersected
- true
- db2d1cf5-1f4e-489b-8481-39ad3e40f432
- true
- Graph Points
- Graph Points
- false
- 0
-
8759
10051
75
20
-
8798
10061
- 1
- The lines from the X Axis input values to the graph curves
- true
- 87269a2d-866b-45e1-9061-e409b53a7bde
- true
- Value Lines
- Value Lines
- false
- 0
-
8759
10071
75
20
-
8798
10081
- 1
- The points plotted on the X Axis which represent the input values
- true
- aa4ad1d4-fc02-483d-806d-9df1b1a990c8
- true
- Value Points
- Value Points
- false
- 0
-
8759
10091
75
20
-
8798
10101
- 1
- The lines from the graph curves to the Y Axis graph mapped values
- true
- eb3c5cf2-7c2f-4df6-8017-60abaff538a8
- true
- Mapped Lines
- Mapped Lines
- false
- 0
-
8759
10111
75
20
-
8798
10121
- 1
- The points mapped on the Y Axis which represent the graph mapped values
- true
- aaa1a380-78bd-44e1-9977-bf10d2e246d2
- true
- Mapped Points
- Mapped Points
- false
- 0
-
8759
10131
75
20
-
8798
10141
- The graph boundary background as a surface
- b58644cb-6f0f-41a2-91ad-cf54e1d2f0c0
- true
- Boundary
- Boundary
- false
- 0
-
8759
10151
75
20
-
8798
10161
- 1
- The graph labels as curve outlines
- 42306c42-c7bb-4839-9902-2c0ef4989060
- true
- Labels
- Labels
- false
- 0
-
8759
10171
75
20
-
8798
10181
- 1
- True for input values outside of the X Axis domain bounds
False for input values inside of the X Axis domain bounds
- 4fa67e71-7dfd-4806-9d0d-849ec2350573
- true
- Out Of Bounds
- Out Of Bounds
- false
- 0
-
8759
10191
75
20
-
8798
10201
- 1
- True for input values on the X Axis which intersect a graph curve
False for input values on the X Axis which do not intersect a graph curve
- fa770a37-26ec-4673-9a09-d7f411eb4f1f
- true
- Intersected
- Intersected
- false
- 0
-
8759
10211
75
20
-
8798
10221
- 11bbd48b-bb0a-4f1b-8167-fa297590390d
- End Points
- Extract the end points of a curve.
- true
- f8f514f7-3e33-426a-8203-3b6e245b29bf
- true
- End Points
- End Points
-
8797
10369
96
44
-
8847
10391
- Curve to evaluate
- 61145917-b67f-4fae-8823-d2e3e479ce8c
- true
- Curve
- Curve
- false
- 8678bd6b-c571-4190-8bed-27a19fbb5a4b
- 1
-
8799
10371
33
40
-
8817
10391
- Curve start point
- 2fcb0938-f144-4f3e-a0f5-bdcf0e7f2279
- true
- Start
- Start
- false
- 0
-
8862
10371
29
20
-
8878
10381
- Curve end point
- 2e5e190e-4665-4784-9402-c3607cf2f323
- true
- End
- End
- false
- 0
-
8862
10391
29
20
-
8878
10401
- 575660b1-8c79-4b8d-9222-7ab4a6ddb359
- Rectangle 2Pt
- Create a rectangle from a base plane and two points
- true
- b59b106e-8761-4626-a895-2e38e0d747eb
- true
- Rectangle 2Pt
- Rectangle 2Pt
-
8782
10267
126
84
-
8840
10309
- Rectangle base plane
- 66e424e4-a438-4e92-a2cf-a5449f6582dd
- true
- Plane
- Plane
- false
- 0
-
8784
10269
41
20
-
8806
10279
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- First corner point.
- 6d289dfa-d7f4-4cc5-a46c-3793c3c072ef
- true
- Point A
- Point A
- false
- 2fcb0938-f144-4f3e-a0f5-bdcf0e7f2279
- 1
-
8784
10289
41
20
-
8806
10299
- 1
- 1
- {0;0;0;0;0}
-
0
0
0
- Second corner point.
- 371cfbc6-38f1-42d3-8a6f-654351f37cfd
- true
- Point B
- Point B
- false
- 2e5e190e-4665-4784-9402-c3607cf2f323
- 1
-
8784
10309
41
20
-
8806
10319
- 1
- 1
- {0;0;0;0;0}
-
1
1
0
- Rectangle corner fillet radius
- 21c60a0e-74c2-48ad-91ec-03a9cc038298
- true
- Radius
- Radius
- false
- 0
-
8784
10329
41
20
-
8806
10339
- 1
- 1
- {0}
- 0
- Rectangle defined by P, A and B
- 72f41297-9724-405c-b6f5-330141fa27a4
- true
- Rectangle
- Rectangle
- false
- 0
-
8855
10269
51
40
-
8882
10289
- Length of rectangle curve
- dd1480dc-b4cf-4cee-86e9-4edcb70da9c7
- true
- Length
- Length
- false
- 0
-
8855
10309
51
40
-
8882
10329
- 310f9597-267e-4471-a7d7-048725557528
- 08bdcae0-d034-48dd-a145-24a9fcf3d3ff
- GraphMapper+
- External Graph mapper
You can Right click on the Heteromapper's icon and choose "AutoDomain" mode to define Output domain based on input domain interval; otherwise it'll be set to 0-1 in "Normalized" mode.
- true
- 7ae8b5fd-03a9-4f7a-b6fb-eedf36ea815f
- true
- GraphMapper+
- GraphMapper+
- false
-
8836
10129
126
104
-
8903
10181
- External curve as a graph
- 7dfbfee0-c1ff-42ac-aee9-48a0524f7f85
- true
- Curve
- Curve
- false
- 8678bd6b-c571-4190-8bed-27a19fbb5a4b
- 1
-
8838
10131
50
20
-
8864.5
10141
- Optional Rectangle boundary. If omitted the curve's would be landed
- 36c7545b-437a-4166-b392-521487f8d894
- true
- Boundary
- Boundary
- true
- 72f41297-9724-405c-b6f5-330141fa27a4
- 1
-
8838
10151
50
20
-
8864.5
10161
- 1
- List of input numbers
- 187d96ee-a1c3-458f-b406-a82e523ab0b7
- true
- Numbers
- Numbers
- false
- 49c1b877-fdb3-4465-b110-c6b10cdf2441
- 1
-
8838
10171
50
20
-
8864.5
10181
- 1
- 9
- {0}
- 0.1
- 0.2
- 0.3
- 0.4
- 0.5
- 0.6
- 0.7
- 0.8
- 0.9
- (Optional) Input Domain
if omitted, it would be 0-1 in "Normalize" mode by default
or be the interval of the input list in case of selecting "AutoDomain" mode
- f1a245d5-5020-489e-980d-98da7de9977b
- true
- Input
- Input
- true
- ed31a0bf-60d4-48ae-ae13-7521f47ecc0f
- 1
-
8838
10191
50
20
-
8864.5
10201
- (Optional) Output Domain
if omitted, it would be 0-1 in "Normalize" mode by default
or be the interval of the input list in case of selecting "AutoDomain" mode
- 483c0b1d-963a-4330-adcf-f5959840a802
- true
- Output
- Output
- true
- ed31a0bf-60d4-48ae-ae13-7521f47ecc0f
- 1
-
8838
10211
50
20
-
8864.5
10221
- 1
- Output Numbers
- 798a346b-7916-4296-831a-e40a3ce3bf54
- true
- Number
- Number
- false
- 0
-
8918
10131
42
100
-
8940.5
10181
- eeafc956-268e-461d-8e73-ee05c6f72c01
- Stream Filter
- Filters a collection of input streams
- true
- 5c493b6d-4ec3-4a33-9878-718b9f7f7899
- true
- Stream Filter
- Stream Filter
-
8790
9926
110
64
-
8856
9958
- 3
- 2e3ab970-8545-46bb-836c-1c11e5610bce
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Index of Gate stream
- 92f55c1a-4781-40ae-9250-bd054034bc8c
- true
- Gate
- Gate
- false
- f1ee4950-7f56-4f3d-8d6b-542a35f21276
- 1
-
8792
9928
49
20
-
8818
9938
- 1
- 1
- {0}
- 0
- 2
- Input stream at index 0
- db3a5b58-ff19-46bc-92f9-3c7e646dcb61
- true
- false
- Stream 0
- Stream 0
- true
- 92f2fc28-d092-4a3f-8bf8-86115b5ba83f
- 1
-
8792
9948
49
20
-
8818
9958
- 2
- Input stream at index 1
- f273e874-618a-41ef-b61b-74e7edc11282
- true
- false
- Stream 1
- Stream 1
- true
- 798a346b-7916-4296-831a-e40a3ce3bf54
- 1
-
8792
9968
49
20
-
8818
9978
- 2
- Filtered stream
- d5250384-0cfc-461f-8d2e-aed83cb60717
- true
- false
- Stream
- S(1)
- false
- 0
-
8871
9928
27
60
-
8886
9958
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- f1ee4950-7f56-4f3d-8d6b-542a35f21276
- true
- Number Slider
-
- false
- 0
-
8776
9895
140
20
-
8776.139
9895.926
- 0
- 1
- 0
- 1
- 0
- 0
- 1
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 24402fa4-4cf6-4928-aa18-97b2fb379b92
- true
- Panel
- false
- 1
- 051c3105-2889-46bf-8c55-0d9190f4ef89
- 1
- Double click to edit panel content…
-
8753
10532
185
271
- 0
- 0
- 0
-
8753.205
10532.33
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- f44b92b0-3b5b-493a-86f4-fd7408c3daf3
- Bounds
- Create a numeric domain which encompasses a list of numbers.
- true
- b53adb78-a001-472e-b4d9-21016d5a1502
- true
- Bounds
- Bounds
-
8784
10476
122
28
-
8848
10490
- 1
- Numbers to include in Bounds
- 2f16c49e-8194-4760-939d-ccaea4730f53
- true
- Numbers
- Numbers
- false
- 24402fa4-4cf6-4928-aa18-97b2fb379b92
- 1
-
8786
10478
47
24
-
8811
10490
- Numeric Domain between the lowest and highest numbers in {N}
- ed31a0bf-60d4-48ae-ae13-7521f47ecc0f
- true
- Domain
- Domain
- false
- 0
-
8863
10478
41
24
-
8885
10490
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 0510202c-a370-465f-bd2a-2d6d989d6cf9
- true
- Expression
- Expression
-
8748
10814
194
28
-
8848
10828
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- d78701f3-1110-4a4f-b7bb-c2118ecedde9
- true
- Variable O
- O
- true
- 49c1b877-fdb3-4465-b110-c6b10cdf2441
- 1
-
8750
10816
14
24
-
8758.5
10828
- Result of expression
- 051c3105-2889-46bf-8c55-0d9190f4ef89
- true
- Result
-
- false
- 0
-
8931
10816
9
24
-
8937
10828
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:0.00000000000000000000}",O)
- true
- 140588d4-2e33-43b3-9043-f29b91eda6ed
- true
- Expression
- Expression
-
8662
11021
367
28
-
8848
11035
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 9fe8bab1-2985-4c05-a4f4-d345f17cb2dc
- true
- Variable O
- O
- true
- 325f27d4-a4e3-4de0-b22e-2b7e9d4d37b4
- 1
-
8664
11023
14
24
-
8672.5
11035
- Result of expression
- d2f13758-ed0b-483d-a131-96ad1e996d26
- true
- Result
-
- false
- 0
-
9018
11023
9
24
-
9024
11035
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- ae0232f3-71a2-4c0b-b75d-03d815a4ab4a
- true
- Panel
- false
- 0
- d2f13758-ed0b-483d-a131-96ad1e996d26
- 1
- Double click to edit panel content…
-
8756
10990
179
20
- 0
- 0
- 0
-
8756.352
10990.1
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- b0780f8b-24b8-49e3-9ca2-ead4f899b3af
- 1
- 5b1c30d5-f92b-4262-aaae-0a6ae10c6bf1
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 09336dd8-3c4b-476c-b62d-d3b399ef2780
- 1
- 1fcc8fff-e653-4017-bda1-1273d6df70e5
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- f9dd80e4-1f37-4628-bd32-7ebd0b7b38b9
- 1
- 3e8c29da-12bd-49e5-b89d-f946cd7910cc
- Group
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 8dfc4bf8-bd9d-4664-8d23-8c5fa26397de
- Curve
- Curve
- false
- 0
-
-938
7443
50
24
-
-913.4888
7455.818
- 1
- 1
- {0;0;0;0;0;0;0}
- -1
-
zNx5PFTh3/j/CSERsqRSaLVURCTKZYm0EEIqikpJQvZKGklJKZKt1ZIoZUtZSkYha8i+ztj3pRAK/Y56f87le38e9z+/v25/eDXPc+ZcZ45zzlxTHlHmUSiUP8TXbGe/OJmIbwcNrM7Y2mnYnTtnZ7tB1NjSwfGMne2OrZs2y22S3Sy3RZH4g4zM5g2iGs42Ts4OljtsLZ2dHCxsNojqOR+3OXNir+UFQ7uzlrY75OVlZRU3W27bemKrvLy8nMz82VGE/m580y5Lu3OWTg4XNunZ2VzQcHZwsWQhFrK5/BuMw8LhhNUZF0u5k+cW2Nlb2to6Oxx3ZDlp4WQxuxI7OzvT7H7yrKdQZIkGTi3kXMBM/IF79lvVNQqF6dcVJkrBtX+v6fcfJgo/vD5GZY3urp4K3qwOCo/XvFXDL8ckfaaI5QGwLg8L5X9+DaP/on+e9T9l/n+tI6P6r6pQbaie6uwOTov+9w4u5U04qr+wkjdr5t8O7ll2YcnsDubCujzMsOLsjjL/58f2/2dn/+u5//MrEbZFg+ZDy6CV0FpoI5QBbYW2Qzuh3dBeaD90EP2/r+E79Ad0BDoKHYP+hI5DJ6CT0F/Q39Ap6DR0BvrnP8dO9e93KpQyDx5DKUzwGEphhsdQCgs8hlLmw2MohRUeQyls8BhKYYfHUMoCeAylcMBjKGUhPIZSOOExlMIFj6GURfAYSuGGx1AKz7+qQqlQGpTCC8uhVCgNSlkMy6FUKA1K4YPlUCqUBqXww3IoFUqDUgRgOZQKpUEpgrAcSoXSoJQlsBxKhdKgFCFYDqVCaVDKUlgOpUJpUMoyWA6lQmlQynJYDqVCaVCKMCyHUqE0KGUFLIdSoTQoZSUsh1KhNChFBJZDqVAalCL6r6JQVag5lAoNh9KgDChFDJ4PVYWaQ6nQcCgNyoBSVsHzoapQcygVGg6lQRlQymp4PlQVag6lQsOhNCgDSlkDz4eqQs2hVGg4lAZlQClr4flQVag5lAoNh9KgDChlHTwfqgo1h1Kh4VAalAGlrIfnQ1Wh5lAqNBxKgzKgFHF4PlQVag6lQsOhNCgDSpGA50NVoeZQKjQcSoMyoBRJeD5UFWoOpULDoTQoA0qRgudDVaHmUCo0HEqDMqCUDfB8qCrUHEqFhkNpUAaUshGeD1WFmkOp0HAoDcqAUjbB86GqUHMoFRoOpUEZUIo0PB+qCjWHUqHhUBqUASUnLbj/Pc/AXxfGB4V04tX/a94h73gq2nG+KWr64OFpuIFtx39c8a/bIPUO3e8FWmsy/+NW1ZwfBFmckdOkwguWSvX/sb47El24iiP0rgW5PhO7+S4rL0908+GdrIPHqTv+3+14o9djtZc/3HtCrl/6LF0m95oP2r6qy/v89Q/k+gp/t38bKTbtP6jG00a6vxrfslXX76I2V/fMTc9/k97DNjtuALJ+w74s8Dq3yn+80fadZ5ZGILr4WCYjGYmQblU1uz9B6Ohdx9HCfRtI/6104ue5nGC0NDk12at/K+nRT2b3MxQ5/Vqns3yjBulPZrjPCms+QA2nO/lk7HVIrzk4u/+PkFXxmpEXlUaku0V/oBfmPkZL+datlLQ9RvpX+mLidT1FC3cOiUwuOkX628tbXm6PCkfaDhbjAtq2pJ9zPEa83ggUYlDyaI+lE+nvd/q2B56IRFWmUqK1TJdIX8tIIY5DFPqhvq5A4Ikn6Z820lf2rX6GSmzcpFXjrpPOy7mAOD7RSJJ2bkVY+W3S+3VlD6m3R6PMnUHxXSvuka734TBx3J6jqgZzHdXbwaQfYL0aGPYsBpnyWCgVfH1I+tXCGOJ4xqJ69bVLIikRpCv7FpUMn3yBviWc9N4Y8Yz0wef91sKaL9E9lfPlO+tiSVc15GDXXhuHuM9LXHJ7/5r016GrieP/Cv2Jl3hs8TqJ9M9qW9WfdrxCJTPCI6kdKaQLftUgfi6vUcvK6/xb7qXh7Z/f5f4zOh61/5HYduHjB3zciInGqusJSJOdteb8exrpJlYCDevkElGu0AGX2JOfSV9+7OqL7VGJyKfJSK3FIo/0+AUdrgZ8SUj47KZMj4wC0iXXKmtZeSWhhcnq8UUuJaQ/FL7K7zGShFiDJlhdSstIFyh51xp4Ihkt0DGdx7eygvS2l1WJLyqSkdhQZVl2XBV+vfb1Hlkab5DA6g6755drSX+gT9tX9eYNan0a1JYV2kA6LdBzWd/qFBS6JFcinYlO+oaKJd2U+ynILlSwzce8BZ8/ly69FWR5iwIyH0pRzrXh4yby7OoGp7doyfGdn/NfdJDe0n9jv3r7W3Q0zNZOaVk36R9ilgubGL5DsRqopiK7l/QbdIPucznvEPtXsV72ZwOkr5cUSfHakoru7TGKO3B8mHSGvv2VsGepyLWBN6aI7wfpuQu27EngT0MW2vGpLt0jpLNmGvHnXktDK1W6Lzu2jpEuYfCxqX40DQWuXVM/xjxB+u2eA8+HT6YjRWOb47v2/yJd48nkOdaqdHT+mU9LXt4U6X5r7m4R1sxAiZIH1vbb/CFdt2x4cvPbDGTBzJK9YtU88v5tMjWWuWvte5TkGCz4PoaJ9BvXHKhmQe/RYwf7p7HaLKQfvSWv5jj/AwrzPV6qw8pKOpsMO+Wm8wc05WBRJtXKRvrG0NcfnnR8QPq+Zyq+NS0gfUiz3SXFKBPVernbFf5aSLqU8/FNhbmZ6NUql6BMpUWkc3nXtNLlPyLTZ0FLE/bzkC74qDdwLPojOpzFn7w1iJf0TyuU1RYKZiFL1lyupsHFpO88Zdorej0LFavfiAs14yc9dKT+jsLPLCS8NWndkVYB0q9kLVuyTo6GHDUuvpH0WEL6cNVQm8xZGqrUKt/PK7uU9CTB8NfKUTSU9OthmtifZaQfEKp11GqgoZy44nbnTmHSj0xsV9Dny0a1t3ZGyPSsJN36hs3okb3ZSMt9of/2a6KkP9v06/Upr2yk+5y4rUSKkb410v74+ffZyFTqtVdl2SrSI07p8bqPZCM9ETanRdxrSGffwpNxXeoTqlnuHrX86FrSORuFTANOfEIcfFTHhI/rSN+76cvPhw8/oRNbN72lbhYn3a/j7M3nFZ+QTcblQO1UCdLVJTX5khZ+RtPcz1hL9aRIH1xyI/C9xmck+qDzVNXMBtKLpvQX5F36jM5fc9wt+WkT6Uo/khzL3nxGk8nnNCp0ZEivcAsvr+/7jPIF+1P5tDaT/vQYy6qO1TlI+6h5nNYeWdLNPV6cGDqSgy7w7IhrOyxH+oebu4ImA3OQ0ITL1eNuW0hXzXZ5y1ycg1IouwU0ouRJb1VM+8TFkotmOCQuzm9UIN2Y48z7JdtzEd+ptDWyqxVJ/1Zb+FjMKRdZCC5TNriwjfTPApOnpV7lorIwddpYsxLpHcrtS+Tbc9GoUY91iuF20le6mMWpCOehdvcraG3DDtIlP06KaBvmIWeX32UDDoj03Z7rHfVv5yG3vfalh+6o4vPnlmjk4Zw8tExpnVWAjRrpaFf1ixNTeShhq1D5RUM8v/uwgPOGzZYvaCjT9rGDlgbpq2S2KjjbfEHFoTwfGtR34vP/sNOby8++oJ3moktF92iSTuOL++Xd+AV9QQVjMaZapG/q2cN2hz8fXWXak995cRfp2iudKoP25SOHHYlIP1qb9D9cVaaPr+Wjsreig8cbd+P7DEfMg2cf8tGZ7j/LH4vuJf3r29gbcaP5aBWvjPF1h314/2P+CCdvKEAJ7htqXn/TIb3QVeZA2skCdCRhTeZLtf34vlfBterjowLk6/1cd5G5HukNqQnUz5UF6NKvKjOj9frYD+lY5nMWojPmlEfM49hvXBPNLd5ZiJoMqOJupQb4+voudr/MvRBN6SX3Lks6QPp6TYXcipRCVKmsvMzkkSG+rsVddlf3E9v55nHlRYAR6TtWn+CpXVOEMo+50vwDjPG4YdJsdaZF6GLjoOzTRwdJD16mL1R3vwg9eOrc6PrGhPSgqRzJ2uIiJJt+U6Cq+hDpl96EiFazFKOzrV+cAtmO4HGNKyu/bS9G4iid9YuWKek8zXkCX52KkcKLvKT6IDPSnd58uv/lVTFKt9YZOTt+lHQN81/Dme3F6FH40ndFyuakv824R0kSLkHNk2O9cRwWpJs9Y9sfbliCMsyWy2zrwV7IuevyrdslSLx0a29hzXHSDwYbrnXIKUHD5T8ccqtPkG53P7LlwFQJKozLc3LtPInfL7yu7ZHZ8hWtqU+tFGc7RXpXzqWfrDZfUbChwp5l206TbinpdbEm6ivyM3Zecd3dCt8f7vw5E9HwFR15MGoTUX4GH895j41P8pWizCpj68eKZ0kXNdlTJrK3FAXU/KHEJtmQnjL90LLiainKD757sW+7LempRwOiPDJK0ZbHnLfu1tvh/TSdEBD7UYriXh6xN821J/21fPDqJv4ypCJUxpH7/DzppV2ijGcyZWjLSo2vAQEO+H2qNP3a6X1lSP++8rNyb0fSLcJvVa6xKkP3HvsoBXo5kX7xldu9Rq8ylNtW1N7m60x6pW4T9c7TMrRN10mm7KELPn+0rSyU3pch2tkI+ZPvXElXWHhmjF5dhlZML5CKq3cj3UiibtrjRxlC9ywdEtgvkr5UbYvykkXlaJpXofui6iV831N2OBcrUY5OZZqPCV51x+M6eRjKapaj9UnHpm+VXCa93M0rIcW8HKnnfTNvXXWF9IHXr3ZIu5ej+Tc4PvOoUUnvG67IjAgpRx0LojfEjmHf4qY/uPBNOaq4E5WnlOBJeo/2Lr9zX8tReLx3VNG5q6Qrh701yespRymFt33NNnuRXrOUdZHg/G/o3Typ7SOT2INFp6xNRb+hAM2RH3e+XMPX0fLzG8KUv6F6SSlBuQfepHtOvucuNv6GmqeqPVrOXydduFG3fPT8N8Tp6Cv7SPcGvg+4r9jE5/cNiQsrJp2U8cHvCz/NWtfFfkO7eweCty+5SfoeCYuX0p+/IXmKs9xaZl/SZb/bq29sJta/sjlcZBT7MaFHp0QmidfFxVa/ofcWvq7zSr/N569ALvsrU3U6buP5QHqmOmNTBbK7u2D8aocf6TMpag7xuyvQt28H+Ep67+B5lNigsP3JCqRUuOjChrG7+Drd82hmzZUKxD/P4bneVX/SxXZHfSsOq0AXxQaagzgDSL/7MdbwdEoFahjfWm8Zhv1YwmLV0a8VaMxwyJsmfo901oQHeo49FYhJ3iQ+OgM751tftXbmSrRfVWK1wP5A/L6ZcOWr1spKxOL3/P6iTuzRO6eTHyhWogCqamzAlfv4+mXye0k3qESaj1xGHi8PwvfVEZq9wLlKtJNZcUo2A3vNuHC28o1KlMPOs0PvSDCeBxp6HjSIqET61Dj+sRnso32Xh0zeV6LLXoatotEhpFd1Mmvur6pEjZaLer/phJLezkzhlx+qRAPbvS05JrEvVbsixLGgCvEPFnvkPQ8jPdL13qKvq6rQTduVRqwHH5D+62pcMnV7FTKMKR/KX/AQn8+8gtlixlWIy/iFAVcW9pclGj8T7aqQZvqgwzeXR/h+OG900aabVWiJU6Tsks2PsYstyg+NrELBpudO1Q9gP3LkRPPw+yok5q3avOz1E9LZxjZwK1RVoQsJ+YY1tk9JX8fzcYnVYBUK/bFjx42l4Xg+dvzh2+ts1cjtyKkLdHfs7f6uzwNEq1F33s2Xji3YH6cpxPpsq0YZriqCGrsiSOc2GnY7a1CNVHWFpvbFY2dfNVy97Ww1+m1XEOQvGEn6mOUH6ohXNbI1GBHkomJX2s0mH/qoGi1UkYzP7sX+WWkwef1bYn+Cr3i+No4i/dCOR+kRJdVo+L5QSuln7Pkzl9hZO6tRTrTFifWyz0ivMzQ/ZjhTja5e5Yp+E4HdvlvO47ZgDYpqfXXLcXE0ng97rVkbv6kGRQybrzl1DfsunmL+dK0a1FvS5eQ7jj3Ro4br9dEa9O6uHZV+9jnpv6/YlN90qUHMnWfVT7Zgf3ehQHT/nRo02P/6zRKTGNLDBB9kTkXXIK21snkTpdjnFZefuZdZg+5vVDjNujuW9Ok/d7u4q2rQsehoKvqMXf/SqUmn/hrkf6Z8LFLlBX4flOE+ns1ci/b7isRIv8ferpPQPrqsFt3VHrNtV3yJ7wPOaTu5ZWvRoIvBaloq9p6uKk2e3bXo9ums4OytcaQ/7Fn6avxYLRrpPxjclYZd80ancq5LLVq341evjPIr0lsTGtPd/GrR01bBw48+Ylffz9LH+6wWhZYveCau8Zr0A1eS7vtn1KKU58e8K/Oxi+wLcB8tq0UaPebvnuyPJ10o/b7Vjq5a1M7N1u9dg93PnFfk7HQtsvJLrfYxTyC98cyrU5f56lBw8rbVz3uxawqfZHWSqEPMz+R2DColkl6YQs3VRXVo5nG/qoAn9tbsuLNcRnWozv3GuS9fsF8cZtASrOtQaCDXYhbuJHycHzv5yVPr0NNNGZcKjbGXpyx48CSoDlHT5H4ufYo9e0FEQu/LOqR/Y0/R9y7slHV3Q5bS6lDR980a+puTSefbT10uVVWHvAWcn229hD3yssN8kd461JK5dMuzXOw/RD+KjM3UoV2lV+SDed6Qfn6QW/41Xz1ijvHq5TTFrqJwlmeXeD2KOXo5kC0Wu++ttZc/ba9HLRq6dt6j2LfcGtIS0a9H+gE2773VUkjfuzRrm5llPdp++tkbtrvYNR4JrHK/UI/amnUCOZqwJz38VXTJrx5lbWr295N6SzpT88aR9w/q0XVZ09Jt5tizT8dlGUfUoyuHDOZFX8Tu0Xjq9Z8rTNT/PP4/9IsQ//0PH/9GgopCZaCqUD2oOdQeSoX6Q8OhiVAatAzKgA7/Z/zNMD5UFCoDVYXqQc2h9lAq1B8aDk2E0qBlUAZ0GEqRhfGholAZqCpUD2oOtYdSof7QcGgilAYtgzKgw1CKHIwPFYXKQFWhelBzqD2UCvWHhkMToTRoGZQBHYZStsD4UFGoDFQVqgc1h9pDqVB/aDg0EUqDlkEZ0GEoRR7Gh4pCZaCqUD2oOdQeSoX6Q8OhiVAatAzKgA5DKQowPlQUKgNVhepBzaH2UCrUHxoOTYTSoGVQBnQYStkK40NFoTJQVage1BxqD6VC/aHh0EQoDVoGZUCHoRRFGB8qCpWBqkL1oOZQeygV6g8NhyZCadAyKAM6DKVsg/GholAZqCpUD2oOtYdSof7QcGgilAYtgzKgw1CKEowPFYXKQFWhelBzqD2UCvWHhkMToTRoGZQBHYZSlGF8qChUBqoK1YOaQ+2hVKg/NByaCKVBy6AM6DCUsh3Gh4pCZaCqUD2oOdQeSoX6Q8OhiVAatAzKgA5DKTtgfKgoVAaqCtWDmkPtoVSoPzQcmgilQcugDOgwlKIC40NFoTJQVage1BxqD6VC/aHh0EQoDVoGZUCHoRQE40NFoTJQVage1BxqD6VC/aHh0EQoDVoGZUCHoeRvbeLOzjP+t4kN9bv47e8x9ciNqi3HE4Td2SH/ofDbepR0U6CMpxC73fUNRzLz69GxGy9cuZe9I920XZBPpbEeyQQyL71ljb2+bk3AkyFi3CK19qvvsSud2/CsmakBLS88s/AnZyrpt5+LLp8RaEDbRQ58bDuK3Y3/WO6UeAOyUKFJ7U3CbsMR7lCv3ID0nNg8pVjS8Ae9O5M/gnUb0LV5Cr1eB7G3pbUKylo0oOT3MwEH4rBXe8olxDk2oOFjnyPC/mB3Nd3ox3y9ATWXXVIzMkwnXYbH8eq20AZ0f01diPcL7HEOvBY6LxvQA6+NhRJ/sJ8Pc/+t8qEB1ci7T6kaZZC+VuTJmkVfG5DUsJ5+YRx2enVOQga9AV1aM92Tw/Se9OMCb+x3fm9A16/bdUofxs6fH6ocx9SIluvpWnIkY//IKdExyNeI9jtneB3g+EC6g/AVde61jWgx32szjhPY97bISXAqNKL+vAyuTR+why8wtOvQakSLfm17nSmQSbpWjkffg4ONaHfG4IE0O+ySqzKdNlg1oqytfkIrCrE3vwtvDXNrRGvqLXn61nwkvZsiz9Xm04hoeqH7xajYw3jFS9jCGtGVg7HdHxuwJyUE/WZ70Yh6V60c+LQ1C5/PRmIObWmN6GKW+rkN97HrcAkvfJDfiC7Jf3b9NYz9TLlmhFRtI6pjkeMSXE8j/cfuPu7Qrkbk/psuwzDCPqy4VI7+sxGdO2G6oeEa9pn0bV0U1iak9LXoGmsK9kVqvgum+ZvQL7ZzHy3asA95JrtWrG5C1r/XmfUvzp7z8/rBfU22CU1N67VHq2OfYjmRtEitCRXUn672c8Aey3BUdtzfhF6PvHsbFYn93HHfO0lmxPYlQ5m7vmF30j16q+BsE7qvj9QOMn8inbcwkO/9hSaUOM02NCKHXbrffcH1G03oFvXL7Q8nsY8tLNsvGdSEkr1XP0gMws6fqlQYE9mEsqy+B5XmYb99X8xsJqEJ7ZS+MSM0gZ1RpjWwMbMJLU0VMbgt8Zl04TF3c4XCJsSmL7JI4gj2YWnFx0tqmlDXzXsJg7ex8+TF+5a3NSGjOp43jR+xX5Wr4Dk53IRyFQru/xjGHqlqIlQ61YTy673KpFfn4L9IcXrju3hBM2Lmfd4SaIT91c/lBpsEmpHRzm0aK32wb5MIO7RKrBmFpbbZfc3AnltTdXtwQzO6P76kNWoAuytfee09xWYUd8yN74loLukJZ6okuXc2I6faissfDmB/2s50/sT+ZjRvLPbBzHXsMkLxD+4ebkbxCxtaT2Rg3yHDFxpo2Ywy3eaV9g1gN4iLOWRn34xWjfypCRLLI71A6Fj5qkvNSGnjhLOFEfaRd/XfX3s3o8lVLGK6N7FL7Xobz+PfjIoNpvWOZGJ/MbNpas+DZrRhYd5ln+/YWa5sLzN91owG+DxWVq39gv+iIyhfVCu+GV0Y63ipehj7tvFLHaxpzej6+fkPCu9gdwl+K/g0uxmdeUg54fAZu9bZkteLippRon+v+9YJ7H8uLYs2qmxG6Y8Kjy7dmE86K0fEuGNTM5r/qP7KkuPYG66YRp7pbEYRl+ONN4dg19rIG6kw1IwuWaUfPlWM3YAeOlY/3owGLb8wvZtXQLrAza2PjCl01Jq6Ok9kK/Yac8uQF+x09M7ffXmUDfafybu6K3joSNnn2kUUif2Xqdq9KiE6Gjlnfni0BvuiL9Jh8aJ01F/wRTabq5D0a44zTMfE6Win0MpL0RrYrx48Wd0pTUc8sTviwi9g3+qvvVxrKx1Jce1UTk7A/lrFpd5dhY6c5+VG1XVg/x13duUtTTo6rX7cTFC4CN+Hdy0Ytd9HR6FsPozTBtg1n+ue3nSAjvhyVsSU+GB3trTy+XyIjmzS2SR3ZWEPjVl5SsacjjrzRtoqxrAbhcXxOZ+iI+H8+7qOG4rx/OFbW2SADZ24z5zvWHMC+462QonrDnS0jsNsdXcYduuaBx8N3IjjL2Ry7UMZ9htxXRfGL9NRwpPn1yLYSvD5nOLu4uRF7A/7ZHiwCnYmT46yAh864lzMfPChM/Yad8ln437Ez9Fr+dqEV9hvrj/GP3OPjvTcQm6Wt2H3O6Og3hRCR9UxOixMy7+S3lVz4EDQIzpa3L5RQNUAu+xFCbt1EXTEbC2949ZN7K82qWT5R9NRpanmTCsN+5EyG/vKF3TkHbGoQWsCu1uTwJvvr+koNb3b+J10KelRvHbp3Ul0lH3k9k+Z09ipI3lp6W/pqFbyI3r3BPvjrMq+k+l0tPRuRZpmNXaTAJU7vR/oKO8rs/MQaxnpJZ09jD00OmrW2RpPW4WdzuCQuP6Zjo7ObNYJVsF+nDKT8CiPjsTL65fYH8ZubSCVe6eAji66J1XquGDvFFyXaVpMRwsVKHul72F3EMgdYS2lIxarj+r88dgvBZ4t8iuno0/LPl2bKsDu7G8c/72Cju6/z6zv6sBe4yDIK1dNR9PJm7ir55WTHrBsmbNBLR0tSDYayFuB/aG/lLVePR2VuZiqZWzDfrXgqd/GRjqaL+Vem2CEXZdfMra3iY7qnr67EnMeO2tJoJUPnTgfSq6yRfhhb03mvM/eQkcXop7IP3qBPXab7lrrVuK6viM8FpqLfcmuScX0NjoS+BYUFNyC3U3xls1EO3G9r04Zuj+NPcalV1Kik466PR73Bi79Rnqe72qffV3EdWFX4xgoj/0Ob4n5iW46spOxcg/Ux859E9nZ9tBR4Nmv44HnsId7Uo1te+mopXtnw/2b2LfndsSc6KOjx/UnVwRHY9+oK9Ch209Ht1mG3oZkY5eh1tyQGaCjwQy7x2FN2NdTTk6xDxL3Q71DJQ8nsd+TjHxZO+tiseiJQAXpnIeTvj8doqOrfJOD4Zuxq9hGSB4bpqO92aero3SwH7XmfyH4nY6eSlC/Pz+DPaS78kMe4bsjpba/9MaeTHFIsvtBR8vcXiW/jsCuN+zzlXeEjja7BOknZWL3Fzc/+JpwzsFcgbd12N80PLytPkrcb30OT6WNYV8mPP9VOeF6ji+ZMnkr8c/FfmTo8Bhx/ZZqrsveiN11QuxeM+Eilu0nc3djP7M7Kc/0Jx0ZTFz4UGCJPckp5FMV4f51/FJfPbG/HdibunucuH5Th+K/PZ6zvrZQRRrht7bbaNWkY5/JvrVz9QRxHFYyDzdUYWcSS1S4Sbiouv5LxnfsAVod33oJ30HncurgqsLvL8N31bUn6UjXgXlfrwR2a6XzcRGE5/kv2zykib3hm4vcOOHMbntXjVpgf+cSMaP9i44yGVErJy9jz4pXkg4h/M6jnWtnwrBrnTjW1UK4nqKpPPM77LmbBXZJ/KajmR1SuuzfsP8UN7I9R/jRkmlbrkHsnKyLL8UTnkOTDlnMUU163FrpW/2E87Csz1uybo5/e5exfoqO8meMfwurY9ddc2CtOeEK57crrDqK/dkGkc4gwrmszFzWX8TuFDAgWED4aY497zcEYz9zpKd0knD2U49YZJOxywbwSopP09H6uyP6W79ifxdwa7sh4ZJt45Hbe7Efpm5e6UF4U8HBcTXWGjyPvWXXEU344ldfdHetwm4YrRVTRHhjB9OLfSrY6X/OuQ0R7pZeMN/gMPaFA2M2vDN0RPFsOXnQBfudlIjQzYSzfOfLM72H/ZFrO5ce4VXfpSWOx2PXYelrtiFcfjH7ndOF2D8XGK7wIdz2scOoTSf2Q8E69RGEa6vuNnVgqiV9Stt5XQbhj9qscl1XYl+zVnpxOeGZ8knSl5Wwb2Jce9VJuLjx/IdXjbGvtVo0/zfhvcv3sPk4YK804pNc9IeYTx477eR3B3u09ysJUcKT+rRa773Ern7qDO9mwleFVOqF5mH38YgYVCVc6vt01uNW7NeuB5TsJ9z4QbJ01Az2pazvM8wIX2ja9jR2WR3pQ/vWf7ImXMjjKk+8AvYbk7xDLoQvK/DyfGOA/ZjN/n1XCefY0vgjzRb73Uvt7bcJfxTkefKjL3YWt9ZPwYQXMZ2t/vwcu2SY+PBTwqOs/LULPmEX4ZB1iSW8368342szds7Va48mEv7hl8PGyl/Yr1qWJ6YS/rZ7dXidYD3pFw2TXD4S/kx2YjFdFnvAxsHUHML3avZ5t+tiP3zAxL2QcBW+yYkea+zzVt8qKiV8bN5Km6Hr2A9dsn1VSfiOMWP6aCT2xJd/1tYRbrUywuDXR+xZyoMqTYQfZ/+V+6ce+8ZarWnG7HZCj22bP47dYqXq6XbC87pLX3HwNZAueO/Q1S7CxS12i/JIY5farGLYS7jTvcJAgb3YX1IGWvoJ795twLb8NHbe3zdlhghndaFfFPXCPiD5YOf32fNT7vzg2qfY3aNoxEdNYn6VwXpc6j12Wwvu0lHCT1k+rZKpwT6aF6fzk/AlUUq7FUawhwvuihwnXGC65oMydyPpTW8syiYIn8/tKqMmhX3htEPDJOHWXkueae3Cfnb+vbxfhI/ypy/ZdwL7wIOY+79nz2ffI7f0r2Cv/uGvPUX48+SZGeOH2Bdb1bTPup5VpINpKvYH+vVnpwnvuKXVaVGB/VRWH33Wm5j7Dp0ewv7Clk9jZvbn++Fuic3CJtI9ppVDZj0qeouaw3rsdjfEmmdd701diqsGdodtjkv/EB7X4CF++Rj2bsrzPbPuvGTNo6uXsIsacjvOuoRFAbdPCPaBiNHAWQ9OsfXye4P9T411/KxnLeIfv1eK/Wa13edZdzmXbh3ah307T2vFrG8uPdr8mK2Z9JO1AYxZr5ZlMYhajT3QRKp31hNCXuTGIuyevbu+z7r6tO62+CPYe5zO/PzrJ0ZfvXHFHtPC8mvWLxeEiaYHYlc+4zL1d1xpdP9jAnZHNs6ZWUfB7Ww5Rdg5vzL/mfX4qZuXCrqwD5wJ+OuiJ6SHvjLT8X2pte6vBxZUHq8UwS7QMvHXWWUuVtcpY/8+NvudgS4Gi+yhH8T+4sqfv+sPTOVktjvOWX/xv/XNT1hv7r2L3XTy3/oVBdzRQ3HYXzL9W19L5q3Q2BfsC+f984zgw7d/tWG3Bk/2dqyL/Yn9LPjG6X/j/Me/hrDx/h/9RYj//oePv2GH8kCFoKJQcagMVBGqCtWG6kFNoOZQK6g91A1KhfpA/aGh0HBoLDQRmgalQfOhZdBaKAPaDR2GTvzn9av9KzuUByoEFYWKQ2WgilBVqDZUD2oCNYdaQe2hblAq1AfqDw2FhkNjoYnQNCgNmg8tg9ZCGdBu6DB0AkpR/1d2KA9UCCoKFYfKQBWhqlBtqB7UBGoOtYLaQ92gVKgP1B8aCg2HxkIToWlQGjQfWgathTKg3dBh6ASUovGv7FAeqBBUFCoOlYEqQlWh2lA9qAnUHGoFtYe6QalQH6g/NBQaDo2FJkLToDRoPrQMWgtlQLuhw9AJKGXnv7JDeaBCUFGoOFQGqghVhWpD9aAmUHOoFdQe6galQn2g/tBQaDg0FpoITYPSoPnQMmgtlAHthg5DJ6AUzX9lh/JAhaCiUHGoDFQRqgrVhupBTaDmUCuoPdQNSoX6QP2hodBwaCw0EZoGpUHzoWXQWigD2g0dhk5AKVr/yg7lgQpBRaHiUBmoIlQVqg3Vg5pAzaFWUHuoG5QK9YH6Q0Oh4dBYaCI0DUqD5kPLoLVQBrQbOgydgFJ2/Ss7lAcqBBWFikNloIpQVag2VA9qAjWHWkHtoW5QKtQH6g8NhYZDY6GJ0DQoDZoPLYPWQhnQbugwdAJK/rdVuLPzjP9tYvMfN1TSCoxjYZBeCF6W9C2daRF2qX87gTgsox3nC2Nfz/rPNYTcNrJLYi+g/xvvctGeLg5F7PM0/q3/zmNFBJcW9vylM3/XH948fJjHEPuee8x/15fs+MTPdxw7jZfvr58IDfoqYI+drrP1rz/ea+Uj5IG9dLnHX6+eUVJffhu78J/Jv86VzDW14gF2xa8582Zd3ZLxVjQWO9O9aaZZtxV6Y7f6HXYL7SKWWb9d5C2xLgd7EJcp21/3MGkT/4b9tnEvx6wbbZZ6LMXAHiWYyj3rn9qmjTcNYk/9tUhw1u8HlfFsnsIesER75aw7aEUVynG04A90wYXis14y5nxNQQg7PWm+wqy3RmqrbFuHPdfETWvWQ/ctn1Degt2C6fXhv9v/PpCkoo5d+JSW46wfvEs7q6aHfSUa8p9179WBa3cexS7Icjxl1k1fWtK1bLB77nVpnvWplYphuy9iX7Wag2ce4SqXOA7s88HOXr94z6wrpTZy7g/GXqx732/W5xfE5+k/w259M7Vh1uujqFTDZOzH5F/JMxEupmigdJCGXZSS+mjW3zisHj30FbveNa3FzIS7KY++Nm3E3iVeGjLrL51zTh/rxe7t2riJhfDImUCx4xPYj4hI1v31uOMNJ1lb8XEzcAudP/tBaY9M0Gl+7EuSntqyEl78dErXehX2YwPJZmyEbz/xhf2cDPZ989+fZp+9XtT9P9mpYKdeXXB3AeHbao3dHfZhV+1lVHEQPvJmmYLzYeyF2ypUOAkP29cw5GqFPXrkWDEX4YXsoS8uumDPCjb15Cace7PeicvXsP9s9zHnJfz3BNMK6j3slzdSzvERPnkuofpqOHaJ3PwXAoTfuWro7x2P3ei80jIhwuWmhnf7fMAuXleRvWx2fUcv5luF2Ln62Z+tIPzGYY5Mv1rsoSYxOaKEN7R5ufh3YufXC1m/hvBv7IPSgaPY958fKFtPeOkVrZ4gpjbS86Y7c6QIV3jnGxnKg131XR+bzOz281OPPFyJvSLvzpMthOdfKuR/sgH7olw/v22EH5PNKglXwv58X22dCuHibQHXo7SxL2Z19dlJeLiQCnpujN3MtP/Jntnz+ePH8diT2AuuRK7Sn93O/kWJcQ7YA9HWpSaEMyWus4qnYg/QSPA5RngIyzzRpDvYU/bvdT1N+MOkoJo3j7Az0yT67GbfR2403nn3EnvfwZ+9brPnp06xZnoa9s9f3S5fJXzr0OGp93nYP97LfHGb8KUGl5M/VmLXsO92CSFc9/h6q+xW7AeP5vZHzh63W3tX5Axjf7G1bnEC4QvMGsrzZrCPPjb6/p5wl/g87wLOdtITqL7+BYQvHv2tWLwMO9sXrsma2fs/i1XfV3Hsd8QT5LoIj2P5+ahcAbsep/fuccJfbb+rU7kTeydTgQb7PAY6L7p8utoAu1Si6YZlhCNfj7g6c+ysO7S5NhK+Zv0jk0Zb7LHqXcOqhKsIGbLQ3bH/2pbRYkR46MJr8S2+2LcrjfeeJfyBPOvB9lDsYkYLhbwIlyhMmu58jn250k2nh4T/Gj8c2ZOC3ctmmPMt4et2l+/s/4Q93t54oJTwezkt7YNl2Klhz1b1E15w2fDq92bsFHurjAVMDLT2Ur/waD/20j8un8QJLxK2Svn5C/th2yrt3YR7CHpqT7J3kD5yxtn0LOGbjvbW/hbELquvx3mX8Pkt+pYza7C7xB23SiG8M95sgCKH/eKuBGoD4V854+2Z1bBbhe08xcLMQFJq9YPz92MPt9wlKU14YYrDaXYz7G840pqPEM66c6aO4yx2v2N+wb6E3+Ga1OS6gN3wR8zJ94SvMK15yX0De7VYhtkg4aK2M2yLg7C7NzsGrybmZ13NBab8Udh/Lzy85gjhHmI+sYJJ2C9rp6wMItzS37lXKAu72NGYR+WEs8z7LLa8BPsD1qF3PPOJ+VKhn86KBux39rD6GBCuJtBkI9KDPd9pWiKEcO/PLz3ExufsD39yejPhLWnfPFfP78THYXC/oQQrA61nXeG8lg/7a9/3Qq6E86vLH1wvht2dadf6fMJFs1+sk5DG7nsnKEKYjYHYN/S2SO7A/rzEOc6J8KPd6MaGvdjf7U2wLiPcR7iYf9Mh7KVG69lk2BnIxtHLR/o09tsD8S8DCb/VL8WQccb+iemr52/CFxodWCrrhT1Tnf/D6QXEPFZEe7NcAPasI85+tYR3XWRfu+Up9q2iXBt0ORio+a7O9y2vsc//lFWZT3imj9k9+ffYdVXM87UXEvPbL0IsCgXYF10M2/+V8LH2IjWFGuwOOwbfH+Ik5kWa/FoKHdivfvG17iM8fUcSh8II9rBTGQVeXAzk2LfWR35eF55vH/M6sZqY96/il3+7hRv7vE6TgULCl7w77y23AvvJF5NvL3EzkH2cTMdmKewGwu+KlHkY6Fmwirv0NuzxE71xHLwMpPp6jeqGXdj5V8ps6yH8ZVc2n7gRdh+l3sKaxQyUm61PX3UCu9+YQ241H/G+tsbopvB57NYFTq6d/AwUH2U1wX8F+8OMSnE2QeJ4ikQs5vTDLrRtz7JtS4j51dCTzHkPsQu7rbjuLkTcBwrCm8disR8ft4koX0qM23rlcPc77OGHrB8rLmegIZUYgboc7M+Y5sUmEZ+Xwu4vHv3yDfupexf7tq9koJnpU3UpDOx23Lfu1osQ93nj9ting9glMhhpvmLE/UfAQ9NnCjtblICvzmoGOr20KMCWo5t0gZuPVq9eS7zfOfDYGwhhZ7moHbVwPfG+3Gn6SW4d9qX8zuvYJBgo66um9eIt2GMfFHwRkCLuz4bbdw+qYb/SZx6+dSMDjUfbqn7Zj/2D5tl8G2nifXBVisxjM+ytgsbGbzcTx+1ayi+7s9i5v7Yf5d1CzAcC+z3QBey8dmVjVAViPiDy4PHCG9itc3o3smwjrnfhdIXK+9gNP/1a8lCZgV4oIsmwSOyesdk5mirE/DYj++DhROyLN3JqsKgxENWo+smSj9hFQ5LDqzUY6M/PnuayIuwKAcv6PhCfV6MyxMe967CnLb2zKXU3A01HRuUpdGGXUpB0yd1HvN8VHd7QNop9QcJwcdd+BnJayMx2i6kHv/+WFSmvPEDMPxd5yG/iwZ6cYFJsZUwct9uKwcUrsE8f/e395RAD7frdxHZKCnvthkJ7JTPic6JNjNUvRexX2nLuZZsTn+s/LAq5qYU9PePID9OTxOfByU3n+Qyx89eU3Oe0IsYNlKkKscDOV0D1KDvLQMKuihGCdth1RazexNoxUDKH7pu77thNDOkKQY4MlNhyuofJF/thicaFwa4MtLLhqJh9CHZrA50tcZeI418ruq3mGfa9Ku1JlVcYaAu36yLFZOwbAuW8F18jxl2te+VeFnZZm/H4kz4MtChK/0xnMfauT+WbiojP/zlmhi/l6rF/uyzNohXAQBuMF4he7MJeneOwsSqI2B8jndj00Tnb11n6wu0BA807lCv6Y14v6Q+2RjvJPGWgA9Xo9Gpu7NvY1P2moojrKNzjkI4wdqG0h0ONsX8/X1TZSWA/8LklpPw1A8m6maf5KmD39Or2rE9moOMX7zAea2BHx6Jjx1MZ6EIsTeqFHnbTmMVsEpkMZDv60fWVGfbzLnohtp+I96PvnpEx1tg3bNxwIP8LA50k3nIfuGJPtf4pp1BCnOdPEKf3NeyZP2Nl074R82Sl3WynA7Bf9/fYpVvLQANZRodUn2Cf0QmynmhiIB62WwyeOOzLLoQEvmsjttMhdqk2FfuIYFC6Tw8Daf+5wBaSM+d42spV2A4R5z8328l95divsP2othoj3qdebbabaMJeqf08w+U3A/W7BbM97MV+rbXCMXReC7rESl+4ZRw7/5ng8RI2whNKDn9m7iO95Gms0pJFLagmT7lCmwd7U++JzU78LejN4eWGOcLYd/lkl7Yva0H94m4f5CWwWz4wXXBGrAWd5nbreySP/a6iXTlFvAWZbj5Km1TDvjemddmrTS1oJtJr2T5d7A1TS2qt5VtQ9nLXusDD2D/eVvu9fXsL4ljxtbHs1Jz9X6HgskqDWH96BwuzI/aHDXpKy/e0oC/iidKSV7A/Lc9QXK/fggJ/LEVat7B7LtY6rmXSgtRU7y0+GIL9IFU3xu3Y7PE85Wsahd1linUi81QLis/su26cgL05e91OQdsWZKDyrnvne+y6rUqXPJ1bkPT7k/7rv2CvXnvi9h/3FvR0QcnRmW/YzU45nvK/RmynvXtLQTP2RjOOCbnbLUh35svIjV7sYsvMpHsDW9BP5TfuSj+xS0+d/5X8sAVdDmZLYszrJ13AZEjrTlQL2hF90OEiF/ZpSXkm97gWVKpoGsm2FPuCX2eXur9pQdt/9K7yWYPd4qrlhTvvW5DACGf1b2nsp2ISFr353IJ61EYeH1fGTjsfkdtT1ILkjQdNP2hhTw5X9ZWtbEFta6+OsRtgnz9jpO3X2IL6Mk32aJthl1l8qm+yvQXtf6atctEK+yMn2lG3gRZUdHhPyhNH7C7uZ/3Yf7Ygr3ifu289sBc9kTv+cqYFScgZv/l4E/tat+dfzNhakRmnLHPG/TmvK2RF7CqeVvTEhHY85il29ZHEgQmhVrSeXvX2+kvsK96pXWWItSIHF3vGwbfYr+x23V8n2Yoy9mXkLaNhz7yYp9Im14oe1LLolBZif2B4ZtvM9lbE61V20LkKe6/aKXFJrVYkHfCliJOB/eTzO6On9rei1LU0v6Be7OeVva6nmLSi6e3pV7nHsD+dTshbfLwVRS2i3734B3uYm95jz7OtyGLsxoPqBQP4uk6w+0FxbkWaYfI+q/mxKxb3vPb3aEU9n++pWKzE3hN0LlXGpxV9+OwadVcce4y/009GQCvK86U/ipfF/iTrjEHEw1akVszB+3E79ocFy5PPR7ei8b3THZla2AV8+7axvWpFKweCJ810sI/pSoYbJrSiqaSqY3F62L8rHzP/P/qLEP/9Dx9/ww7lgQpBRaHiUBmoIlQVqg3Vg5pAzaFWUHuoG5QK9YH6Q0Oh4dBYaCI0DUqD5kPLoLVQBrQbOgyd+M/r3/2v7FAeqBBUFCoOlYEqQlWh2lA9qAnUHGoFtYe6QalQH6g/NBQaDo2FJkLToDRoPrQMWgtlQLuhw9AJKGXPv7JDeaBCUFGoOFQGqghVhWpD9aAmUHOoFdQe6galQn2g/tBQaDg0FpoITYPSoPnQMmgtlAHthg5DJ6CUvf/KDuWBCkFFoeJQGagiVBWqDdWDmkDNoVZQe6gblAr1gfpDQ6Hh0FhoIjQNSoPmQ8ugtVAGtBs6DJ2AUvb9KzuUByoEFYWKQ2WgilBVqDZUD2oCNYdaQe2hblAq1AfqDw2FhkNjoYnQNCgNmg8tg9ZCGdBu6DB0AkrR+Vd2KA9UCCoKFYfKQBWhqlBtqB7UBGoOtYLaQ92gVKgP1B8aCg2HxkIToWlQGjQfWgathTKg3dBh6ASUovuv7FAeqBBUFCoOlYEqQlWh2lA9qAnUHGoFtYe6QalQH6g/NBQaDo2FJkLToDRoPrQMWgtlQLuhw9AJKGX/v7JDeaBCUFGoOFQGqghVhWpD9aAmUHOoFdQe6galQn2g/tBQaDg0FpoITYPSoPnQMmgtlAHthg5DJ6AUvf/q7Dzjf5vYVPKdYY1MbkWNLvx5EwewT6cwLVNPb0VGW9t17hzGnrJlbFDtcyvSVwt+ffQkdmkX0RP6Ja1op/2tBSK22JV3+Jja17QiprP3tEtdsfPsOJf9pKUVJW4RNLDzxP7udKFrY18rOqTvz/XHF/vjhW6WEj9b0T6fhOMe97Gb/RC196a0oZ3MetsGHmNnydG6PMzRhs7nul/YG4N9XwNysBZoQ+6Hzy8MS8ReZae4ZUSkDY18DKupSsc+elk61leyDWm8Cs6b9xn7OfHfyTLybWjF9W3ZwsXY96dobutAbehQqk/iuirsob53RWL3tKGMPR8vizRj7xCT3HPBqA3d49q/mK0Lu30semxi3obOnWk92DSE/c1oyZTm2Tb0yueQYuQE9q6SF/vUXNoQy/Hix0bzBvHE28DVfo9nGzp47b7D+ALsu5+/3Wtxuw1tuo0ibizGnmeamu0d0oZCB8P4WZdjl9KIeZsa2YaymV6mOqzGvqXhMsf46zbEb57lXCKFvf0lb5RGOrE/d48qCW7BLpfFefxxThs6fEjv+77t2NkWjUiwlLWhox4Prp/fib1lkUCTa0Mbest6v9NrH/b9+VFmE51tKLOqcNrLEHvbkVg/7x9t6FksT/p5U+zPrCd0RWba0E2WO/N1TmLfmLvPK3dBO7rfGVkmYIO9hkmR002gHdVEjrEVO2KvFF5SpCDWjgwf3A6zu4T95rhsxLyN7ai2/pEjxQv7L82HdrWK7ejYytxrHr7Yaz/tXvJ+ZzsqUal73xOA/bIG/4UXeu1IlmWSTT0Me/KvMOco03akS00yuRGOvZ92biDWqh2tHkx/nB6D/dGiTlq6Uztiltb8UhuP/Uzt/rIqajuavzYht/0t9vPMn35P3W5HZa0FN5s+YJdo37xaOqwdNTl+ZPn8GbtTh886m+h2lMXcvT6oEPu2o+4db5Lakc6hFR0HyrE3lEYg1o/EuPn+m/7UYC//foP/RGE72ngq6mdwM3bd2hsahdXtaLebiszyDuzXn7fHKbe1o2SBR19v9WE/oZSzIXWI2B/zg7nd37HT9GWjt0+1I+eQM+yyE9g//RIdLWLvQCwrN9w+PYPdwOfMxEmBDpScekjzJssQ6eJGX/3ZVhHrT3JJhHBg//V94uGbTR1o173iDQE8c3ze9Qkr5Q7k12Ot5SqInSLcfG29dgc6ccPKZrcw9i2/nESGDDuQe7J1ENsq7CZqL59nWXSgH3aeaUnrsbN8eTcRatuB0hccLNm1Efvu47SRi5c6UGbQguICWeztFIqLpU8H0qqoeLVVEbs1t4eZSVAH+nMzwSpgB/YGTjWfA5EdiOfQwES1OvZyE1RpnNCBpCIOH2TXxt57/bzI8Q8dqMt9icdaHezLbz7d5VzQgfh2rLTaZID9ime6pH91B9qjfZJn9UHsXuaez5PbOpD4ZKYDsyn2aUlaaONwB8rNP3yr1By7XqwSnWuG2J83ncY3LLEbxCUf1FrYibyV/b5JWmNfF/eT7i1E+NWy3+m22O9ExRkVr+1Etjs2lW9xxK55ND54qVwnErvPrv/QFXtkUxL1nGonWnOu+OLAJeyiP3y+f9HpRCyflutKUbEbi9PzxI90otbXyUWG17ArrotovmvViYaqV4+e8cEeIxIqOO1MeJxogfVt7M9/Ju2z9+pEY4yQfQf9sW/3/XK0x78TyWy94il9H7uMbamk1ZNOtEFC9uxICHZXtvI7/XGd6JrmM66oh9hv7fxu5ZLeiT4IK59TeYr9y32TkPlfOpFFhfzd3EjsAqyrJsIqO5FSBMtFxedzzmfnL2fkWjuRp16MXMiLOdv/4VlYPtSJlshsyWl5Nef8GZuacJruROv0ueWEErFvVYiuEF7YheYVVt1UeoPd4qjptgKhLuTQeb5c+x3291o17BfXdaHvth38GunYj3EIiklv6ULzz+gck/iAnR4nYdGt1oV4K0Y+/P6I/ZyWSmz0/i4UcVBFOSMbe2o+reqUWRcq3DG/+2QOduYOrQKps10oSVng2++8Oddjq+XxUbcutCBAmuNKAXYpWz5P2vUuxC67PGKwCLvS5b3z/e93IbmeFy/2fJ0zbvPe0uORXcgo4/7WwDLsZ48EZCkmdqEA/qfH8r9hD331+R3vxy50ylJBsbcSe7RsRtBAURf60edbN1E95/62PGpHcV0XYrmeajpai33gztDd111daNjlRGNjPfY/XVtsA8a60JRpr3NyI/aHfZ4ZrszdqFZTZJdz85ztxy0/aM7bjfyHnezXMrBbMYet2yvSjYLPefN/bsFeYjOwUHFjNzKenjmo24bd5ZNJ7zplwp8HHf/Sjl1VhBq9ZHc3usceeHRT55zrQvGYGMfBblRzo/WCV9ec/eS1UJ85Sexn3tuOvO4599XWowMjDt3ogKZUzUQP9nSzELY+aje6qnDLZ2kfdtT00qXtTjc6wuGnJNE/5/6A4kWbHnUjs1wBefEB7B+XqvTXvOxGpS2leYKDc46PYUNWRVo3kmMTMByb4znW2V5led3Ir233lpwh7BNGpcu+VnYjV2PWPdeGsevvvXOxuLUb1S2NWSz/HbvWQOGeomFiO+Hujxrn+E+BetfCmW60PUxTwf0H9sTPumMFnD1IX9E5iH8Eu/SHvvSCZT3I7BPvzudz3FF4y8cC8R700ftU4uZR7POVun4XKPSgy9lPt6bO8ddukecKd/agnB2qUlvHsN8+n7yoyKAH3aH/qEia41evj9cXmfeg+c98Hdb/xJ7Skvq12LYHMWf2aYTO8WOvXnWWuPegqanNHizjc653/kqRUt8eJLNY38hmjs/4ubuWhfag3he1E6VzvK1drq/8eQ+al6IXJD2BnWspza0ipQctkvU1vDXHLaoEVlZ96kHi562Pts3xParGddVlPUh2Oq126yR2o6zC2NrmHkRx3tnlM8c1frf61vf3oBW8iXHVc9xXe6NH468eFNeroyX2C3vHDiPPZvZe1OzLVG01xyX6VwUyBHsR/9tJ19dzvFjBIbl1TS9ineTZPTTHT1N2NLfL9qLLESYnNv3GznreV6BLtReJpu5tsZ7j/XTXgz26vejxSHTDsznutUohqs+0Fy0Xu32mcY7vDZw3MWDdiz42aUbyTmHXjRY3GnbrRTu4TB7unOONI6wZP673IqZwhzPOc/xk5rx1Y/d7Ud3oLrFnczx8n1/oeGQv6g1Lqyqb44i2lvdXYi8SO/U+7Pccfzyqf3fqYy9amKZ3Zc00dm+DyMV/insRp+HjkL1z/JRo/IN5Db1IJz5hxH6O74gSWM/S04tuBflG3Z/jg70eqazjxLgBkqnv5nh4e8jeBfP70Ms/Pjtq5rjWdb62hXx9yOVuiObPOR7lFXd5kVgfGrM80sQ3g71++8rlvNJ9KOfOi8Uyc3xn2qb3fDv6UP897pE9c9xhQbSZ4N4+ZJDrcuvkHFffqsu09FAf2vNytMt9jn8rmoxdfroPSeWyC9yf4xVjl/RXOvehs7maK1/O8Y09cb9FvfrQ+w9C3FlzXLv+RMzqgD506FPqj29z13f1NFz3tA/J7Y+q6JjjvxntTBKv+5DzlMKH8Tn+Mcc+Wep9H2IfufiO/Q/27KkFJzYV9KH8ar1ioTkuPh3Cv7mmD+kq/mAVn+OHuFi+yHX0oSgPZzuFOT5msO2iwkgfOmLxctHOOX782ZpN2+b1o8gv6wb05jinS0qrMnc/+hGuxGc2x1c8rQ1RWdFPfP5dctNqjhskXNVRk+pHN2zUjR3nuNziaOad2/oRVebG1ctzXCZFLkNrVz8yjFkgcGOOC11cfX63UT9SQtX8/nO8dL+1+L4T/eh6QopP6ByvmJqh657vRzHv9VzD5/gZ/boQ/SvE68rK74yZ45rJ3/cb+vWjs1fMmuLn+B4NNfaDD/tRRSSfxds5XtSdTTv0oh8JT/q4vp/jGittL5imEq83ef267LnHrVRV9lhuP1qu5OCQN8efecv3WVT0IyPF8xZFc9xfUfvZyZZ+1K7NP1E6x7fsdTY7PdSPzOYtVa6c44890wWtp/tRud9i6do5HjrBW2azcACxJ1jVNszxgBXuN+2WDqCrz02U6XO8/fmYusP6AbSQb/xI6xxv8nOfcpIfQANrN/x/7dz/a9R1HMDxmMkGR+jCLxCKxUalOdByqQ17wYpY6jItlbK2LHKaF2dGTKZuuLBrljIn5lE7Ww5N0/JibvMaMo647CTYpujIZrWjNZf3+Xzmxrkv7nbdB3/w9aG/IHg+fvs8efP+6fPD583n83k93aP6UxMnNZU+Y0jr3nBPr+pd5Sc9ZSsN6Vu8cM0/qr9/4MXZO4sNqe5I1sRU92QkohXvGjLtgdIvTdWL2k/XVm43ZOnG+vJ+1Y8Ml6zZXWXIelfdEwOqXzyTPfnjQ4bkheeGBlUvK+yJ7DlqyI9TZs2Jq/747BMf7m0wpHzHrS23VM9v9SypDhkSGHnWN6Tvz8OLhmraDPFnFh4ZVr1u/YTvD14zpLvwjf0jqg82tb3ju2FI5ylvyajqF1b7s78YMcT3x+WHb6seSXP/7k83xe3N6tA99Emer26qKelX5m0c0/uHXavqs0zxlwUN3c/u63Idm29KZLzgrYTqyyLfho+LKd7ISxd03/96RcXJQlPKPijIHld9w6KVi79bZ8r0wOatus9fmjUY2GTKlWyjUfecj+KnGkpNafktbum+JXp+Q9NuU15tqHooqXrm2s8fDB4wJTTqX6b739fcV1u+MuVs62SP7lO22pMOUt0X/FT3kUn3vxA6Z4pnbNVR3S+dsScgmJJxzBvUvaqoOfTTr6bElo9GdD/s2rM90mvKYElup+6jP7yW+0vclCd7m7t179xsT0yw5L57b/bp/s3MtBMdmZbMvF7Qr/u0dnuSgiULjk+N6/5n5dczOnMseeRm/bCj59oTFix5pWnBbd0T15dXdz1vSbM7LaH7Y7X25AVLds7LG9e9eMXAhOjblnyWnJjU/WBa+NxfqfN/d3SXo7c1Hirt3WVJe+BnR8/YZE9qsCQWizl6/owlN2J+S4rcY46+o82e4JDaf5t9dfd9f2NltGggdV6tb0k61lu59mSH1D7pzvWP9nkvDl22ZNuwc/2btfbEB0veG3f22hU5zyVSz/3tY84+/XzQ/XLq+ezOD5J3+50fJPv/02vm5FfoDyHWBvYV62vXPQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADwf/Av
- 00000000-0000-0000-0000-000000000000
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 8dfc4bf8-bd9d-4664-8d23-8c5fa26397de
- 1
- f9dd80e4-1f37-4628-bd32-7ebd0b7b38b9
- Group
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 13811ab4-b356-4a2f-bf6a-563f34659a7a
- Expression
- Expression
-
4211
6684
194
28
-
4311
6698
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- e4363c93-3df7-4a54-a55c-fc89bea1dab9
- Variable O
- O
- true
- 771a3c18-faa6-4281-b469-5031ab7617a5
- 1
-
4213
6686
14
24
-
4221.5
6698
- Result of expression
- b7074eb2-4309-4c42-9b54-b4b4b797222a
- Result
-
- false
- 0
-
4394
6686
9
24
-
4400
6698
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 47d309cc-0087-490d-85c8-cf3d129b0f93
- Panel
- false
- 1
- b7074eb2-4309-4c42-9b54-b4b4b797222a
- 1
- Double click to edit panel content…
-
4216
6398
185
271
- 0
- 0
- 0
-
4216.332
6398.893
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 3f22465c-a1d8-4425-9fdc-e6135a397fbc
- Relay
-
- false
- 47d309cc-0087-490d-85c8-cf3d129b0f93
- 1
-
4288
6375
40
16
-
4308
6383
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 771a3c18-faa6-4281-b469-5031ab7617a5
- Relay
-
- false
- 5078cf9d-5a65-46c0-801d-34f40bee0f1b
- 1
-
4288
6731
40
16
-
4308
6739
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 13811ab4-b356-4a2f-bf6a-563f34659a7a
- 47d309cc-0087-490d-85c8-cf3d129b0f93
- 3f22465c-a1d8-4425-9fdc-e6135a397fbc
- 771a3c18-faa6-4281-b469-5031ab7617a5
- 4
- 3b43cc9f-9bf8-4ad1-96ae-3c1d8d223edd
- Group
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- a5de6231-a691-45d0-887d-4c677b2cd883
- Expression
- Expression
-
4211
5984
194
28
-
4311
5998
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 55c29e61-d798-4888-9ce1-744c771e1aa8
- Variable O
- O
- true
- 256d4876-ebd8-4914-aa20-11c64a0e56d7
- 1
-
4213
5986
14
24
-
4221.5
5998
- Result of expression
- bc7499c7-4854-430a-929c-f83f0f1d3cda
- Result
-
- false
- 0
-
4394
5986
9
24
-
4400
5998
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- ec2d9eee-a658-42ed-bf34-e56a1ed0c919
- Panel
- false
- 0
- bc7499c7-4854-430a-929c-f83f0f1d3cda
- 1
- Double click to edit panel content…
-
4208
5699
200
271
- 0
- 0
- 0
-
4208.899
5699.656
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- d473a50c-3902-4af3-ad36-6f85c9f36bc0
- Relay
-
- false
- ec2d9eee-a658-42ed-bf34-e56a1ed0c919
- 1
-
4288
5656
40
16
-
4308
5664
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 256d4876-ebd8-4914-aa20-11c64a0e56d7
- Relay
-
- false
- 0a516f0c-a574-4254-9e94-e7e5df613da5
- 1
-
4288
6031
40
16
-
4308
6039
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- a5de6231-a691-45d0-887d-4c677b2cd883
- ec2d9eee-a658-42ed-bf34-e56a1ed0c919
- d473a50c-3902-4af3-ad36-6f85c9f36bc0
- 256d4876-ebd8-4914-aa20-11c64a0e56d7
- 4
- 52cee108-6acb-47c9-b99f-f64546acc12c
- Group
- c75b62fa-0a33-4da7-a5bd-03fd0068fd93
- Length
- Measure the length of a curve.
- true
- d900ebd2-5fc1-475e-a940-194803b564d6
- Length
- Length
-
4256
5395
104
28
-
4306
5409
- Curve to measure
- e615bc13-f7e8-4e7a-9a09-b195b451efd2
- Curve
- Curve
- false
- 3174a38d-b561-4a42-8f8a-31608ef08ab4
- 1
-
4258
5397
33
24
-
4276
5409
- Curve length
- b81ec812-8ec8-4429-a6a9-685744f02fd4
- Length
- Length
- false
- 0
-
4321
5397
37
24
-
4341
5409
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 6c8e0d06-15c6-49e1-9067-12321dd4ee3b
- Multiplication
- Multiplication
-
4267
5333
82
44
-
4298
5355
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- 87730b00-70b5-4ec1-9f56-925eb9241e56
- A
- A
- true
- b81ec812-8ec8-4429-a6a9-685744f02fd4
- 1
-
4269
5335
14
20
-
4277.5
5345
- Second item for multiplication
- 65069410-805b-4aff-a2bc-5302d7e92e35
- B
- B
- true
- 2f63ad6a-50d9-44f8-b78a-6d8a197ff60b
- 1
-
4269
5355
14
20
-
4277.5
5365
- Result of multiplication
- 14bd8a6a-5af9-451e-86ed-f6bf0cd39f40
- Result
- Result
- false
- 0
-
4313
5335
34
40
-
4331.5
5355
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 728569ed-5597-44af-981b-e70a8a64f2f2
- true
- Scale
- Scale
-
8768
7688
154
64
-
8852
7720
- Base geometry
- 6595957a-21b8-4b62-9a8e-e5a3980160b0
- true
- Geometry
- Geometry
- true
- 908290ff-2ae5-443a-8c02-efd3ed2fe118
- 1
-
8770
7690
67
20
-
8813
7700
- Center of scaling
- 3864cd4d-8c57-4aee-ab34-b4fe1108c186
- true
- Center
- Center
- false
- 0
-
8770
7710
67
20
-
8813
7720
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- 7fdd03e9-5a28-4c9d-8c2a-72657066d535
- 1/X
- true
- Factor
- Factor
- false
- ea54cb37-f08c-491b-ac20-a65e4389cca7
- 1
-
8770
7730
67
20
-
8813
7740
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- a6c40f15-9b44-41cc-8093-43589b25d869
- true
- Geometry
- Geometry
- false
- 0
-
8867
7690
53
30
-
8895
7705
- Transformation data
- 67198943-928b-4658-a6f4-0695f9ee1588
- true
- Transform
- Transform
- false
- 0
-
8867
7720
53
30
-
8895
7735
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- 4ccebb54-ff4f-4137-9be2-9b59e9e078ef
- true
- Point
- Point
- false
- a6c40f15-9b44-41cc-8093-43589b25d869
- 1
-
8820
7649
50
24
-
8845.5
7661.96
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- cd610f91-fe93-4eaa-b6dc-0b8fadea311f
- Relay
- false
- 0a516f0c-a574-4254-9e94-e7e5df613da5
- 1
-
4288
4362
40
16
-
4308
4370
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- 136cd97b-9deb-4449-b884-bf54a4c926d4
- Number Slider
-
- false
- 0
-
3316
5664
150
20
-
3316.854
5664.472
- 6
- 1
- 0
- 256
- 0
- 0
- 13.114764
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- 60502e3d-7b53-49fc-8044-ffd2cd121805
- Multiplication
- Multiplication
-
3358
5680
82
44
-
3389
5702
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- bc726e13-5c6a-439c-b066-0d4f281fc28f
- A
- A
- true
- 6f068628-c4b9-4434-b450-3eb18eece1e1
- 1
-
3360
5682
14
20
-
3368.5
5692
- Second item for multiplication
- 89757b60-91ec-4c56-8d64-3546a4655221
- B
- B
- true
- 136cd97b-9deb-4449-b884-bf54a4c926d4
- 1
-
3360
5702
14
20
-
3368.5
5712
- Result of multiplication
- 6cd0d5e1-a76e-4157-bcb0-cfc84b7fb662
- Result
- Result
- false
- 0
-
3404
5682
34
40
-
3422.5
5702
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- de643b94-4758-4fff-9527-348baf5052a6
- Expression
- Expression
-
3302
6394
194
28
-
3402
6408
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 189b23cc-c534-4eaf-b05f-45d8bb13b838
- Variable O
- O
- true
- 6f068628-c4b9-4434-b450-3eb18eece1e1
- 1
-
3304
6396
14
24
-
3312.5
6408
- Result of expression
- 529e84b3-b743-41a2-bb07-7f3eae076088
- Result
-
- false
- 0
-
3485
6396
9
24
-
3491
6408
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 3e7a556e-c1e7-4458-88a5-92c9d2b5dc72
- Panel
- false
- 1
- 529e84b3-b743-41a2-bb07-7f3eae076088
- 1
- Double click to edit panel content…
-
3307
6111
214
271
- 0
- 0
- 0
-
3307.274
6111.91
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- bfe8449c-a942-4118-b8c0-f94999971aed
- Relay
-
- false
- 3e7a556e-c1e7-4458-88a5-92c9d2b5dc72
- 1
-
3379
6074
40
16
-
3399
6082
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 6f068628-c4b9-4434-b450-3eb18eece1e1
- Relay
-
- false
- 6f661aea-4de1-4ccd-be9b-060c820f3253
- 1
-
3379
6441
40
16
-
3399
6449
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- de643b94-4758-4fff-9527-348baf5052a6
- 3e7a556e-c1e7-4458-88a5-92c9d2b5dc72
- bfe8449c-a942-4118-b8c0-f94999971aed
- 6f068628-c4b9-4434-b450-3eb18eece1e1
- 4
- b71aae03-de35-454b-80fa-09eb419fe2bf
- Group
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 3f8b08e2-012b-4117-8562-193ac6d58cd1
- Quick Graph
- Quick Graph
- false
- 0
- 6f068628-c4b9-4434-b450-3eb18eece1e1
- 1
-
3330
5910
150
150
-
3330.374
5910.088
- -1
- aaa665bd-fd6e-4ccb-8d2c-c5b33072125d
- Curvature
- Evaluate the curvature of a curve at a specified parameter.
- true
- 03a735fb-f0b8-408e-aa2e-38f3423396cb
- Curvature
- Curvature
-
3343
7069
137
64
-
3413
7101
- Curve to evaluate
- ebdfab97-404e-4400-9ad6-ce97c362b1e6
- Curve
- Curve
- false
- d4d7b6ef-9942-48a8-a5dc-93fd38f8614c
- 1
-
3345
7071
53
30
-
3373
7086
- Parameter on curve domain to evaluate
- e3ba73f5-6e97-41e8-b413-d78f285ff5af
- Parameter
- Parameter
- false
- 28f77fbb-7355-4ecb-b9f0-9dc95a80eccd
- 1
-
3345
7101
53
30
-
3373
7116
- Point on curve at {t}
- 47a169b5-dfa0-40c7-8ebf-fde319f791d4
- Point
- Point
- false
- 0
-
3428
7071
50
20
-
3454.5
7081
- Curvature vector at {t}
- 0ec276e2-20a9-47a4-ac50-e20d6ab1ee1e
- Curvature
- Curvature
- false
- 0
-
3428
7091
50
20
-
3454.5
7101
- Curvature circle at {t}
- aacfbbaa-cbb2-41b5-aaff-4015453882fc
- Curvature
- Curvature
- false
- 0
-
3428
7111
50
20
-
3454.5
7121
- 2162e72e-72fc-4bf8-9459-d4d82fa8aa14
- Divide Curve
- Divide a curve into equal length segments
- true
- d4d70d80-e818-4fef-ba8e-09da9f91679c
- Divide Curve
- Divide Curve
-
3345
7152
125
64
-
3395
7184
- Curve to divide
- 408b244a-22a1-4b81-951c-acb668d4e260
- Curve
- Curve
- false
- d4d7b6ef-9942-48a8-a5dc-93fd38f8614c
- 1
-
3347
7154
33
20
-
3365
7164
- Number of segments
- 0b7485c5-b465-41d0-86b4-72f23669fed5
- Count
- Count
- false
- 566bcebd-f5e8-468a-9c11-d4b111aa2f0c
- 1
-
3347
7174
33
20
-
3365
7184
- 1
- 1
- {0}
- 10
- Split segments at kinks
- 471cb14c-744e-4892-9209-47493c02fe01
- Kinks
- Kinks
- false
- 0
-
3347
7194
33
20
-
3365
7204
- 1
- 1
- {0}
- false
- 1
- Division points
- 75ceaaaf-4b5c-4960-a81b-4117cc5d4b54
- Points
- Points
- false
- 0
-
3410
7154
58
20
-
3440.5
7164
- 1
- Tangent vectors at division points
- 4aa2e999-e805-449c-b9ff-4c18b1d29197
- Tangents
- Tangents
- false
- 0
-
3410
7174
58
20
-
3440.5
7184
- 1
- Parameter values at division points
- 28f77fbb-7355-4ecb-b9f0-9dc95a80eccd
- Parameters
- Parameters
- false
- 0
-
3410
7194
58
20
-
3440.5
7204
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- d4d7b6ef-9942-48a8-a5dc-93fd38f8614c
- 2
- Curve
- Curve
- false
- 8b919b95-eef7-4011-9f51-db631cec0961
- 1
-
3388
7285
53
24
-
3424.814
7297.628
- 23862862-049a-40be-b558-2418aacbd916
- Deconstruct Arc
- Retrieve the base plane, radius and angle domain of an arc.
- true
- 4ba46890-e14d-4ffa-988f-1dd7b7759090
- Deconstruct Arc
- Deconstruct Arc
-
3347
6988
114
64
-
3387
7020
- Arc or Circle to deconstruct
- 5ef3799d-3c27-41aa-b079-76a2250a67e5
- Arc
- Arc
- false
- aacfbbaa-cbb2-41b5-aaff-4015453882fc
- 1
-
3349
6990
23
60
-
3362
7020
- Base plane of arc or circle
- dae57143-ddef-46e4-99de-d144d87b1d8b
- Base Plane
- Base Plane
- false
- 0
-
3402
6990
57
20
-
3432
7000
- Radius of arc or circle
- 2eb519fd-6a71-465a-9619-d9e8eb664335
- Radius
- Radius
- false
- 0
-
3402
7010
57
20
-
3432
7020
- Angle domain (in radians) of arc
- 9094aa8f-9691-4663-a757-5232472ae614
- Angle
- Angle
- false
- 0
-
3402
7030
57
20
-
3432
7040
- 797d922f-3a1d-46fe-9155-358b009b5997
- One Over X
- Compute one over x.
- true
- 5d0d4ef0-d8de-470e-bbae-355a6b237935
- One Over X
- One Over X
-
3353
6500
100
28
-
3402
6514
- Input value
- 717d554b-ee89-4984-8501-fca87732899a
- Value
- Value
- false
- 9f7d1187-713e-4c8f-8c68-69b4d351ce97
- 1
-
3355
6502
32
24
-
3372.5
6514
- Output value
- 8942d533-358d-4c7c-8ea8-d0f51eda1186
- Result
- Result
- false
- 0
-
3417
6502
34
24
-
3435.5
6514
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 6f661aea-4de1-4ccd-be9b-060c820f3253
- Relay
-
- false
- 8942d533-358d-4c7c-8ea8-d0f51eda1186
- 1
-
3379
6473
40
16
-
3399
6481
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 9b636a61-698d-4830-96f5-74961596764f
- Expression
- Expression
-
3302
6866
194
28
-
3402
6880
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 111ad032-1d08-4851-87d8-c242727847a7
- Variable O
- O
- true
- 9f7d1187-713e-4c8f-8c68-69b4d351ce97
- 1
-
3304
6868
14
24
-
3312.5
6880
- Result of expression
- 5e99dcb1-4f43-4cbb-9a7e-485893ea738a
- Result
-
- false
- 0
-
3485
6868
9
24
-
3491
6880
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 0e2d7da3-975f-4198-8e36-5db1d8a5abe6
- Panel
- false
- 1
- 5e99dcb1-4f43-4cbb-9a7e-485893ea738a
- 1
- Double click to edit panel content…
-
3309
6587
185
271
- 0
- 0
- 0
-
3309.411
6587.423
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 0e85845b-9b1b-4be3-a812-e90c459106d4
- Relay
-
- false
- 0e2d7da3-975f-4198-8e36-5db1d8a5abe6
- 1
-
3381
6546
40
16
-
3401
6554
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 9f7d1187-713e-4c8f-8c68-69b4d351ce97
- Relay
-
- false
- 2eb519fd-6a71-465a-9619-d9e8eb664335
- 1
-
3382
6913
40
16
-
3402
6921
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 566bcebd-f5e8-468a-9c11-d4b111aa2f0c
- Number
- Number
- false
- 0
-
3391
7242
50
24
-
3416.814
7254.215
- 1
- 1
- {0}
- 1024
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 14114d11-a3cb-41ea-8397-075cb5e9d027
- Curve
- Curve
- false
- 9b049f30-c8fb-42e2-8753-3a7428f5fa04
- 1
-
3380
5519
50
24
-
3405.086
5531.662
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 5
-
255;255;255;255
- A group of Grasshopper objects
- 14114d11-a3cb-41ea-8397-075cb5e9d027
- 1
- 8a41f4c3-fac1-4c2d-a1c7-38bbb12715ac
- Group
- f3230ecb-3631-4d6f-86f2-ef4b2ed37f45
- Replace Nulls
- Replace nulls or invalid data with other data
- true
- 600b5815-4862-4828-a936-e2ea98a22934
- Replace Nulls
- Replace Nulls
-
4240
4302
136
44
-
4326
4324
- 1
- Items to test for null
- 031d96f7-8481-4d4a-9b81-160a3396d767
- Items
- Items
- false
- cd610f91-fe93-4eaa-b6dc-0b8fadea311f
- 1
-
4242
4304
69
20
-
4278
4314
- 1
- Items to replace nulls with
- cbf1802f-d79f-4412-88e4-d0fd9c2c1fc7
- Replacements
- Replacements
- false
- 0
-
4242
4324
69
20
-
4278
4334
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 0
- 1
- List without any nulls
- 1f0b848f-eb55-4dd9-a62f-a216daed8c78
- Items
- Items
- false
- 0
-
4341
4304
33
20
-
4359
4314
- Number of items replaced
- a5afb553-925f-43c4-a825-447d3d7bfb65
- Count
- Count
- false
- 0
-
4341
4324
33
20
-
4359
4334
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- ff2db1c1-6c13-43aa-8303-844eb49d3ae6
- Relay
- false
- 080fa6d7-bbb3-4f71-a556-fd84a9bd5303
- 1
-
4288
4218
40
16
-
4308
4226
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 8c08f54a-7801-4d61-a733-3a8ba0d87024
- Quick Graph
- Quick Graph
- false
- 0
- 95874953-5edd-4e0b-9115-5fc68fd0f28d
- 1
-
4233
4017
150
150
-
4233.828
4017.635
- -1
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 95874953-5edd-4e0b-9115-5fc68fd0f28d
- Relay
-
- false
- ff2db1c1-6c13-43aa-8303-844eb49d3ae6
- 1
-
4288
4181
40
16
-
4308
4189
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 5cb126fd-9c09-4d9d-9448-82cbad266c75
- Expression
- Expression
-
4211
3930
194
28
-
4311
3944
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 4c58974c-b1d9-40b1-a891-5eabc20bda90
- Variable O
- O
- true
- 01d00c3f-0e5b-4a1c-8123-dd4db1c9e437
- 1
-
4213
3932
14
24
-
4221.5
3944
- Result of expression
- e60b926d-ac8a-4eb5-9f55-3b56b430cfc3
- Result
-
- false
- 0
-
4394
3932
9
24
-
4400
3944
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 62732b5d-8ae6-4217-b2a2-eaaf8c992b76
- Panel
- false
- 0
- e60b926d-ac8a-4eb5-9f55-3b56b430cfc3
- 1
- Double click to edit panel content…
-
4208
3647
200
271
- 0
- 0
- 0
-
4208.241
3647.615
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 4d8c850a-204d-4ade-81d2-820fdd96b58a
- Relay
-
- false
- 62732b5d-8ae6-4217-b2a2-eaaf8c992b76
- 1
-
4288
3629
40
16
-
4308
3637
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 01d00c3f-0e5b-4a1c-8123-dd4db1c9e437
- Relay
-
- false
- 95874953-5edd-4e0b-9115-5fc68fd0f28d
- 1
-
4288
3977
40
16
-
4308
3985
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 1
-
255;255;255;255
- A group of Grasshopper objects
- 5cb126fd-9c09-4d9d-9448-82cbad266c75
- 62732b5d-8ae6-4217-b2a2-eaaf8c992b76
- 4d8c850a-204d-4ade-81d2-820fdd96b58a
- 01d00c3f-0e5b-4a1c-8123-dd4db1c9e437
- 8c08f54a-7801-4d61-a733-3a8ba0d87024
- 95874953-5edd-4e0b-9115-5fc68fd0f28d
- 6
- fa5ecd94-e7d5-46d8-825e-477b6d112c2b
- Group
- ce46b74e-00c9-43c4-805a-193b69ea4a11
- Multiplication
- Mathematical multiplication
- true
- e2051d40-1ccc-45fe-82e2-b1b90760ee46
- Multiplication
- Multiplication
-
4267
3396
82
44
-
4298
3418
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for multiplication
- d5f4a7da-4dd5-4ff9-9a1b-49fe042ec60d
- A
- A
- true
- eca5d769-7430-4ced-8208-a3645409d38b
- 1
-
4269
3398
14
20
-
4277.5
3408
- Second item for multiplication
- 9e974e1f-1e02-48b7-bfe6-7c150dd511a2
- B
- B
- true
- b81ec812-8ec8-4429-a6a9-685744f02fd4
- 1
-
4269
3418
14
20
-
4277.5
3428
- Result of multiplication
- 32f0b35d-e913-4f06-b93a-97544ad5d63d
- Result
- Result
- false
- 0
-
4313
3398
34
40
-
4331.5
3418
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 2df1f8fc-64bf-4e4b-a60b-3fb33cc9fd01
- Line SDL
- Line SDL
-
-13782
22315
106
64
-
-13718
22347
- Line start point
- c54d12b6-d6d2-495b-b838-07a0520624e4
- Start
- Start
- false
- 0
-
-13780
22317
47
20
-
-13755
22327
- 1
- 1
- {0}
-
0
0
0
- Line tangent (direction)
- a387e6d1-42d4-4708-b061-84b25b674829
- Direction
- Direction
- false
- 0
-
-13780
22337
47
20
-
-13755
22347
- 1
- 1
- {0}
-
-0.5
0
0
- Line length
- c36c2235-5eaf-437b-8a3d-5bd00adc44b6
- Length
- Length
- false
- 0
-
-13780
22357
47
20
-
-13755
22367
- 1
- 1
- {0}
- 1
- Line segment
- 013f3902-ac62-471f-913d-6b70709a644d
- Line
- Line
- false
- 0
-
-13703
22317
25
60
-
-13689
22347
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 5bab25d9-56ac-4d32-844e-0ecfd01f1f9e
- Line SDL
- Line SDL
-
-13782
22459
106
64
-
-13718
22491
- Line start point
- 0c1f3cb7-0183-4fae-af72-a660ebff7330
- Start
- Start
- false
- 0
-
-13780
22461
47
20
-
-13755
22471
- 1
- 1
- {0}
-
1
1
0
- Line tangent (direction)
- c3b760fc-685f-41be-88e6-5409041d5b92
- Direction
- Direction
- false
- 0
-
-13780
22481
47
20
-
-13755
22491
- 1
- 1
- {0}
-
1
0
0
- Line length
- b8a3bae6-0b05-4a99-8026-f223ea878881
- Length
- Length
- false
- 0
-
-13780
22501
47
20
-
-13755
22511
- 1
- 1
- {0}
- 1
- Line segment
- d8f6b94f-360d-4beb-810a-57991853e22e
- Line
- Line
- false
- 0
-
-13703
22461
25
60
-
-13689
22491
- 22990b1f-9be6-477c-ad89-f775cd347105
- Flip Curve
- Flip a curve using an optional guide curve.
- true
- ba271c46-fe3a-48aa-b5f3-e84f4aecbca8
- Flip Curve
- Flip Curve
-
-13779
22252
100
44
-
-13729
22274
- Curve to flip
- 4de6b7a3-32b3-40e4-8769-771102e78672
- Curve
- Curve
- false
- 013f3902-ac62-471f-913d-6b70709a644d
- 1
-
-13777
22254
33
20
-
-13759
22264
- Optional guide curve
- c7874f1e-1178-481a-a23a-a45ddb6a935e
- Guide
- Guide
- true
- 0
-
-13777
22274
33
20
-
-13759
22284
- Flipped curve
- 6ccb97b0-1e14-49b2-a135-93dab85d9891
- Curve
- Curve
- false
- 0
-
-13714
22254
33
20
-
-13696
22264
- Flip action
- 76123488-8f88-4453-a792-33c39f2d9543
- Flag
- Flag
- false
- 0
-
-13714
22274
33
20
-
-13696
22284
- 22990b1f-9be6-477c-ad89-f775cd347105
- Flip Curve
- Flip a curve using an optional guide curve.
- true
- ac3c3e2b-cbe8-47d5-b631-479f1efb11ec
- Flip Curve
- Flip Curve
-
-13779
22395
100
44
-
-13729
22417
- Curve to flip
- 42fe7b93-aa0d-4826-afa2-cec3a5df89ee
- Curve
- Curve
- false
- d8f6b94f-360d-4beb-810a-57991853e22e
- 1
-
-13777
22397
33
20
-
-13759
22407
- Optional guide curve
- a74c6312-3c78-4cbc-b45f-8221f13984aa
- Guide
- Guide
- true
- 0
-
-13777
22417
33
20
-
-13759
22427
- Flipped curve
- 56c3de07-9943-4d4f-9fe5-b44ac9f9f196
- Curve
- Curve
- false
- 0
-
-13714
22397
33
20
-
-13696
22407
- Flip action
- 991bfe87-9d9a-4c6a-9d3a-3170f388bec9
- Flag
- Flag
- false
- 0
-
-13714
22417
33
20
-
-13696
22427
- 5909dbcb-4950-4ce4-9433-7cf9e62ee011
- Blend Curve
- Create a blend curve between two curves.
- true
- 1b03b2f8-0f41-4cdc-9de3-f381902f125c
- Blend Curve
- Blend Curve
-
-13787
22055
118
104
-
-13718
22107
- First curve for blend
- f784e390-a80a-4024-be92-b2cb2237accc
- Curve A
- Curve A
- false
- 6ccb97b0-1e14-49b2-a135-93dab85d9891
- 1
-
-13785
22057
52
20
-
-13757.5
22067
- Second curve for blend
- 068c4f67-8be1-46c3-9a72-e78b870d224a
- Curve B
- Curve B
- false
- d8f6b94f-360d-4beb-810a-57991853e22e
- 1
-
-13785
22077
52
20
-
-13757.5
22087
- Bulge factor at A
- 38f05c2c-1b90-495c-91bd-dc22907ae857
- Bulge A
- Bulge A
- false
- 5ebd08e3-1d91-4fcc-bcad-eb3a8e77e9bd
- 1
-
-13785
22097
52
20
-
-13757.5
22107
- 1
- 1
- {0}
- 1
- Bulge factor at B
- ff1c5a50-1233-4a01-a228-ef0dabd4d80b
- Bulge B
- Bulge B
- false
- 5ebd08e3-1d91-4fcc-bcad-eb3a8e77e9bd
- 1
-
-13785
22117
52
20
-
-13757.5
22127
- 1
- 1
- {0}
- 1
- Continuity of blend (0=position, 1=tangency, 2=curvature)
- 3815bdbb-ace0-4185-ac3a-f5c327929840
- Continuity
- Continuity
- false
- 0
-
-13785
22137
52
20
-
-13757.5
22147
- 1
- 1
- {0}
- 2
- Blend curve connecting the end of A to the start of B
- 153ce435-1c6f-4961-9a71-d0a0af201f65
- Blend
- Blend
- false
- 0
-
-13703
22057
32
100
-
-13685.5
22107
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 39c932f0-cb48-431a-af49-df26495dad11
- Curve
- Curve
- false
- 5f024167-e348-42e4-83bc-dd9abab2d75e
- 1
-
4283
2895
50
24
-
4308
2907.582
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 61036b5a-8186-48eb-b8e1-970dd55c24f4
- Relay
- false
- bb672236-a7b7-45ef-afb8-18f1a2792e58
- 1
-
4288
2773
40
16
-
4308
2781
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 37daf650-3934-4620-a463-416b35449969
- Expression
- Expression
-
4211
2402
194
28
-
4311
2416
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 9730946c-a145-45c8-aa9e-8dba73e6cd04
- Variable O
- O
- true
- e51056f8-3107-4b1a-8fd5-ad73176b3deb
- 1
-
4213
2404
14
24
-
4221.5
2416
- Result of expression
- d4a4ed03-0cc0-46ff-9359-035244fdd4dc
- Result
-
- false
- 0
-
4394
2404
9
24
-
4400
2416
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- f9d2b63d-ffbc-48e6-b8fc-1b2cef2bb36f
- Panel
- false
- 0
- d4a4ed03-0cc0-46ff-9359-035244fdd4dc
- 1
- Double click to edit panel content…
-
4211
2119
194
271
- 0
- 0
- 0
-
4211.045
2119.177
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 1770ef93-fafd-46b6-9880-ef4537069dfd
- Relay
-
- false
- f9d2b63d-ffbc-48e6-b8fc-1b2cef2bb36f
- 1
-
4288
2101
40
16
-
4308
2109
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- e51056f8-3107-4b1a-8fd5-ad73176b3deb
- Relay
-
- false
- 5b746e58-f682-41be-a162-14fdf355725d
- 1
-
4288
2447
40
16
-
4308
2455
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 37daf650-3934-4620-a463-416b35449969
- f9d2b63d-ffbc-48e6-b8fc-1b2cef2bb36f
- 1770ef93-fafd-46b6-9880-ef4537069dfd
- e51056f8-3107-4b1a-8fd5-ad73176b3deb
- 4
- d8ed0680-6313-4ea3-9083-6b6ef5b3df8e
- Group
- 76975309-75a6-446a-afed-f8653720a9f2
- Create Material
- Create an OpenGL material.
- true
- a746965c-93a8-4c42-ba22-60615b10d09a
- Create Material
- Create Material
-
4236
-304
144
104
-
4320
-252
- Colour of the diffuse channel
- 175e106b-c54e-440f-b201-4a30b4479824
- Diffuse
- Diffuse
- false
- 0
-
4238
-302
67
20
-
4273
-292
- 1
- 1
- {0}
-
255;207;207;207
- Colour of the specular highlight
- 3907fdb0-9bb6-4168-8255-33d06da4a5a4
- Specular
- Specular
- false
- 0
-
4238
-282
67
20
-
4273
-272
- 1
- 1
- {0}
-
255;0;255;255
- Emissive colour of the material
- 4ca928fa-d51c-47ab-868b-b9cd5ad2a4a4
- Emission
- Emission
- false
- 0
-
4238
-262
67
20
-
4273
-252
- 1
- 1
- {0}
-
255;0;0;0
- Amount of transparency (0.0 = opaque, 1.0 = transparent
- 6be2492e-681d-45b2-8e54-96a122763bae
- Transparency
- Transparency
- false
- 0
-
4238
-242
67
20
-
4273
-232
- 1
- 1
- {0}
- 0.5
- Amount of shinyness (0 = none, 1 = low shine, 100 = max shine
- 6cba6d00-a570-441e-a794-b2bde1c8bce2
- Shine
- Shine
- false
- 0
-
4238
-222
67
20
-
4273
-212
- 1
- 1
- {0}
- 100
- Resulting material
- 61c7892c-838c-4bef-9c90-26cc90dbc3aa
- Material
- Material
- false
- 0
-
4335
-302
43
100
-
4358
-252
- 537b0419-bbc2-4ff4-bf08-afe526367b2c
- Custom Preview
- Allows for customized geometry previews
- true
- 1b5fbf91-fdf8-4030-a119-19e9899bcf85
- Custom Preview
- Custom Preview
-
4267
-367
82
44
-
4335
-345
- Geometry to preview
- true
- e728a154-7a23-4426-8068-39ad90664828
- Geometry
- Geometry
- false
- f61f2111-5326-4648-ba8c-1d4458c660dd
- 1
-
4269
-365
51
20
-
4296
-355
- The material override
- e1bca1e3-517c-4c4a-acb8-5d0f80125eab
- Material
- Material
- false
- 61c7892c-838c-4bef-9c90-26cc90dbc3aa
- 1
-
4269
-345
51
20
-
4296
-335
- 1
- 1
- {0}
-
255;221;160;221
-
255;66;48;66
- 0.5
-
255;255;255;255
- 0
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 8b919b95-eef7-4011-9f51-db631cec0961
- Relay
- false
- e22f8f4c-01d9-40da-84dd-7b1c9d05dc05
- 1
-
3703
7468
40
16
-
3723
7476
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 2df1f8fc-64bf-4e4b-a60b-3fb33cc9fd01
- 5bab25d9-56ac-4d32-844e-0ecfd01f1f9e
- ba271c46-fe3a-48aa-b5f3-e84f4aecbca8
- ac3c3e2b-cbe8-47d5-b631-479f1efb11ec
- 7c5248fa-deac-45e4-b5a1-c56612264153
- 1b03b2f8-0f41-4cdc-9de3-f381902f125c
- b61d4846-0a2c-4cb6-9506-cacc1d5d15cd
- 5ebd08e3-1d91-4fcc-bcad-eb3a8e77e9bd
- 8
- 0135048a-26b4-4af1-a205-9d8732b9d6fb
- Group
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 1dd7f4ab-a114-475c-95ae-55222fa823af
- Digit Scroller
-
- false
- 0
- 12
-
- 11
- 256.0
-
4183
7040
250
20
-
4183.743
7040.877
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- b61d4846-0a2c-4cb6-9506-cacc1d5d15cd
- Digit Scroller
-
- false
- 0
- 12
-
- 1
- 0.50000000000
-
-13855
22215
250
20
-
-13854.98
22215.33
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 5ebd08e3-1d91-4fcc-bcad-eb3a8e77e9bd
- Relay
- false
- b61d4846-0a2c-4cb6-9506-cacc1d5d15cd
- 1
-
-13752
22177
40
16
-
-13732
22185
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 49903633-9080-429b-8a6d-d1e6ebe41d4e
- Quick Graph
- Quick Graph
- false
- 0
- ae3a695a-cc15-499e-9427-1231fcbea6e4
- 1
-
4233
1291
150
150
-
4233.346
1291.081
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 0964cac6-acfd-4cc9-9eaf-953e88fd0fc0
- Quick Graph
- Quick Graph
- false
- 0
- 60d7cf46-ac14-418d-825d-d81b9b00022b
- 1
-
4233
1122
150
150
-
4233.346
1122.081
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 6cb2edf8-8cdf-4c12-85d6-a8bd4ae5d89e
- Quick Graph
- Quick Graph
- false
- 0
- bf13852d-01bb-4747-8df7-3dc60b6e7510
- 1
-
4233
954
150
150
-
4233.346
954.563
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 6a8af3f4-c4cb-42f8-8235-d36afb706fae
- Quick Graph
- Quick Graph
- false
- 0
- 313febab-a771-45da-a567-310cd4182e68
- 1
-
4233
785
150
150
-
4233.346
785.563
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 50a35e3a-c50a-483f-ba6a-4078685fc7f5
- Quick Graph
- Quick Graph
- false
- 0
- b7204c31-0fde-4f40-9482-20f3fbf74e06
- 1
-
4233
615
150
150
-
4233.104
615.8313
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 7d097b82-7572-4bca-82b7-1d6802a40156
- Quick Graph
- Quick Graph
- false
- 0
- 48e9cfcc-4536-4f94-9f62-f42b525b36e5
- 1
-
4233
446
150
150
-
4233.104
446.0579
- -1
- 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef
- Quick Graph
- 1
- Display a set of y-values as a graph
- 6668afd9-5abf-4c53-9854-9dacd7e2c2c6
- Quick Graph
- Quick Graph
- false
- 0
- 7ca4635d-ac36-43c9-b4e8-aba60332ab9f
- 1
-
4233
277
150
150
-
4233.104
277.3086
- -1
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- 1818d3db-972f-47b4-b0c9-65197dfe11c2
- true
- Point
- Point
- false
- 0
-
-12873
22637
50
24
-
-12848.95
22649.03
- 1
- 1
- {0}
-
0
0
0
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- 9f25a355-7662-4195-8bad-1228d1b92e3a
- true
- Point
- Point
- false
- 0
-
-12873
22678
50
24
-
-12848.95
22690.51
- 1
- 1
- {0}
-
0.25
0
0
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- bdf07b41-b621-4b36-819a-8bd27aca0e34
- true
- Point
- Point
- false
- 0
-
-12873
22721
50
24
-
-12848.95
22733.89
- 1
- 1
- {0}
-
0.394775268579572
0.197847617914238
0
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- 3a8f6210-9f26-43e4-8b81-9b30c45b88b3
- true
- Point
- Point
- false
- 0
-
-12873
22768
50
24
-
-12848.54
22780.21
- 1
- 1
- {0}
-
0.200657721514105
0
0
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- e6c35ec2-ba17-4faf-bedc-9905f308c518
- true
- Point
- Point
- false
- 0
-
-12873
22430
50
24
-
-12848.09
22442.45
- 1
- 1
- {0}
-
0.5
0.5
0
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- 41c9204f-fb15-49e7-9e6f-1f04ee4cfc2e
- true
- Merge
- Merge
-
-12893
22466
87
144
-
-12857
22538
- 7
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 1b7d2336-0b9d-47ce-b5a1-ed7b229efeac
- true
- false
- Data 1
- D1
- true
- 1818d3db-972f-47b4-b0c9-65197dfe11c2
- 1
-
-12891
22468
19
20
-
-12880
22478
- 2
- Data stream 2
- 7d23cc1e-b361-4ccd-82dd-cca3cfbbc15f
- true
- false
- Data 2
- D2
- true
- 9f25a355-7662-4195-8bad-1228d1b92e3a
- 1
-
-12891
22488
19
20
-
-12880
22498
- 2
- Data stream 3
- a689816b-5ebe-4a34-91e7-e043313eb3fe
- true
- false
- Data 3
- D3
- true
- bdf07b41-b621-4b36-819a-8bd27aca0e34
- 1
-
-12891
22508
19
20
-
-12880
22518
- 2
- Data stream 4
- 313e47fa-4c2a-4dad-a1fd-49ed9925b99f
- true
- false
- Data 4
- D4
- true
- 0
-
-12891
22528
19
20
-
-12880
22538
- 2
- Data stream 5
- ed5f14a0-0c1a-4651-8847-ba22c778fe88
- true
- false
- Data 5
- D5
- true
- 0
-
-12891
22548
19
20
-
-12880
22558
- 2
- Data stream 6
- c79e50a7-2e4d-4e14-ad92-8e0ba11e0b59
- true
- false
- Data 6
- D6
- true
- 0
-
-12891
22568
19
20
-
-12880
22578
- 2
- Data stream 7
- 64079409-bb3a-4789-b544-4ee321deb040
- true
- false
- Data 7
- D7
- true
- 0
-
-12891
22588
19
20
-
-12880
22598
- 2
- Result of merge
- a539d1e9-68b9-430e-a3d7-537c65f05f7c
- true
- Result
- Result
- false
- 0
-
-12842
22468
34
140
-
-12823.5
22538
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- a51298b4-d113-4e33-b945-2f96e88302ea
- true
- Rotate
- Rotate
-
-12925
22243
154
64
-
-12857
22275
- Base geometry
- de05e983-9d6a-4257-995e-ef69084268dc
- true
- Geometry
- Geometry
- true
- a539d1e9-68b9-430e-a3d7-537c65f05f7c
- 1
-
-12923
22245
51
20
-
-12896
22255
- Rotation angle in radians
- a266731d-89a1-463f-9de8-321659cbee1f
- true
- Angle
- Angle
- false
- 0
- false
-
-12923
22265
51
20
-
-12896
22275
- 1
- 1
- {0}
- 3.1415926535897931
- Rotation plane
- 6d069752-8260-43f5-bcbf-a824af1e9d7f
- true
- Plane
- Plane
- false
- e6c35ec2-ba17-4faf-bedc-9905f308c518
- 1
-
-12923
22285
51
20
-
-12896
22295
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- b0394c3c-26aa-4d54-b33f-ffd0e0c9426a
- true
- Geometry
- Geometry
- false
- true
- 0
-
-12842
22245
69
30
-
-12814
22260
- Transformation data
- 16ffc00d-f46f-4cf8-b3c7-bc98f4c1e945
- true
- Transform
- Transform
- false
- 0
-
-12842
22275
69
30
-
-12814
22290
- 3cadddef-1e2b-4c09-9390-0e8f78f7609f
- Merge
- Merge a bunch of data streams
- 57338b09-cfcc-43c5-af5d-62540440940e
- true
- Merge
- Merge
-
-12893
22137
87
84
-
-12857
22179
- 4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 2
- Data stream 1
- 7023e8c0-e2bd-417c-be59-7ed3d26ba6bd
- true
- false
- Data 1
- D1
- true
- a539d1e9-68b9-430e-a3d7-537c65f05f7c
- 1
-
-12891
22139
19
20
-
-12880
22149
- 2
- Data stream 2
- 79d07e16-9e3c-42ef-9d76-41932ef42d5c
- true
- false
- Data 2
- D2
- true
- e6c35ec2-ba17-4faf-bedc-9905f308c518
- 1
-
-12891
22159
19
20
-
-12880
22169
- 2
- Data stream 3
- 33e90266-6168-4cf8-97bd-eb2c44a236d6
- true
- false
- Data 3
- D3
- true
- d8e7c413-da6d-49c8-8b76-cf94bbbde9c2
- 1
-
-12891
22179
19
20
-
-12880
22189
- 2
- Data stream 4
- f794f028-631f-4cfe-8d4d-2183b67ea77b
- true
- false
- Data 4
- D4
- true
- 0
-
-12891
22199
19
20
-
-12880
22209
- 2
- Result of merge
- 8d495468-0570-4f48-bb1c-5aaabfff109f
- true
- Result
- Result
- false
- 0
-
-12842
22139
34
80
-
-12823.5
22179
- dde71aef-d6ed-40a6-af98-6b0673983c82
- Nurbs Curve
- Construct a nurbs curve from control points.
- fe55b884-74d2-4ace-91ec-46bb8aa6d46e
- true
- Nurbs Curve
- Nurbs Curve
-
-12918
21960
118
64
-
-12858
21992
- 1
- Curve control points
- 7fe7b8fc-fec4-4321-92c1-0e6182219a0a
- true
- Vertices
- Vertices
- false
- 8d495468-0570-4f48-bb1c-5aaabfff109f
- 1
-
-12916
21962
43
20
-
-12893
21972
- Curve degree
- c71205c6-66b5-49ac-9a49-9e7a69e35a93
- true
- Degree
- Degree
- false
- 0
-
-12916
21982
43
20
-
-12893
21992
- 1
- 1
- {0}
- 11
- Periodic curve
- c2998f02-a1fb-49ae-84ab-f1ad6c66b669
- true
- Periodic
- Periodic
- false
- 0
-
-12916
22002
43
20
-
-12893
22012
- 1
- 1
- {0}
- false
- Resulting nurbs curve
- e22f8f4c-01d9-40da-84dd-7b1c9d05dc05
- true
- Curve
- Curve
- false
- 0
-
-12843
21962
41
20
-
-12821
21972
- Curve length
- 9312300e-0dbd-4b1c-85ee-c473762db936
- true
- Length
- Length
- false
- 0
-
-12843
21982
41
20
-
-12821
21992
- Curve domain
- a2c8554b-5662-4c85-aca3-96762059833a
- true
- Domain
- Domain
- false
- 0
-
-12843
22002
41
20
-
-12821
22012
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- 88d85a7a-6236-4486-80da-b121d9a65425
- true
- Point
- Point
- false
- 0
-
-12873
22806
50
24
-
-12848.45
22818.21
- 1
- 1
- {0}
-
0.283026022490193
0.08609833667516
0
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- a22527ce-b848-4876-ae6c-e284f5e1a12e
- true
- Point
- Point
- false
- 0
-
-12873
22858
50
24
-
-12848.45
22870.1
- 1
- 1
- {0}
-
0.332348228366894
0.163223259975457
0
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
- Mirror an object.
- fa928cff-b283-44fa-ac3e-1c442a6c1672
- true
- Mirror
- Mirror
-
-12918
22326
138
44
-
-12850
22348
- Base geometry
- 16123eaa-bc27-4e53-b85c-4397bdf91758
- true
- Geometry
- Geometry
- true
- b0394c3c-26aa-4d54-b33f-ffd0e0c9426a
- 1
-
-12916
22328
51
20
-
-12889
22338
- Mirror plane
- 80cf4e6c-d577-4ed1-86a6-cb94f169c26f
- true
- Plane
- Plane
- false
- e7375d9f-5a67-4bd3-9539-8914551d4c92
- 1
-
-12916
22348
51
20
-
-12889
22358
- 1
- 1
- {0}
-
0
0
0
0
1
0
0
0
1
- Mirrored geometry
- d8e7c413-da6d-49c8-8b76-cf94bbbde9c2
- true
- Geometry
- Geometry
- false
- 0
-
-12835
22328
53
20
-
-12807
22338
- Transformation data
- dad63748-20ec-49f8-be3a-64adc4b8f57d
- true
- Transform
- Transform
- false
- 0
-
-12835
22348
53
20
-
-12807
22358
- 17b7152b-d30d-4d50-b9ef-c9fe25576fc2
- XY Plane
- World XY plane.
- 5419777c-8b79-4b71-8094-671e26c8e42f
- true
- XY Plane
- XY Plane
-
-12900
22384
98
28
-
-12850
22398
- Origin of plane
- f378614e-5fd1-4224-aa44-1c402747a088
- true
- Origin
- Origin
- false
- e6c35ec2-ba17-4faf-bedc-9905f308c518
- 1
-
-12898
22386
33
24
-
-12880
22398
- 1
- 1
- {0}
-
0
0
0
- World XY plane
- e7375d9f-5a67-4bd3-9539-8914551d4c92
- true
- Plane
- Plane
- false
- 0
-
-12835
22386
31
24
-
-12818
22398
- 2b2a4145-3dff-41d4-a8de-1ea9d29eef33
- Interpolate
- Create an interpolated curve through a set of points.
- true
- 440a5d0a-f4bb-43f8-9b0b-9f129f6b6ddb
- true
- Interpolate
- Interpolate
-
-12918
22037
125
84
-
-12851
22079
- 1
- Interpolation points
- 93a04a85-8966-4529-bf74-64647084f7d6
- true
- Vertices
- Vertices
- false
- 8d495468-0570-4f48-bb1c-5aaabfff109f
- 1
-
-12916
22039
50
20
-
-12889.5
22049
- Curve degree
- ecc241b9-be30-434b-a539-7190153555eb
- true
- Degree
- Degree
- false
- 0
-
-12916
22059
50
20
-
-12889.5
22069
- 1
- 1
- {0}
- 3
- Periodic curve
- 8f2f38c6-16be-4b50-a09f-4c92a6d03cee
- true
- Periodic
- Periodic
- false
- 0
-
-12916
22079
50
20
-
-12889.5
22089
- 1
- 1
- {0}
- false
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- e6abb7eb-e3f2-4fb8-a0ff-18fd1e81c3b7
- true
- KnotStyle
- KnotStyle
- false
- 0
-
-12916
22099
50
20
-
-12889.5
22109
- 1
- 1
- {0}
- 1
- Resulting nurbs curve
- 715cdc1a-d856-4941-b0ad-3b9c04d514a5
- true
- Curve
- Curve
- false
- 0
-
-12836
22039
41
26
-
-12814
22052.33
- Curve length
- 794a44d9-4e35-433d-86d7-666be64886b9
- true
- Length
- Length
- false
- 0
-
-12836
22065
41
27
-
-12814
22079
- Curve domain
- e30a2443-c95f-45fa-8e9a-c981d2b000bc
- true
- Domain
- Domain
- false
- 0
-
-12836
22092
41
27
-
-12814
22105.67
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 1818d3db-972f-47b4-b0c9-65197dfe11c2
- 9f25a355-7662-4195-8bad-1228d1b92e3a
- bdf07b41-b621-4b36-819a-8bd27aca0e34
- 3a8f6210-9f26-43e4-8b81-9b30c45b88b3
- e6c35ec2-ba17-4faf-bedc-9905f308c518
- 41c9204f-fb15-49e7-9e6f-1f04ee4cfc2e
- a51298b4-d113-4e33-b945-2f96e88302ea
- 57338b09-cfcc-43c5-af5d-62540440940e
- fe55b884-74d2-4ace-91ec-46bb8aa6d46e
- 88d85a7a-6236-4486-80da-b121d9a65425
- a22527ce-b848-4876-ae6c-e284f5e1a12e
- fa928cff-b283-44fa-ac3e-1c442a6c1672
- 5419777c-8b79-4b71-8094-671e26c8e42f
- 440a5d0a-f4bb-43f8-9b0b-9f129f6b6ddb
- 14
- a309790d-41a6-4472-877b-e83d98be0d70
- Group
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 2b8982ad-31cf-4594-b562-7f255387572d
- true
- Expression
- Expression
-
-1012
10473
194
28
-
-912
10487
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 6263f94c-d40f-4e1a-9b62-b12a0091989f
- true
- Variable O
- O
- true
- 03b1bab6-b05f-4fbd-9d3d-8724ed5846a0
- 1
-
-1010
10475
14
24
-
-1001.5
10487
- Result of expression
- c4d40938-2a1a-4c0c-b929-c8188cbe547c
- true
- Result
-
- false
- 0
-
-829
10475
9
24
-
-823
10487
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- f57f0a05-8d67-4d43-83ba-1fa5cf42da0e
- true
- Panel
- false
- 0
- c4d40938-2a1a-4c0c-b929-c8188cbe547c
- 1
- Double click to edit panel content…
-
-1012
10185
194
271
- 0
- 0
- 0
-
-1011.193
10185.8
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 47449d6f-59a8-4e29-bbce-0d0b02c29488
- true
- Relay
-
- false
- f57f0a05-8d67-4d43-83ba-1fa5cf42da0e
- 1
-
-935
10150
40
16
-
-915
10158
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 03b1bab6-b05f-4fbd-9d3d-8724ed5846a0
- true
- Relay
-
- false
- 9b1cb421-16d8-4a53-b2e0-8d1623cb2148
- 1
-
-935
10518
40
16
-
-915
10526
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- eaa87f52-c666-41a9-b556-acd207f0b6c7
- c4fa04b7-3725-4402-b9f5-638b88ba78f6
- b661329d-1c86-4c6d-95f9-d705a1115677
- e63f5e4a-94fa-4924-86f4-2933a2da291b
- ee7f15b8-98b7-4e5e-8ef0-3c65b1428def
- c1f6941e-67c3-4804-8c8b-0274a0e48a3d
- c8f545e8-6340-444b-b8d2-3b5a3ae04fa3
- a60d4ff8-ca3f-45c9-b2ca-62bf83022599
- 65b567a8-78ea-4eb1-b9ff-a6002f44885b
- f7402af7-b96e-4810-a00d-c27261a92d89
- a63c1906-6c40-43b6-bf50-e976a76ef9eb
- 6b414199-1a78-4066-bf90-85da6bce32c0
- 54b025ce-50fe-46f2-8bd2-3bb3a203f49a
- 5dc5632c-8c01-41c5-af25-47838fc684b2
- 8ebdaf25-4561-4c91-82bd-831e0ae5c7dd
- fbfa9e12-50d3-43cd-9bf6-5fa8bf22d1a4
- 45c22674-d02a-44ba-b8eb-5d5f3acf5790
- 0a9908b8-576f-4498-957f-369fefe28b2a
- 202ceb8e-71f2-43ee-b2b9-f9a6b1d331b1
- 9186d39b-d4cc-45e6-a786-965ed70f8528
- bf5cfc02-9b93-47a0-bace-8cf4f6b9f48d
- a8b4d7ba-71d5-4764-b276-828e069e1a14
- 07782138-aba3-44d1-9dec-33b387755b83
- 7f21031c-6647-46ce-835e-6c92a920335e
- 2a1012b3-1746-43f3-86ea-7f5c3c2e45f9
- 3fd109c6-3ae8-453e-b871-73884b2fd78d
- 58fbe8f8-b6cc-49b3-868f-2f5e9adf5eb4
- 080c45e6-3c93-4ede-8bae-6942df87d901
- a8a49fdf-31eb-4a9f-a98d-e15015261400
- 23d8ebc4-a04d-40ff-98e4-1a30f772a64a
- 9cc8f06a-8751-4d91-8029-e814fe94e287
- 64f4c70f-d50b-4286-9b15-67fe6a6b6671
- a0e07e08-fe1e-408d-b57c-4a0a1c879a92
- 7b96ee99-1a36-400f-9885-b6de6377a16f
- 130ea919-f2f4-4d96-a399-8e265bf54af8
- c6f6074b-b03a-49dc-aac8-2e1469dc341f
- 04f1da23-038a-4f15-bb9e-f3ce4920ed5a
- 2b84984b-394d-4dbc-8fc8-6cb8c68caa3f
- 9cf2d03c-25ee-4970-b1c2-03c6d2473ade
- fb8356cd-bc57-4212-b603-ece8bc609c2e
- 64c144e6-a1e8-4d25-b361-aa88bebf6277
- 86fc2dd8-2814-43bc-8aa6-998446a8e239
- f9285ab5-378d-4ddf-95cc-b5dd1c1ba77d
- 166e572a-6023-47d4-b8f6-57f8ebfb97da
- 5de4bf60-eae6-465d-b779-f5efb709b4ad
- f18cc5c3-73d8-4311-8236-bf6b13104193
- 96bb9f3d-3d8c-4d3a-859d-4a8d3f4c5d5e
- 4edfafd8-3b0c-4943-bb10-917abaeb9712
- f91bfec0-c6ad-4011-8456-67697a779eb3
- 91b67f5a-4dff-4683-a8db-dc90bf6de0f8
- d0b32d0e-885a-4c2b-b378-441bba4876b7
- 1498e329-39e2-490d-bf26-64cc72d5b628
- b59393f3-2b17-47be-bc0e-82711f27e393
- 942441e0-2a69-43f4-80f2-24729e38a366
- c2f1f615-6fd6-4da2-9d18-b2d721b79703
- 11a52911-ee4b-4695-868f-5bf4c41520d5
- 28041f4d-ea5e-40a7-8e96-c4fe6c94f571
- 86694246-d580-4d98-8160-6ae52ac6f1b8
- 7ae05443-fd59-4dfe-ba49-c100f76256e7
- 41402c3f-e413-42af-bec9-2fa5b5ce34fa
- 60
- bad5c919-ca65-44cf-8be2-feeef714fad2
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 9186d39b-d4cc-45e6-a786-965ed70f8528
- 1
- eaa87f52-c666-41a9-b556-acd207f0b6c7
- Group
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- b661329d-1c86-4c6d-95f9-d705a1115677
- e63f5e4a-94fa-4924-86f4-2933a2da291b
- ee7f15b8-98b7-4e5e-8ef0-3c65b1428def
- c1f6941e-67c3-4804-8c8b-0274a0e48a3d
- c8f545e8-6340-444b-b8d2-3b5a3ae04fa3
- a60d4ff8-ca3f-45c9-b2ca-62bf83022599
- 65b567a8-78ea-4eb1-b9ff-a6002f44885b
- f7402af7-b96e-4810-a00d-c27261a92d89
- 6b414199-1a78-4066-bf90-85da6bce32c0
- a63c1906-6c40-43b6-bf50-e976a76ef9eb
- eaa87f52-c666-41a9-b556-acd207f0b6c7
- 11
- c4fa04b7-3725-4402-b9f5-638b88ba78f6
- Group
- dd8134c0-109b-4012-92be-51d843edfff7
- Duplicate Data
- Duplicate data a predefined number of times.
- true
- b661329d-1c86-4c6d-95f9-d705a1115677
- true
- Duplicate Data
- Duplicate Data
-
3743
11043
104
64
-
3802
11075
- 1
- Data to duplicate
- fa1ee80a-25e2-4624-99fd-12b709505b79
- true
- Data
- Data
- false
- 3d4cd0a5-11ef-4190-a953-f2d1da8a2ad4
- 1
-
3745
11045
42
20
-
3767.5
11055
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 1
- Number of duplicates
- 9fc44f7a-5480-4ba7-9d60-d503a9585fc4
- true
- Number
- Number
- false
- 11a52911-ee4b-4695-868f-5bf4c41520d5
- 1
-
3745
11065
42
20
-
3767.5
11075
- 1
- 1
- {0}
- 500
- Retain list order
- ccd3258b-eccf-4f8e-99f7-68b527fee35a
- true
- Order
- Order
- false
- 0
-
3745
11085
42
20
-
3767.5
11095
- 1
- 1
- {0}
- true
- 1
- Duplicated data
- e074e6d9-878a-4027-857f-b9ae9b303522
- true
- Data
- Data
- false
- 0
-
3817
11045
28
60
-
3832.5
11075
- fb6aba99-fead-4e42-b5d8-c6de5ff90ea6
- DotNET VB Script (LEGACY)
- A VB.NET scriptable component
- true
- e63f5e4a-94fa-4924-86f4-2933a2da291b
- true
- DotNET VB Script (LEGACY)
- Turtle
- 0
- Dim i As Integer
Dim dir As New On3dVector(1, 0, 0)
Dim pos As New On3dVector(0, 0, 0)
Dim axis As New On3dVector(0, 0, 1)
Dim pnts As New List(Of On3dVector)
pnts.Add(pos)
For i = 0 To Forward.Count() - 1
Dim P As New On3dVector
dir.Rotate(Left(i), axis)
P = dir * Forward(i) + pnts(i)
pnts.Add(P)
Next
Points = pnts
-
3737
10115
116
44
-
3798
10137
- 1
- 1
- 2
- Script Variable Forward
- Script Variable Left
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2
- true
- true
- Forward
- Left
- true
- true
- 2
- Print, Reflect and Error streams
- Output parameter Points
- 3ede854e-c753-40eb-84cb-b48008f14fd4
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- true
- true
- Output
- Points
- false
- false
- 1
- false
- Script Variable Forward
- cb49d094-135a-4555-8461-a28402f74759
- true
- Forward
- Forward
- true
- 1
- true
- e074e6d9-878a-4027-857f-b9ae9b303522
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
3739
10117
44
20
-
3762.5
10127
- 1
- false
- Script Variable Left
- b7ac10e4-066f-4481-9133-46686d683dea
- true
- Left
- Left
- true
- 1
- true
- 41402c3f-e413-42af-bec9-2fa5b5ce34fa
- 1
- 8e991e99-5fb8-41e1-928d-1bba8fb9f7d7
-
3739
10137
44
20
-
3762.5
10147
- Print, Reflect and Error streams
- b819959a-eb73-4527-b54f-285a2b786d1a
- true
- Output
- Output
- false
- 0
-
3813
10117
38
20
-
3833.5
10127
- Output parameter Points
- 72e2f1ea-5de4-4652-b1b6-c001429a1607
- true
- Points
- Points
- false
- 0
-
3813
10137
38
20
-
3833.5
10147
- fbac3e32-f100-4292-8692-77240a42fd1a
- Point
- Contains a collection of three-dimensional points
- true
- ee7f15b8-98b7-4e5e-8ef0-3c65b1428def
- true
- Point
- Point
- false
- 72e2f1ea-5de4-4652-b1b6-c001429a1607
- 1
-
3771
9919
50
24
-
3796.124
9931.313
- e64c5fb1-845c-4ab1-8911-5f338516ba67
- Series
- Create a series of numbers.
- true
- c1f6941e-67c3-4804-8c8b-0274a0e48a3d
- true
- Series
- Series
-
3745
10583
101
64
-
3795
10615
- First number in the series
- 0c9f6bae-0fc9-4a5c-a763-9f565f59aa5b
- true
- Start
- Start
- false
- 0
-
3747
10585
33
20
-
3765
10595
- 1
- 1
- {0}
- 0
- Step size for each successive number
- 16734827-34c7-4da5-9bad-004561de16b2
- true
- Step
- Step
- false
- b1464b45-8fd5-4217-9845-9c2f64eafd27
- 1
-
3747
10605
33
20
-
3765
10615
- 1
- 1
- {0}
- 1
- Number of values in the series
- 4f1fcd1a-e5fd-444e-9644-5bd99614cf11
- true
- Count
- Count
- false
- 11a52911-ee4b-4695-868f-5bf4c41520d5
- 1
-
3747
10625
33
20
-
3765
10635
- 1
- Series of numbers
- 96634ed3-55a8-4c30-a62c-e5002f4aa576
- true
- Series
- Series
- false
- 0
-
3810
10585
34
60
-
3828.5
10615
- 57da07bd-ecab-415d-9d86-af36d7073abc
- Number Slider
- Numeric slider for single values
- c8f545e8-6340-444b-b8d2-3b5a3ae04fa3
- true
- Number Slider
-
- false
- 0
-
3720
11221
150
20
-
3720.834
11221.74
- 0
- 1
- 0
- 65536
- 0
- 0
- 4096
- a4cd2751-414d-42ec-8916-476ebf62d7fe
- Radians
- Convert an angle specified in degrees to radians
- true
- a60d4ff8-ca3f-45c9-b2ca-62bf83022599
- true
- Radians
- Radians
-
3735
10708
120
28
-
3796
10722
- Angle in degrees
- 366e99dd-4acc-4d1b-976c-c249abf42af3
- true
- Degrees
- Degrees
- false
- 7f21031c-6647-46ce-835e-6c92a920335e
- 1
-
3737
10710
44
24
-
3760.5
10722
- Angle in radians
- b1464b45-8fd5-4217-9845-9c2f64eafd27
- true
- Radians
- Radians
- false
- 0
-
3811
10710
42
24
-
3833.5
10722
- 33bcf975-a0b2-4b54-99fd-585c893b9e88
- Digit Scroller
- Numeric scroller for single numbers
- 65b567a8-78ea-4eb1-b9ff-a6002f44885b
- true
- Digit Scroller
- Digit Scroller
- false
- 0
- 12
- Digit Scroller
- 1
- 0.00000033527
-
3671
11012
250
20
-
3671.111
11012.78
- 797d922f-3a1d-46fe-9155-358b009b5997
- One Over X
- Compute one over x.
- true
- f7402af7-b96e-4810-a00d-c27261a92d89
- true
- One Over X
- One Over X
-
3745
11125
100
28
-
3794
11139
- Input value
- 47da93b8-893a-480a-9527-0d3593e614f1
- true
- Value
- Value
- false
- 11a52911-ee4b-4695-868f-5bf4c41520d5
- 1
-
3747
11127
32
24
-
3764.5
11139
- Output value
- 3d4cd0a5-11ef-4190-a953-f2d1da8a2ad4
- true
- Result
- Result
- false
- 0
-
3809
11127
34
24
-
3827.5
11139
- 75eb156d-d023-42f9-a85e-2f2456b8bcce
- Interpolate (t)
- Create an interpolated curve through a set of points with tangents.
- true
- a63c1906-6c40-43b6-bf50-e976a76ef9eb
- true
- Interpolate (t)
- Interpolate (t)
-
3723
9812
144
84
-
3809
9854
- 1
- Interpolation points
- e3065d9d-8f71-48ad-8734-2bceb07257e8
- true
- Vertices
- Vertices
- false
- ee7f15b8-98b7-4e5e-8ef0-3c65b1428def
- 1
-
3725
9814
69
20
-
3761
9824
- Tangent at start of curve
- db01c631-588e-4417-9638-ca735b8efe45
- true
- Tangent Start
- Tangent Start
- false
- 0
-
3725
9834
69
20
-
3761
9844
- 1
- 1
- {0}
-
0.0625
0
0
- Tangent at end of curve
- fe6b8754-06e2-462e-b0b1-05b9bbaa16dd
- true
- Tangent End
- Tangent End
- false
- 0
-
3725
9854
69
20
-
3761
9864
- 1
- 1
- {0}
-
0
0
0
- Knot spacing (0=uniform, 1=chord, 2=sqrtchord)
- 3142f1aa-090d-4ded-95bd-b2b87f5f92d5
- true
- KnotStyle
- KnotStyle
- false
- 0
-
3725
9874
69
20
-
3761
9884
- 1
- 1
- {0}
- 2
- Resulting nurbs curve
- 99dabb3c-3d24-49d7-986a-4aad0362e8b7
- true
- Curve
- Curve
- false
- 0
-
3824
9814
41
26
-
3846
9827.333
- Curve length
- bded6360-0fc6-4f89-9430-0d54011f95f2
- true
- Length
- Length
- false
- 0
-
3824
9840
41
27
-
3846
9854
- Curve domain
- d32034a8-334d-4f6f-9d00-22ab40cdaa16
- true
- Domain
- Domain
- false
- 0
-
3824
9867
41
27
-
3846
9880.666
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- b661329d-1c86-4c6d-95f9-d705a1115677
- e63f5e4a-94fa-4924-86f4-2933a2da291b
- ee7f15b8-98b7-4e5e-8ef0-3c65b1428def
- c1f6941e-67c3-4804-8c8b-0274a0e48a3d
- c8f545e8-6340-444b-b8d2-3b5a3ae04fa3
- a60d4ff8-ca3f-45c9-b2ca-62bf83022599
- 65b567a8-78ea-4eb1-b9ff-a6002f44885b
- f7402af7-b96e-4810-a00d-c27261a92d89
- 8
- 6b414199-1a78-4066-bf90-85da6bce32c0
- Group
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 54b025ce-50fe-46f2-8bd2-3bb3a203f49a
- true
- Evaluate Length
- Evaluate Length
-
3723
9644
144
64
-
3797
9676
- Curve to evaluate
- 7ad96e1d-9539-4135-a0e5-0acc0dad4a6f
- true
- Curve
- Curve
- false
- 99dabb3c-3d24-49d7-986a-4aad0362e8b7
- 1
-
3725
9646
57
20
-
3755
9656
- Length factor for curve evaluation
- 5dfc7ef1-53aa-4438-8523-7821e643bccc
- true
- Length
- Length
- false
- 0
-
3725
9666
57
20
-
3755
9676
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- 942309c7-fbd6-494c-9b9a-a244767daef9
- true
- Normalized
- Normalized
- false
- 0
-
3725
9686
57
20
-
3755
9696
- 1
- 1
- {0}
- true
- Point at the specified length
- b9e6c70d-992e-448d-ba9e-9211e8aba31b
- true
- Point
- Point
- false
- 0
-
3812
9646
53
20
-
3840
9656
- Tangent vector at the specified length
- 44a4b18d-e6f4-4180-a885-9ded5d7912cb
- true
- Tangent
- Tangent
- false
- 0
-
3812
9666
53
20
-
3840
9676
- Curve parameter at the specified length
- 2213bae4-c45e-4ed2-823f-102defe2e9d9
- true
- Parameter
- Parameter
- false
- 0
-
3812
9686
53
20
-
3840
9696
- f12daa2f-4fd5-48c1-8ac3-5dea476912ca
- Mirror
- Mirror an object.
- true
- 5dc5632c-8c01-41c5-af25-47838fc684b2
- true
- Mirror
- Mirror
-
3726
9582
138
44
-
3794
9604
- Base geometry
- 641fe1aa-50be-4640-9915-ef256ac29568
- true
- Geometry
- Geometry
- true
- 99dabb3c-3d24-49d7-986a-4aad0362e8b7
- 1
-
3728
9584
51
20
-
3755
9594
- Mirror plane
- bfd4d8f6-8141-4f64-b024-7ccbba3bd042
- true
- Plane
- Plane
- false
- 8cbed87f-21f3-4b60-bdb9-9e4684fba899
- 1
-
3728
9604
51
20
-
3755
9614
- 1
- 1
- {0}
-
0
0
0
0
1
0
0
0
1
- Mirrored geometry
- 3a7355fc-f2e2-4cce-a6d8-8c171b38786d
- true
- Geometry
- Geometry
- false
- 0
-
3809
9584
53
20
-
3837
9594
- Transformation data
- 03f9d71a-6701-4505-b13d-db6d1ac022d8
- true
- Transform
- Transform
- false
- 0
-
3809
9604
53
20
-
3837
9614
- 4c619bc9-39fd-4717-82a6-1e07ea237bbe
- Line SDL
- Create a line segment defined by start point, tangent and length.}
- true
- 8ebdaf25-4561-4c91-82bd-831e0ae5c7dd
- true
- Line SDL
- Line SDL
-
3742
9728
106
64
-
3806
9760
- Line start point
- e3cc991e-182d-44c5-b1c3-698d7323216f
- true
- Start
- Start
- false
- b9e6c70d-992e-448d-ba9e-9211e8aba31b
- 1
-
3744
9730
47
20
-
3769
9740
- Line tangent (direction)
- 96c03d69-7839-4e70-88cf-462580b0e92e
- true
- Direction
- Direction
- false
- 44a4b18d-e6f4-4180-a885-9ded5d7912cb
- 1
-
3744
9750
47
20
-
3769
9760
- 1
- 1
- {0}
-
0
0
1
- Line length
- 8a6e365e-4bc3-4a99-98a9-414897a694ac
- true
- Length
- Length
- false
- 0
-
3744
9770
47
20
-
3769
9780
- 1
- 1
- {0}
- 1
- Line segment
- 8cbed87f-21f3-4b60-bdb9-9e4684fba899
- true
- Line
- Line
- false
- 0
-
3821
9730
25
60
-
3835
9760
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- fbfa9e12-50d3-43cd-9bf6-5fa8bf22d1a4
- true
- Join Curves
- Join Curves
-
3736
9520
118
44
-
3799
9542
- 1
- Curves to join
- 9ce03d64-a788-4a93-9b5c-7f85fb5b297a
- true
- Curves
- Curves
- false
- 99dabb3c-3d24-49d7-986a-4aad0362e8b7
- 3a7355fc-f2e2-4cce-a6d8-8c171b38786d
- 2
-
3738
9522
46
20
-
3762.5
9532
- Preserve direction of input curves
- 672f6b26-864c-424d-913d-f8c61491c982
- true
- Preserve
- Preserve
- false
- 0
-
3738
9542
46
20
-
3762.5
9552
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- 9496f55c-b47f-481f-9261-b1150e0ebdfe
- true
- Curves
- Curves
- false
- 0
-
3814
9522
38
40
-
3834.5
9542
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 45c22674-d02a-44ba-b8eb-5d5f3acf5790
- true
- Evaluate Length
- Evaluate Length
-
3723
9436
144
64
-
3797
9468
- Curve to evaluate
- ffdbc0d2-57eb-4c4b-a9f2-05dcc4049e73
- true
- Curve
- Curve
- false
- 9496f55c-b47f-481f-9261-b1150e0ebdfe
- 1
-
3725
9438
57
20
-
3755
9448
- Length factor for curve evaluation
- 019664fa-1094-4e09-82f9-973c5d1c29ca
- true
- Length
- Length
- false
- 0
-
3725
9458
57
20
-
3755
9468
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- ea653249-ae5b-4562-bb37-091a6da5efaf
- true
- Normalized
- Normalized
- false
- 0
-
3725
9478
57
20
-
3755
9488
- 1
- 1
- {0}
- true
- Point at the specified length
- 2d3b5427-8216-45bb-bc29-915e51ee9f0b
- true
- Point
- Point
- false
- 0
-
3812
9438
53
20
-
3840
9448
- Tangent vector at the specified length
- ecd8fc17-8b33-4220-86c0-778fb147cf39
- true
- Tangent
- Tangent
- false
- 0
-
3812
9458
53
20
-
3840
9468
- Curve parameter at the specified length
- e4dc077c-ed39-4f6a-8a05-e5120969b59b
- true
- Parameter
- Parameter
- false
- 0
-
3812
9478
53
20
-
3840
9488
- b7798b74-037e-4f0c-8ac7-dc1043d093e0
- Rotate
- Rotate an object in a plane.
- true
- 0a9908b8-576f-4498-957f-369fefe28b2a
- true
- Rotate
- Rotate
-
3726
9353
138
64
-
3794
9385
- Base geometry
- dec6d105-bc0e-452a-8af5-75af092add00
- true
- Geometry
- Geometry
- true
- 9496f55c-b47f-481f-9261-b1150e0ebdfe
- 1
-
3728
9355
51
20
-
3755
9365
- Rotation angle in radians
- 17931a34-91d7-424a-9bcc-baf8bcb1379e
- true
- Angle
- Angle
- false
- 0
- false
-
3728
9375
51
20
-
3755
9385
- 1
- 1
- {0}
- 3.1415926535897931
- Rotation plane
- 5d19d155-cb49-42da-a415-a49caeb6ef3f
- true
- Plane
- Plane
- false
- 2d3b5427-8216-45bb-bc29-915e51ee9f0b
- 1
-
3728
9395
51
20
-
3755
9405
- 1
- 1
- {0}
-
0
0
0
1
0
0
0
1
0
- Rotated geometry
- 40a81509-a78e-40b3-8765-9ee9b3907257
- true
- Geometry
- Geometry
- false
- 0
-
3809
9355
53
30
-
3837
9370
- Transformation data
- 14dcb3ef-d666-4cd5-bbcb-849a36aaa575
- true
- Transform
- Transform
- false
- 0
-
3809
9385
53
30
-
3837
9400
- 8073a420-6bec-49e3-9b18-367f6fd76ac3
- Join Curves
- Join as many curves as possible
- true
- 202ceb8e-71f2-43ee-b2b9-f9a6b1d331b1
- true
- Join Curves
- Join Curves
-
3736
9290
118
44
-
3799
9312
- 1
- Curves to join
- 9013ad37-eb1d-483f-be30-aa1d23f2fe7e
- true
- Curves
- Curves
- false
- 9496f55c-b47f-481f-9261-b1150e0ebdfe
- 40a81509-a78e-40b3-8765-9ee9b3907257
- 2
-
3738
9292
46
20
-
3762.5
9302
- Preserve direction of input curves
- 9ff80f65-141d-4f24-af7e-015c5d2b1d6f
- true
- Preserve
- Preserve
- false
- 0
-
3738
9312
46
20
-
3762.5
9322
- 1
- 1
- {0}
- false
- 1
- Joined curves and individual curves that could not be joined.
- 77a3ce43-8057-49f5-89c2-e576f8185ca0
- true
- Curves
- Curves
- false
- 0
-
3814
9292
38
40
-
3834.5
9312
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- a63c1906-6c40-43b6-bf50-e976a76ef9eb
- 54b025ce-50fe-46f2-8bd2-3bb3a203f49a
- 5dc5632c-8c01-41c5-af25-47838fc684b2
- 8ebdaf25-4561-4c91-82bd-831e0ae5c7dd
- fbfa9e12-50d3-43cd-9bf6-5fa8bf22d1a4
- 45c22674-d02a-44ba-b8eb-5d5f3acf5790
- 0a9908b8-576f-4498-957f-369fefe28b2a
- 202ceb8e-71f2-43ee-b2b9-f9a6b1d331b1
- a8b4d7ba-71d5-4764-b276-828e069e1a14
- 9
- 9186d39b-d4cc-45e6-a786-965ed70f8528
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- bf5cfc02-9b93-47a0-bace-8cf4f6b9f48d
- true
- Panel
- false
- 0
- 7b96ee99-1a36-400f-9885-b6de6377a16f
- 1
- Double click to edit panel content…
-
3723
10673
145
20
- 0
- 0
- 0
-
3723.18
10673.69
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- a8b4d7ba-71d5-4764-b276-828e069e1a14
- true
- Curve
- Curve
- false
- 77a3ce43-8057-49f5-89c2-e576f8185ca0
- 1
-
3771
9253
50
24
-
3796
9265.421
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- a8b4d7ba-71d5-4764-b276-828e069e1a14
- 1
- 07782138-aba3-44d1-9dec-33b387755b83
- Group
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 7f21031c-6647-46ce-835e-6c92a920335e
- true
- Panel
- false
- 0
- 0
- 0.0000053644183496292
-
3576
10764
439
104
- 0
- 0
- 0
-
3576.978
10764.36
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 2a1012b3-1746-43f3-86ea-7f5c3c2e45f9
- true
- Evaluate Length
- Evaluate Length
-
3723
9164
144
64
-
3797
9196
- Curve to evaluate
- 5b68b4fb-21fa-478e-b2b4-b7a5b8956d27
- true
- Curve
- Curve
- false
- 77a3ce43-8057-49f5-89c2-e576f8185ca0
- 1
-
3725
9166
57
20
-
3755
9176
- Length factor for curve evaluation
- d4d2450a-d244-4b39-9363-a79325d76ef5
- true
- Length
- Length
- false
- 0
-
3725
9186
57
20
-
3755
9196
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- a602434f-88e6-44fc-8420-a75fad704911
- true
- Normalized
- Normalized
- false
- 0
-
3725
9206
57
20
-
3755
9216
- 1
- 1
- {0}
- true
- Point at the specified length
- 2e1363a0-d01d-4fec-9718-b5cfd286f332
- true
- Point
- Point
- false
- 0
-
3812
9166
53
20
-
3840
9176
- Tangent vector at the specified length
- c28f84ad-a06e-4383-bf93-524e5f7ad2ef
- true
- Tangent
- Tangent
- false
- 0
-
3812
9186
53
20
-
3840
9196
- Curve parameter at the specified length
- 53df6d40-a16c-489c-826a-72a348f7c973
- true
- Parameter
- Parameter
- false
- 0
-
3812
9206
53
20
-
3840
9216
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 3fd109c6-3ae8-453e-b871-73884b2fd78d
- true
- Expression
- Expression
-
3698
8942
194
28
-
3798
8956
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 51b39648-a335-4baf-919c-4e28aaced3a7
- true
- Variable O
- O
- true
- a8af648d-a529-4226-844e-f5e69e490c76
- 1
-
3700
8944
14
24
-
3708.5
8956
- Result of expression
- f652f373-453b-4ac3-a6bf-c966beff5ae9
- true
- Result
-
- false
- 0
-
3881
8944
9
24
-
3887
8956
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 58fbe8f8-b6cc-49b3-868f-2f5e9adf5eb4
- true
- Deconstruct
- Deconstruct
-
3729
9076
132
64
-
3776
9108
- Input point
- 26df8ffd-d7d3-41c4-b462-393891888fab
- true
- Point
- Point
- false
- 2e1363a0-d01d-4fec-9718-b5cfd286f332
- 1
-
3731
9078
30
60
-
3747.5
9108
- Point {x} component
- a8af648d-a529-4226-844e-f5e69e490c76
- true
- X component
- X component
- false
- 0
-
3791
9078
68
20
-
3826.5
9088
- Point {y} component
- 04a6236c-0529-4b05-b53e-6fa4a6f56ac2
- true
- Y component
- Y component
- false
- 0
-
3791
9098
68
20
-
3826.5
9108
- Point {z} component
- ddad9d4b-4540-4db5-abac-979b7741b090
- true
- Z component
- Z component
- false
- 0
-
3791
9118
68
20
-
3826.5
9128
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 080c45e6-3c93-4ede-8bae-6942df87d901
- true
- Panel
- false
- 0
- f652f373-453b-4ac3-a6bf-c966beff5ae9
- 1
- Double click to edit panel content…
-
3716
8909
160
20
- 0
- 0
- 0
-
3716.494
8909.412
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- a8a49fdf-31eb-4a9f-a98d-e15015261400
- true
- Expression
- Expression
-
3698
8856
194
28
-
3798
8870
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 49cce6d3-764c-43f0-b964-90db538179a2
- true
- Variable O
- O
- true
- 04a6236c-0529-4b05-b53e-6fa4a6f56ac2
- 1
-
3700
8858
14
24
-
3708.5
8870
- Result of expression
- 2f3ca44d-569c-425e-aadc-f845e807a4ad
- true
- Result
-
- false
- 0
-
3881
8858
9
24
-
3887
8870
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 23d8ebc4-a04d-40ff-98e4-1a30f772a64a
- true
- Panel
- false
- 0
- 2f3ca44d-569c-425e-aadc-f845e807a4ad
- 1
- Double click to edit panel content…
-
3716
8820
160
20
- 0
- 0
- 0
-
3716.494
8820.989
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- 9cc8f06a-8751-4d91-8029-e814fe94e287
- true
- Division
- Division
-
3754
8754
82
44
-
3785
8776
- Item to divide (dividend)
- 147147c2-a2a7-4448-b13c-09dabd84758f
- true
- A
- A
- false
- 080c45e6-3c93-4ede-8bae-6942df87d901
- 1
-
3756
8756
14
20
-
3764.5
8766
- Item to divide with (divisor)
- 8926f2a0-bc0c-4640-97f1-57559a99e3cd
- true
- B
- B
- false
- 23d8ebc4-a04d-40ff-98e4-1a30f772a64a
- 1
-
3756
8776
14
20
-
3764.5
8786
- The result of the Division
- 4168a486-0edf-4466-8b21-791b9740d2e7
- true
- Result
- Result
- false
- 0
-
3800
8756
34
40
-
3818.5
8776
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 64f4c70f-d50b-4286-9b15-67fe6a6b6671
- true
- Panel
- false
- 0
- 7b96ee99-1a36-400f-9885-b6de6377a16f
- 1
- Double click to edit panel content…
-
3715
8673
160
20
- 0
- 0
- 0
-
3715.742
8673.474
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- a0e07e08-fe1e-408d-b57c-4a0a1c879a92
- true
- Expression
- Expression
-
3698
8707
194
28
-
3798
8721
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 19731689-10c1-4f5c-94e5-b161105ed2e4
- true
- Variable O
- O
- true
- 4168a486-0edf-4466-8b21-791b9740d2e7
- 1
-
3700
8709
14
24
-
3708.5
8721
- Result of expression
- 34c452a1-e376-4945-8193-4fe30398e5d7
- true
- Result
-
- false
- 0
-
3881
8709
9
24
-
3887
8721
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 7b96ee99-1a36-400f-9885-b6de6377a16f
- true
- Relay
- false
- 34c452a1-e376-4945-8193-4fe30398e5d7
- 1
-
3775
8632
40
16
-
3795
8640
- a0d62394-a118-422d-abb3-6af115c75b25
- Addition
- Mathematical addition
- true
- 130ea919-f2f4-4d96-a399-8e265bf54af8
- true
- Addition
- Addition
-
3754
8569
82
44
-
3785
8591
- 2
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- First item for addition
- 354b657d-eed4-4c62-b565-91035253b8e0
- true
- A
- A
- true
- 23d8ebc4-a04d-40ff-98e4-1a30f772a64a
- 1
-
3756
8571
14
20
-
3764.5
8581
- Second item for addition
- 5dde32a7-d278-417e-bb8e-717be2dd2194
- true
- B
- B
- true
- 080c45e6-3c93-4ede-8bae-6942df87d901
- 1
-
3756
8591
14
20
-
3764.5
8601
- Result of addition
- da5e9210-aa07-4405-b4ff-7f40e685264d
- true
- Result
- Result
- false
- 0
-
3800
8571
34
40
-
3818.5
8591
- 9c85271f-89fa-4e9f-9f4a-d75802120ccc
- Division
- Mathematical division
- true
- c6f6074b-b03a-49dc-aac8-2e1469dc341f
- true
- Division
- Division
-
3754
8419
82
44
-
3785
8441
- Item to divide (dividend)
- 10c78b2c-0453-4b6d-93f5-98c0372221af
- true
- A
- A
- false
- 9cf2d03c-25ee-4970-b1c2-03c6d2473ade
- 1
-
3756
8421
14
20
-
3764.5
8431
- Item to divide with (divisor)
- 0ab7e06f-8504-4e2a-8bc5-dccbd09e3d3a
- true
- B
- B
- false
- 0
-
3756
8441
14
20
-
3764.5
8451
- 1
- 1
- {0}
- Grasshopper.Kernel.Types.GH_Integer
- 2
- The result of the Division
- 49550776-6b67-4836-a8f1-f1bb92a2284c
- true
- Result
- Result
- false
- 0
-
3800
8421
34
40
-
3818.5
8441
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 04f1da23-038a-4f15-bb9e-f3ce4920ed5a
- true
- Expression
- Expression
-
3698
8371
194
28
-
3798
8385
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 2e540c81-fbe7-4c94-ba2f-0dabfe2462fd
- true
- Variable O
- O
- true
- 49550776-6b67-4836-a8f1-f1bb92a2284c
- 1
-
3700
8373
14
24
-
3708.5
8385
- Result of expression
- 6fd448b9-6239-4db9-9b3c-4a6570895a70
- true
- Result
-
- false
- 0
-
3881
8373
9
24
-
3887
8385
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 2b84984b-394d-4dbc-8fc8-6cb8c68caa3f
- true
- Panel
- false
- 0
- 6fd448b9-6239-4db9-9b3c-4a6570895a70
- 1
- Double click to edit panel content…
-
3716
8337
160
20
- 0
- 0
- 0
-
3716.494
8337.331
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 9cf2d03c-25ee-4970-b1c2-03c6d2473ade
- true
- Panel
- false
- 0
- c7e172fc-45a1-403a-bc75-d970e3632366
- 1
- Double click to edit panel content…
-
3716
8489
160
20
- 0
- 0
- 0
-
3716.494
8489.24
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- fb8356cd-bc57-4212-b603-ece8bc609c2e
- true
- Expression
- Expression
-
3698
8522
194
28
-
3798
8536
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 3ee4e4f4-83f3-4907-bb38-5542571f95e9
- true
- Variable O
- O
- true
- da5e9210-aa07-4405-b4ff-7f40e685264d
- 1
-
3700
8524
14
24
-
3708.5
8536
- Result of expression
- c7e172fc-45a1-403a-bc75-d970e3632366
- true
- Result
-
- false
- 0
-
3881
8524
9
24
-
3887
8536
- 4d2a06bd-4b0f-4c65-9ee0-4220e4c01703
- Scale
- Scale an object uniformly in all directions.
- true
- 64c144e6-a1e8-4d25-b361-aa88bebf6277
- true
- Scale
- Scale
-
3718
8248
154
64
-
3802
8280
- Base geometry
- f0b390b0-07dc-4059-8798-0ac921130986
- true
- Geometry
- Geometry
- true
- a8b4d7ba-71d5-4764-b276-828e069e1a14
- 1
-
3720
8250
67
20
-
3763
8260
- Center of scaling
- c8c7700e-cf80-4e83-837b-450195f8b9de
- true
- Center
- Center
- false
- 0
-
3720
8270
67
20
-
3763
8280
- 1
- 1
- {0}
-
0
0
0
- Scaling factor
- e400d07b-1e9f-47d1-9d83-0b54fa7a6706
- 1/X
- true
- Factor
- Factor
- false
- 2b84984b-394d-4dbc-8fc8-6cb8c68caa3f
- 1
-
3720
8290
67
20
-
3763
8300
- 1
- 1
- {0}
- 0.5
- Scaled geometry
- dcee2938-844f-4bbc-a8c0-59aecd955ae6
- true
- Geometry
- Geometry
- false
- 0
-
3817
8250
53
30
-
3845
8265
- Transformation data
- e163d462-6338-4f09-b200-a47004968f54
- true
- Transform
- Transform
- false
- 0
-
3817
8280
53
30
-
3845
8295
- d5967b9f-e8ee-436b-a8ad-29fdcecf32d5
- Curve
- Contains a collection of generic curves
- true
- 86fc2dd8-2814-43bc-8aa6-998446a8e239
- true
- Curve
- Curve
- false
- dcee2938-844f-4bbc-a8c0-59aecd955ae6
- 1
-
3771
7785
50
24
-
3796.467
7797.688
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- f9285ab5-378d-4ddf-95cc-b5dd1c1ba77d
- true
- Expression
- Expression
-
3698
9029
194
28
-
3798
9043
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- af8e9ca5-8825-464b-8fc7-23d2e2ff17a1
- true
- Variable O
- O
- true
- ddad9d4b-4540-4db5-abac-979b7741b090
- 1
-
3700
9031
14
24
-
3708.5
9043
- Result of expression
- 4747135b-03a4-4b6e-8cc1-4c83c5d147b6
- true
- Result
-
- false
- 0
-
3881
9031
9
24
-
3887
9043
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 166e572a-6023-47d4-b8f6-57f8ebfb97da
- true
- Panel
- false
- 0
- 4747135b-03a4-4b6e-8cc1-4c83c5d147b6
- 1
- Double click to edit panel content…
-
3716
8995
160
20
- 0
- 0
- 0
-
3716.366
8995.187
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 6b021f56-b194-4210-b9a1-6cef3b7d0848
- Evaluate Length
- Evaluate a curve at a certain factor along its length. Length factors can be supplied both in curve units and normalized units. Change the [N] parameter to toggle between the two modes.
- true
- 5de4bf60-eae6-465d-b779-f5efb709b4ad
- true
- Evaluate Length
- Evaluate Length
-
3723
8165
144
64
-
3797
8197
- Curve to evaluate
- 92f23770-fc31-4292-ad84-8ff452db746b
- true
- Curve
- Curve
- false
- dcee2938-844f-4bbc-a8c0-59aecd955ae6
- 1
-
3725
8167
57
20
-
3755
8177
- Length factor for curve evaluation
- 4e7f439d-cfdd-4831-8a20-c0497ab47502
- true
- Length
- Length
- false
- 0
-
3725
8187
57
20
-
3755
8197
- 1
- 1
- {0}
- 1
- If True, the Length factor is normalized (0.0 ~ 1.0)
- d486d9e7-3ffb-49d9-bad8-788d26e5110e
- true
- Normalized
- Normalized
- false
- 0
-
3725
8207
57
20
-
3755
8217
- 1
- 1
- {0}
- true
- Point at the specified length
- c0e204f4-d005-41a4-973a-7b57e9be9ab7
- true
- Point
- Point
- false
- 0
-
3812
8167
53
20
-
3840
8177
- Tangent vector at the specified length
- 8cc84fda-289c-4c87-87c8-9466f1666b37
- true
- Tangent
- Tangent
- false
- 0
-
3812
8187
53
20
-
3840
8197
- Curve parameter at the specified length
- 252d752d-ef2f-4a27-a121-4ed9454a7846
- true
- Parameter
- Parameter
- false
- 0
-
3812
8207
53
20
-
3840
8217
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- f18cc5c3-73d8-4311-8236-bf6b13104193
- true
- Expression
- Expression
-
3698
7948
194
28
-
3798
7962
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 6bf7b93e-bd0f-49e9-ba67-ba5da4f1868b
- true
- Variable O
- O
- true
- 1102b695-a324-462f-8810-6fa53b966ad9
- 1
-
3700
7950
14
24
-
3708.5
7962
- Result of expression
- 1e77ca74-cf7b-4321-b38c-a3163c909fa0
- true
- Result
-
- false
- 0
-
3881
7950
9
24
-
3887
7962
- 9abae6b7-fa1d-448c-9209-4a8155345841
- Deconstruct
- Deconstruct a point into its component parts.
- true
- 96bb9f3d-3d8c-4d3a-859d-4a8d3f4c5d5e
- true
- Deconstruct
- Deconstruct
-
3729
8082
132
64
-
3776
8114
- Input point
- 5c957068-4a85-43a9-8c44-355e78fd0d6b
- true
- Point
- Point
- false
- c0e204f4-d005-41a4-973a-7b57e9be9ab7
- 1
-
3731
8084
30
60
-
3747.5
8114
- Point {x} component
- 1102b695-a324-462f-8810-6fa53b966ad9
- true
- X component
- X component
- false
- 0
-
3791
8084
68
20
-
3826.5
8094
- Point {y} component
- 74738e6c-77cc-4f85-b1dc-0465dc04801f
- true
- Y component
- Y component
- false
- 0
-
3791
8104
68
20
-
3826.5
8114
- Point {z} component
- 7377a684-0c05-416e-8fec-f9f6068f4477
- true
- Z component
- Z component
- false
- 0
-
3791
8124
68
20
-
3826.5
8134
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 4edfafd8-3b0c-4943-bb10-917abaeb9712
- true
- Panel
- false
- 0
- 1e77ca74-cf7b-4321-b38c-a3163c909fa0
- 1
- Double click to edit panel content…
-
3715
7915
160
20
- 0
- 0
- 0
-
3715.749
7915.689
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- f91bfec0-c6ad-4011-8456-67697a779eb3
- true
- Expression
- Expression
-
3698
7862
194
28
-
3798
7876
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- df784300-8909-47e0-843d-e71310e7b206
- true
- Variable O
- O
- true
- 74738e6c-77cc-4f85-b1dc-0465dc04801f
- 1
-
3700
7864
14
24
-
3708.5
7876
- Result of expression
- 0cd35029-1027-442c-b2a4-26e1dfbfdec1
- true
- Result
-
- false
- 0
-
3881
7864
9
24
-
3887
7876
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 91b67f5a-4dff-4683-a8db-dc90bf6de0f8
- true
- Panel
- false
- 0
- 0cd35029-1027-442c-b2a4-26e1dfbfdec1
- 1
- Double click to edit panel content…
-
3715
7828
160
20
- 0
- 0
- 0
-
3715.749
7828.98
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- d0b32d0e-885a-4c2b-b378-441bba4876b7
- true
- Expression
- Expression
-
3698
8034
194
28
-
3798
8048
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- e36616dd-0650-4dfa-9af9-67b25ec8d729
- true
- Variable O
- O
- true
- 7377a684-0c05-416e-8fec-f9f6068f4477
- 1
-
3700
8036
14
24
-
3708.5
8048
- Result of expression
- 8fb3798e-f6dd-4399-99bf-e1fd2621633d
- true
- Result
-
- false
- 0
-
3881
8036
9
24
-
3887
8048
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 1498e329-39e2-490d-bf26-64cc72d5b628
- true
- Panel
- false
- 0
- 8fb3798e-f6dd-4399-99bf-e1fd2621633d
- 1
- Double click to edit panel content…
-
3716
8001
160
20
- 0
- 0
- 0
-
3716.494
8001.902
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- b59393f3-2b17-47be-bc0e-82711f27e393
- true
- Panel
- false
- 0
- 0
- 0 256 0.0013733120705119695
0 4096 0.0000053644183496292
-
3606
10888
379
104
- 0
- 0
- 0
-
3606.538
10888.93
-
255;255;255;255
- false
- false
- true
- false
- false
- true
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 942441e0-2a69-43f4-80f2-24729e38a366
- true
- Panel
- false
- 1
- 9693cd0c-6060-4d7f-a338-911dba0b51e3
- 1
- Double click to edit panel content…
-
3618
9960
355
100
- 0
- 0
- 0
-
3618.117
9960.908
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- c2f1f615-6fd6-4da2-9d18-b2d721b79703
- true
- Expression
- Expression
-
3698
10068
194
28
-
3798
10082
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 4141f7a5-69d9-475a-944b-26346500ac07
- true
- Variable O
- O
- true
- 72e2f1ea-5de4-4652-b1b6-c001429a1607
- 1
-
3700
10070
14
24
-
3708.5
10082
- Result of expression
- 9693cd0c-6060-4d7f-a338-911dba0b51e3
- true
- Result
-
- false
- 0
-
3881
10070
9
24
-
3887
10082
- 3e8ca6be-fda8-4aaf-b5c0-3c54c8bb7312
- Number
- Contains a collection of floating point numbers
- 11a52911-ee4b-4695-868f-5bf4c41520d5
- true
- Number
- Number
- false
- c8f545e8-6340-444b-b8d2-3b5a3ae04fa3
- 1
-
3770
11178
50
24
-
3795.914
11190.59
- c552a431-af5b-46a9-a8a4-0fcbc27ef596
- Group
- 3
-
255;255;255;255
- A group of Grasshopper objects
- 86fc2dd8-2814-43bc-8aa6-998446a8e239
- 1
- a735dbd6-46f1-4990-9841-38358cb90a79
- Group
- 9df5e896-552d-4c8c-b9ca-4fc147ffa022
- Expression
- Evaluate an expression
- FORMAT("{0:R}",O)
- true
- 28041f4d-ea5e-40a7-8e96-c4fe6c94f571
- true
- Expression
- Expression
-
3698
10503
194
28
-
3798
10517
- 1
- ba80fd98-91a1-4958-b6a7-a94e40e52bdb
- 1
- 8ec86459-bf01-4409-baee-174d0d2b13d0
- Expression variable
- 6c1574ce-673c-4f5a-b977-9343ac291640
- true
- Variable O
- O
- true
- 41402c3f-e413-42af-bec9-2fa5b5ce34fa
- 1
-
3700
10505
14
24
-
3708.5
10517
- Result of expression
- fa389df7-74ab-4f83-8e43-bc53ee77a82e
- true
- Result
-
- false
- 0
-
3881
10505
9
24
-
3887
10517
- 59e0b89a-e487-49f8-bab8-b5bab16be14c
- Panel
- A panel for custom notes and text values
- 86694246-d580-4d98-8160-6ae52ac6f1b8
- true
- Panel
- false
- 0
- fa389df7-74ab-4f83-8e43-bc53ee77a82e
- 1
- Double click to edit panel content…
-
3698
10215
194
271
- 0
- 0
- 0
-
3698.807
10215.8
-
255;255;255;255
- true
- true
- true
- false
- false
- true
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 7ae05443-fd59-4dfe-ba49-c100f76256e7
- true
- Relay
-
- false
- 86694246-d580-4d98-8160-6ae52ac6f1b8
- 1
-
3775
10180
40
16
-
3795
10188
- b6236720-8d88-4289-93c3-ac4c99f9b97b
- Relay
- 2
- A wire relay object
- 41402c3f-e413-42af-bec9-2fa5b5ce34fa
- true
- Relay
-
- false
- 96634ed3-55a8-4c30-a62c-e5002f4aa576
- 1
-
3775
10548
40
16
-
3795
10556
-
iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAlgSURBVHhe7d3ZUhRZEMZxn3SeY64nYp5g7uZNXGdAQHDfFUVx33FfQFHnF+Z4ouxGoxVDsrqyLjqqi2o4df795cmtil27apuCGfhYW29n4P+vn/H/u3PbzPzSzN9/HPjr93/nF//5vH1jOE6ZmZl58ODB+vp6m/knT57cv39/bm7uwIED8dnZ2dmDBw/Gvo/Ejg/GcWd69Xbnrvsn/GWXnwKhCZ6ZnZtbWDS5tkmubM+ePZcuXXr58uX6xsbG5sf19Y21tUfnzp3bt29fQELIFvuNWWDztu/k2hSlQRhC+SSRpo9g2dTT9oOK1/n5+XsPHt5euTjz529XTx1ZvXELIQcPHTq0sLAQtGILilODrfsV/6UIJ7GQbXChGzAgMfUj1i+oMJjOury8vHr22Mql5fn5hWZCx8FPouw+nvOTEXYnrs17s2NNE7EThq5tIz8NSEeOHFlaWuqKaWRhw2z//v2zc/P77X1eAvtI4ofH/IMIt0TVZdA1Ys2ONWsWdCcZdAg3TGj3j4589hs/muSv9Pqc70bYDFqTUXexGV9vhjy5v+ab8VWEMfUjwLoGrSuj4vRraG35V7ZAGD5hcwt33AX3/RjmIjfh1+ILhF1vvolsZxW2d+9explfimIEfBNe2HBO+wJhTNDOMutOPX7Ly8vPnj27ffu2V64p53M4bCa80u92Zyb8vds/jeyIT/7s+vXrZ8+eff78+atXrwhx+795yn5DXoQkKH+2urqK3+nTp48ePfr48ePjx48XxZGvYGqE9Hf37t1r164B6ZUKz58/LzU6ZTLa5uWkRvjw4cOVlRXKO3ny5JkzZyyHly9fLoR9UiGEjx49oryrV68S4ps3b5jWQtgbhFDdunXrzp071kJC5NooB9KiNXKblmfKPp7XkEJ44cKFwEaIbKlybgSIU8Zgm5eTF6EQkBeqmnvs2DH1CrXctbW1PDHrNuf9J348L0JqU7a1FjKk+FkFqTD6LX7i9U/Br8qLEC0VKx7NiRMnrIXSNNbFTzXeidoypoDNhJeQFGF0JYFHeeJ6y+GpU6fEiI5PeGHDOS0jwqiNcGcoT14NPO6MAPHt27eaMMqdyR5URKnLKAMhj5RfCiGQT58+rUz3uHVJp8KGUPzHfqpRhBWlQl2jHJxSYXYVGl80f1Ih8fmK3bx58/Dhwy9evLBfhrQHKjTEEOLu3bspj/G8cePGlStXLl68iGIZ0n4gNEoIGUwZGalRVpQt5ZdiSYUV3ffAkMYQaZHmIrUtQUOCyr+VIO2NCg1Ugk1ED5vonmtqB0XHJ7/pYiChYTqPtM07wTGhsKkR2pR/7Yen03ohK9lmulIjtATyaCS77VgX1Z4iqGg9rkF0IGr72mXmRRhBxYcPH+S4eTHy3Zubm917B+OSimJehIIKxXrFJhEFFTKkbiVULxzpQ+zeBDpMOeZFSIVansT1IkJC5J0ypBLfIx1ssTQOOdJIjRAzZV76i02CTXQ4ElcUwrwIoRJOCAo5MshFsYkiR9qfKsbIixAqslNsEhRaDqVpuDOiixFDyp0Z5hLYrjo1QmuhpFpEFBwZ5V9a7AJrZY0hU8yLkCHVNcMLlV0LW6ohP6r5rfeiIorUob3gYXFxUV5NdIifGB/CuD8NueiDqj6M1AhlYQQSjCeQQnv5Ut5NF2GtgrF85DWk0XjBo4mMDFuqCQPO7oM0hrwE9sCdgU0U4VYYvTNSo3xRMSKoIcQyodkRxkKoZB99pICJCKkQVGjDqSkJpjakUWmKrgvujI3+uDOS3dAWvO4MJF0LIYQNQh1smIkrpGmokCi9rTvue4PQQihN6p4YcT1zyrWxFcIRI5RXhZIysmv37t0T4Edo754KtrRaSXuD0FpIhYxntHJzZ1hRTmm1kvYGIdnFE2fAY0WB9LYQjrtyeQ2pMi93Rl6NL8OWquDjxyMdL9wP3EHNizAeFwQhQgJBPfmSbdbCQtgbQwqhrkMuKCsqxxYxhq0Q9gYh/TGb0UeKYtzZBKGexHoAVA/iQpA0PgEmLpSXsQHJtWFapUzr0TM9QKgcKIRQ79VyIRCkPE4NFbrFAlT9iQN3YbIjjAcl6JR5/fq1QCLSpETJqL5//x7aQpgdYRQi2EyNhzTHryFEckTRW31QZUhTI2xNhYyn7KhXvoww36t9tXsHK82dF2H0xRgfd4YLGnmZSHPLbsuU8mu81l2GeRG2Wq7VTlJb3oHswJMjlRpF1BH7hTApwm5fNhVqIuXOWAJl2rgz8fQLCCsuzBvat440LK12bOa7d+8Um7gwEqR2eKcQVrEpKcJ44lMMzj4VxhNLIjVDeewnj9SR8VsMBx4jZklzd5tCQ4WB0KugHsVIcxfCpMWm8buTtKkFQi5MIPQqxhfvx/NMBq68dO7MeFNoM6R8GU5p2FLuDIQCjyHfEJpUheOt9QypcNCN9k2F3sqRehhiSTCdO9PC+e7IqJDl5JHG05/k2LxaCx359j8yHKCBTeHOjKsQQvbT4MBjQiO1ppXbjU6FMJ0KI4oYeVwzhCwnhLDJqEEo36abDcJKkGZE2KUYrooUWiCUZpOXcZda3FOhXlgl+6QIg2L7p/NypPFPmqyF0jTMqUwbRXJweKdVbEoXVMSAQn8R19OchwbpVwNSdo0VRTGyM+IKKe8yp41iCnem+50SM/BRBQ9Gpkyv6ivGl2ZzW4xkKX6Oc01LiHkRYoMWE8qLoTwLoeg+tvhvB+yqn9bjgfMitArq2ia4uCetu4krvFX+rT62pGthDIsKeZ4MqVVQv2E8jNTGnaE/R1hR5tTqWLY0ZizdWgiMDuBIcHM+JWVii2d4UWE4NdVNmtqQsqIgxcNkG8KgKFhU+43Qotov8qowemQYTEFhPH1NXMGWOh4t3uKNqt3nVaGAj8Oi5TfuD9XQzTVlPy2NmoDjtgrBRsWFeRGGRyOo1/sUfg0TKoSQaXNEgqZ8mbwJtjYyCsOMtbTsyWuL7q18fBz6c0RE4YSq+qZWocGJDq18AkQ2EzlCtI8fXWqiqUx36riwmy+18vFOY7MWQsi1KUe0B4Y0hgiVTBunhi3l3UiqkaCgoiTYG4Txb3spj2sjwMBPpFiO6Ai/jNmZkaqFt1Kj4gpLYHkx4/yyIzQ+nifLaSv9bcmvBwi/Nu46nj2oKEKTz0C6SsXkQ68zk6a5C8z3zkCp8HtnLN35XyD0prY+zsCu2qZgBv4D6oTZ0xnKVtAAAAAASUVORK5CYII=